
ICP-Flow: LiDAR Scene Flow Estimation with ICP

Yancong Lin and Holger Caesar
Delft University of Technology, The Netherlands

Abstract

Scene flow characterizes the 3D motion between two Li-
DAR scans captured by an autonomous vehicle at nearby
timesteps. Prevalent methods consider scene flow as point-
wise unconstrained flow vectors that can be learned by ei-
ther large-scale training beforehand or time-consuming op-
timization at inference. However, these methods do not
take into account that objects in autonomous driving of-
ten move rigidly. We incorporate this rigid-motion assump-
tion into our design, where the goal is to associate objects
over scans and then estimate the locally rigid transforma-
tions. We propose ICP-Flow, a learning-free flow estimator.
The core of our design is the conventional Iterative Clos-
est Point (ICP) algorithm, which aligns the objects over
time and outputs the corresponding rigid transformations.
Crucially, to aid ICP, we propose a histogram-based ini-
tialization that discovers the most likely translation, thus
providing a good starting point for ICP. The complete scene
flow is then recovered from the rigid transformations. We
outperform state-of-the-art baselines, including supervised
models, on the Waymo dataset and perform competitively
on Argoverse-v2 and nuScenes. Further, we train a feedfor-
ward neural network, supervised by the pseudo labels from
our model, and achieve top performance among all models
capable of real-time inference. We validate the advantage
of our model on scene flow estimation with longer temporal
gaps, up to 0.4 seconds where other models fail to deliver
meaningful results.

1. Introduction

Motion is vital for visual perception, particularly for highly
automated vehicles that operate in a dynamically changing
3D world, as motion facilitates the detection of dynamic ob-
jects around an autonomous vehicle. A popular task in mo-
tion prediction is scene flow estimation, which calculates
point-wise motion from two temporarily adjacent LiDAR
scans, i.e. a 3D vector that describes the displacement of a
point [3, 12, 28, 43]. Scene flow lays the foundation for nu-
merous high-level tasks in perception, particularly in scene
understanding without relying on large amounts of annota-

Iterative Closest Point (ICP)

Scene Flow calculation

Supervision

Neural Network

ICP Flow

Ground + Clusters
 (in color)

Real-time
Inference

Feedforward
Neural Network

xz

y

Figure 1. ICP for scene flow. Given two LiDAR scans, we remove
the ground, cluster points, and align clusters using ICP, as objects
move rigidly. We infer a rigid transformation for each pair of clus-
ters, from which the scene flow can be recovered. Further, we
train a feedforward network using the prediction from our model
as supervision. The network runs in real-time with only marginal
performance loss.

tions [14, 34, 51, 57]. As an example, [34] leverages scene
flow to segment dynamic objects from a scene and asso-
ciate them over multiple frames, from which one can create
bounding boxes for training object detectors in an unsuper-
vised manner. [51] builds on top of scene flow and takes
advantage of motion cues to discover and track objects from
a large volume of unlabeled data. These works treat scene
flow estimation as a cornerstone and consider motion as a
useful prior for temporal perception. The motion prior not
only reduces the dependency on manual annotation but also
scales up when ample data is available, particularly in au-
tonomous driving where ample unlabeled data is relatively
cheap to acquire. Thus, it is important to develop a reliable
scene flow method for autonomous driving.

There has been a strong demand for unsupervised scene
flow, as many works [14, 34, 51, 57] count on scene flow to
extract object information, such as tracked bounding boxes
over time, for free, i.e., without human labeling. Recent
works in [2, 33] have made great strides towards this di-
rection, by utilizing the cycle consistency of forward and
backward flows. Further, the work in [26, 27] proposes
test-time optimization that conducts learning from scratch
per sample, thus eliminating the need for training data. Un-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15501

fortunately, these approaches are only able to predict free-
form unconstrained scene flow, due to the lack of multi-
body rigidity, i.e. a scene is composed of multiple rigidly-
moving objects. As a consequence, the flow vectors from
the same object, e.g., a moving vehicle, may not agree in
terms of their direction or magnitude. Although [15, 17]
have done pilot work on incorporating the motion rigidity
into scene flow, they rely on either partial or full annotation
for model training. Recent work [25] achieves unsupervised
learning without losing motion rigidity. We share the same
spirit as [25] and further eliminate the need for large-scale
data and lengthy training processes.

Another concern for scene flow is the inference cost,
which is crucial for processing large volumes of data, par-
ticularly in autonomous driving. However, recent works [9,
26, 45], although being data-independent, suffer from sig-
nificant inference latency. Processing a single sample can
take more than a minute on a modern GPU [9, 26], making
scene flow a time-consuming and resource-intensive task in
real-world deployment. Other unsupervised work [25] is
unable to process full LiDAR scan during inference and re-
quires downsampling due to high demand on GPU memory.

We propose ICP-Flow, a learning-free model to over-
come the reliance on data and the lack of motion rigidity.
ICP-Flow also provides high-quality pseudo labels for train-
ing a neural network that runs in real time at inference. Our
model, as shown in Fig. 1, builds on top of the Iterative
Closest Point (ICP) [4] algorithm and is fully hand-crafted,
thus demanding neither human annotation nor training data.
Although simple, we are able to achieve competitive per-
formance on common benchmarks, including Waymo [41],
Argoverse-v2 [54] and nuScenes [5]. Further, we treat our
predictions as pseudo-labels for supervising feedforward
neural networks and achieve real-time inference with only
a marginal performance decrease. Additionally, we extend
our ICP-Flow to scene flow estimation over a longer tem-
poral horizon of up to 0.4 seconds, where other models fail.

To summarize, our contributions are as follows:
• We introduce a learning-free LiDAR scene flow estimator

that requires neither large datasets nor manual annotation.
• Our ICP-Flow incorporates the multi-body rigid-motion

assumption by design and produces consistent scene flow
per object. ICP-Flow is the top-performing model on
Waymo [41] and nuScenes [5].

• Our ICP-Flow generates high-quality pseudo labels for
supervising a feedforward neural network that performs
on-par with the state-of-the-art, but with a considerably
lower inference latency.

2. Related work
There have been numerous works that estimate scene flow
from RGB or RGBD images [32, 47, 48, 53]. However,
our focus is on scene flow from point clouds, particularly in

autonomous driving. We highlight works within this scope.

2.1. Scene flow from point clouds

Early work [12] on scene flow formulates the task as an
energy minimization problem by assuming geometric con-
stancy and motion smoothness. [43] converts point clouds
into occupancy grids and computes a flow field by track-
ing the occupancy grids using expectation maximization.
Recent works are mostly data-driven models that estimate
scene flow in an end-to-end fashion [3, 8, 16, 17, 21, 28, 29,
36, 49, 52]. However, model training requires massive data
labeled by human experts. In contrast, our model is free
from explicit learning and costly annotation.

To remedy the need for manual labels, [1, 33, 42] take
advantage of the cycle consistency and propose a self-
supervised mechanism for model training. [55] achieves
the same goal by minimizing the Chamfer distance between
two point clouds after flow compensation, with smooth-
ness constraint and Laplacian regularizer. Instead of self-
supervised learning, [18] develops a synthetic dataset with
ground truth annotations to aid learning. Another line of
research focuses on knowledge distillation from imperfect
pseudo labels [24, 44]. [44] supervises model training using
predictions from [26] and is able to outperform the teacher
model [26] when a sufficient amount of data is available.
Although manual labels are no longer needed, these models
still demand large amounts of data. In contrast, our model
requires neither training data nor human labeling.

Recently, runtime optimization has gained popularity be-
cause of its independence on data. [9, 22, 26, 27] learn
scene flow for each sample at test time by iteratively min-
imizing the Chamfer distances between two point clouds.
Our model shares the same spirit and eliminates the need for
data. However, our design is hand-crafted, thus free from
the time-consuming test time optimization.

2.2. Motion rigidity in scene flow

Instead of predicting an unconstrained free-form flow vec-
tor per point, [12] uses the rigid body assumption in scene
flow, i.e. objects do not deform, and predicts a rigid trans-
formation per object. Similarly, [13, 15, 17, 25] also adopt
the rigidity assumption by design. [45] considers rigid-
ity as an additional regularizer and improves upon previ-
ous work [26], which only produces an unconstrained flow
field. Inspired by this line of research, we also convert scene
flow into rigid transformation estimation from which the
complete scene flow can be recovered. Notably, previous
work [25] has proposed using ICP to align LiDAR segments
where the initial transformation of ICP is estimated from a
deep network trained on large-scale datasets. In contrast, we
eliminate the need for computationally expensive training
of deep networks on large datasets by using a hand-crafted
histogram-based scheme to aid ICP.

15502

2.3. ICP

ICP [4] is a commonly used technique for registering 3D
shapes or point clouds, based on point correspondences.
There have been numerous works on extracting reliable cor-
respondences, ranging from classic feature engineering [7,
35, 39, 40, 46, 56] to deep feature learning [10, 50, 58].
However, they are primarily designed to match scene-scale
data, e.g., full-size LiDAR scans, rather than individual seg-
ments from LiDAR data. We opt for a conventional ICP
implementation [4] to match clustered LiDAR segments.

3. Method
3.1. Problem statement

Scene flow estimation takes as input a pair of LiDAR scans
Xt and Xt+∆t, captured by an autonomous vehicle at two
adjacent time steps t and t+∆t, where X ∈ R3×L = {xl ∈
R3}Ll=1 denotes a point cloud of length L. The goal is to
estimate a flow field Ft ∈ R3×L = {fl ∈ R3}Ll=1 such that
Xt + Ft ≈ Xt+∆t. Notably, the size of Xt may differ from
Xt+∆t, while Xt and Ft are always of the same length.

Additionally, we assume that each LiDAR scan X can
be decomposed into background Xbg that is static over time
and foreground Xfg consisting of K rigidly-moving objects
that may or may not move at the given time step, denoted as
Xfg = {Ck ∈ R3×Lk}Kk=1, where Ck is the k-th object, i.e.,
a cluster of points that represents a particular object. Our
aim is to estimate a rigid transformation Tk ∈ SE(3) for
each object Ck, from which we can recover its scene flow
Fk by

Fk = TkTego ◦ Ck − Ck, (1)

where ◦ indicates applying a rigid transformation to a set
of points. Matrix Tego ∈ SE(3) is the ego-motion trans-
formation at the corresponding time step. Xbg is static over
time and therefore its transformation Tbg is equivalent to an
identity matrix Teye ∈ SE(3). Thus, our end goal is to de-
compose a scene into a set of clusters {Ck}K+1

k=1 represent-
ing the objects, and then to estimate their transformations
{Tk}K+1

k=1 between two scans Xt and Xt+∆t. For simplic-
ity, we consider the background as an additional object that
does not move over time.

3.2. Overview of ICP-Flow

Fig. 2 shows a sketch of ICP-Flow. Given two LiDAR
scans, we first conduct ego-motion compensation to align
them in the same coordinate system. Sequentially, we re-
move the ground points from each scan separately and fuse
the remaining points for subsequent clustering, resulting in
a set of clusters (i.e. clusters of points) at time t and t+∆t,
respectively. We then employ the Iterative Closest Point
(ICP) [4] algorithm to associate clusters over time. Notably,

rather than matching two LiDAR scans, we apply ICP to
each pair of clusters over time and estimate a transforma-
tion matrix that minimizes the point-wise distance between
paired clusters. Ultimately, we calculate a scene flow per
cluster and assign it to the corresponding points in the orig-
inal LiDAR scan. Crucially, we highlight that naive ICP
does not deliver competitive results because it relies to a
great extent on a good initial guess of the transformation.
To overcome this issue, we design a simple yet effective
histogram-based initialization for ICP.

Moreover, we train a feedforward neural network to fur-
ther reduce the inference latency, using the pseudo-ground
truth generated by our model.

3.3. Ego motion Compensation

Ego motion compensation can significantly reduce the dif-
ficulty in scene flow estimation, as the background and
static objects no longer “move” after compensation. Fur-
ther, ego motion is directly available in autonomous driving
(from the IMU or other odometry) and in common bench-
marks [5, 41, 54]. Thus, we take advantage of the given
ego motion in our design. For benchmarks where ego mo-
tion is not available, we adopt KISS-ICP [46] to estimate
the relative transformation between a pair of scans.

3.4. Ground removal and point clustering

We use Patchwork++ [23] to remove the ground from each
LiDAR scan and feed the remaining points into HDB-
SCAN [6] for clustering. Instead of clustering each scan
individually, we first fuse the non-ground points from both
scans and then conduct HDBSCAN clustering. Afterward,
we separate fused points by time and obtain a set of clusters
{Ct

m}Mm=1 and {Ct+∆t
n }Nn=1, each of which has a times-

tamp and a cluster index as denoted by the superscript and
subscript.

3.5. Cluster pairing

For each cluster at time t, we search for several candidate
clusters at t +∆t that are likely to match the given cluster.
This is to reduce the search space and does not enforce one-
to-one correspondence. We refer to this step as cluster pair-
ing, after which all paired clusters are fed to ICP matching
(Section 3.6) for further verification (Section 3.7). If suc-
cessful, we save the transformation Tt

m that best aligns each
pair of clusters for scene flow calculation. Simply speaking,
we pair each cluster at time t with its neighboring clusters
at time t+∆t that lie in a predefined area of τx × τy where
τx and τy (in meters) are the maximal translations possi-
ble within ∆t along the x and y dimension, respectively.
Subsequently, we feed all pairs to ICP matching and clus-
ter association if successful. This procedure can be further
simplified by exploiting the clustering indices from HDB-
SCAN. We provide details in the supplementary material.

15503

ICP
(Histogram-based init)

Cluster
association Scene flow

Ego-motion compensation
 Ground removal
Object clustering

Cluster
pairing

Figure 2. Overview of ICP-Flow. Given two full-size LiDAR scans as input, we first do ego-motion compensation and ground removal
on each scan. Subsequently, we fuse the non-ground points from both scans and group them into a set of clusters. We pair clusters by
spatial locality and feed them to ICP matching for further verification and transformation estimation. We then filter unreliable matches and
associate clusters over time. The scene flow is recovered by using the rigid-motion assumption. Crucially, to aid ICP matching, we develop
a histogram-based voting strategy for initialization, by exploring the motion rigidity.

3.6. ICP matching

Given a pair of clusters Ct
m and Ct+∆t

n consisting of Lm

and Ln points respectively, we leverage ICP [4] to estimate
a transformation matrix Tt

m and calculate quantitative met-
rics to measure the alignment. However, ICP requires a rea-
sonably good initialization; otherwise, it produces a subop-
timal estimation. We refer the readers to the ablation study
in the supplementary material for an in-depth analysis.
Histogram-based initialization. We take advantage of the
fact that objects rarely change directions sharply within a
short temporal window ∆t, where ∆t ≤ 0.1 seconds, leav-
ing translation the major variable to infer during initializa-
tion. Moreover, we explicitly incorporate the rigid mo-
tion assumption, indicating that points from the same ob-
ject share approximately the same translation within a time
gap of ∆t. Taking this inspiration, we compute a histogram
for all translation vectors between a pair of clusters and
then select the dominant translation shared by the major-
ity. We construct the histogram H by discretizing the max-
imal translation τx within ∆t along the x dimension into
equally spaced bins of 0.1 meters. The same also applies
to the y and z dimensions. This results in a histogram H
of size Lx × Ly × Lz . To conduct voting, we calculate
the point-wise translation vectors between Ct

m and Ct+∆t
n

1,
namely {xti − xt+∆t

j | xt
i ∈ Ct

m, xt+∆t
j ∈ Ct+∆t

n } where
i = 1, . . . , Lm, and j = 1, . . . , Ln. Subsequently, we dis-
cretize each translation vector and cast a vote to its bin in
H. After voting, we localize the bin with the most votes and
initialize Tt

m with the associated translation.
ICP matching. We further refine the initial transformation
using ICP [4]. We opt for a conventional ICP implementa-
tion rather than recent works that are primarily designed for
large-scale point clouds and require advanced GPUs for op-
timization. We adopt the Pytorch3D implementation [37].

To evaluate the quality of ICP matching, we adopt two

1This is equivalent to a broadcasted matrix subtraction.

metrics: average distance d between transformed point
correspondences and ratio of inliers r, defined by d =
1

Lm

∑Lm

i=1 ∥di∥ and r =
∑Lm

i=1 1(di)

Lm+Ln−
∑Lm

i=1 1(di)
, respectively.

Here di indicates the distance between a point xti ∈ Ct
m and

its nearest neighbor xt+∆t
j ∈ Ct+∆t

n after transformation.
1(di) is an indicator function, defined by Eq. (2), that cate-
gorizes a pair of correspondences as an inlier if the distance
does not exceed τinlier:

1(di) =

{
1 ∥di∥ ≤ τinlier

0 otherwise
(2)

3.7. Cluster association

After ICP matching, we construct a distance matrix Md of
size Lm × Ln, where Md(m,n) indicates the distance d
between paired clusters Ct

m and Ct+∆t
n . Similarly, we also

build an inlier-ratio matrix Mr where Mr(m,n) indicates
the inlier ratio r between paired clusters. For unpaired clus-
ters, we assign ∞ in Md and 0 in Mr.

Sequentially, for each query cluster at time t, we seek a
paired cluster at time t + ∆t that has the smallest distance
d. However, it might be possible that a pair of clusters differ
substantially in size, such that the cluster with fewer points
always matches well with the other. To prevent this, we
reject a pair of clusters once r < τr where τr is a predefined
threshold. Afterwards, we search for the best match for the
query cluster. This is equivalent to an argmin over columns
for each row in Md. Similarly, we reject paired clusters
once d > τd, where τd is also a threshold. For clusters at
time t that have no match at time t+∆t, we simply assign
an identity transformation. Finally, we recover the scene
flow using Eq. (1).

Alternatively, we can apply Hungarian matching [11] to
associate the clusters from two scans, by enforcing one-
to-one correspondence. In general, we find that argmin
matching works well on common benchmarks.

15504

3.8. ICP-Flow pseudo labels as supervision

We also train a feedforward neural network for real-time in-
ference. We supervise model training with the pseudo labels
from ICP-Flow. We adopt the same setup as ZeroFlow [44],
including both the model architecture and the loss function.

3.9. Implementation details

We adopt the default parameters in Patchwork++ [23] dur-
ing ground removal. We use the default parameters in HDB-
SCAN [30, 31], except that min cluster size is set to 20,
below which ICP matching becomes substantially harder.
We take maximally 200 clusters after HDBSCAN sorted by
the number of points for cluster pairing. For the other clus-
ters, we simply set their transformations to be an identity
matrix. Assuming ∆t = 0.1 seconds, we set the maximal
translation τx and τy to be 3.33 meters, which is equivalent
to the distance that an agent travels at 120 km/h. Scalar τz is
set to be 0.1 meters, as objects barely move up/downward.
We set the inlier threshold τinlier during ICP [37, 59] to be
0.1 meters. We set the rejection threshold for cluster asso-
ciation to be τd = 0.2 meters or τr = 0.2.

Regarding neural network training, we use the Adam op-
timizer [20] with an initial learning rate of 2e−4, which
is multiplied by 0.1 after 25 epochs. We train the model
for 50 epochs on 4 Nvidia V100 GPUs and an Intel(R)
Xeon(R) W-2245 CPU @ 3.90GHz. The entire training pro-
cess takes approximately 5 days on the Waymo scene flow
dataset [17, 41]. We conduct model inference on the same
device. Our code is available at https://github.
com/yanconglin/ICP-Flow.

4. Experiments

4.1. Datasets

We conduct experiments on the Waymo [41], nuScenes [5]
and Argoverse-v2 [54] datasets, which are the largest
datasets for scene flow in autonomous driving. We take full-
size LiDAR scans as input without any downsampling.

Waymo. We use the modified Waymo dataset released
by [17], where the ground truth is calculated from annotated
3D bounding boxes. There are 11,440/4,013/4,032 samples
for training/validation/test, where each sample consists of
5 consecutive scans spanning 0.4 seconds, as the LiDAR
frequency is 10Hz. The average number of points per scan
is 177,000 [9]. We follow [17] to remove the ground points,
by applying a threshold along the z axis.

nuScenes. Similar to Waymo, we also use the modified
nuScenes dataset from [17]. There are 10,921/2,973/2,973
samples for training/validation/test, where each sample con-
tains a sequence of 11 consecutive scans captured at 20Hz.
Notably, nuScenes is sparser than Waymo due to the sensor
difference (32 beams vs. 64 beams). The average number

of points per scan is 25,000 [9]. We also remove the ground
points by thresholding along the z axis [2, 17].

We are also aware of the existence of other subsets for
Waymo and nuScenes, such as the ones used in [2, 19,
26, 27]. We choose the subset from [17] because it has
(1) abundant samples for test; and (2) paired scans over
a longer temporal horizon.

Argoverse-v2. We adopt the recent Argoverse-v2 [54],
captured by two roof-mounted 32-beam LiDARs. This
dataset only contains paired LiDAR scans at two succes-
sive time steps with an interval of 0.1 seconds. We follow
the exact preprocessing procedure as in [44] and conduct
evaluation on the official validation split. The average num-
ber of points per scan is 83,000 [9]. The ground points are
removed according to a rasterized heightmap.

4.2. Evaluation

We adopt three metrics for evaluation [9, 17], including
(1) 3D end-point-error (EPE, in meters) which measures
the average L2 error of all flow vectors; (2) strict accu-
racy (Acc-S, in %), equivalent to the fraction of points
with EPE ≤ 0.05m or relative EPE error (to ground truth
norm) ≤ 0.05; (3) relaxed accuracy (Acc-R, in %), sim-
ilar to Acc-S but with a threshold of 0.1m and 0.1. We
report these three metrics on static foreground, static back-
ground, and dynamic foreground2 [9]. This provides a more
comprehensive evaluation than an overall metric averaged
over all points, as static background points are the major-
ity in a scene. The evaluation is limited to points within
a 64m× 64m area surrounding the ego-car on Waymo and
nuScenes [17]. On Argoverse-v2, the evaluation is extended
to a 102.4m× 102.4m area [44, 54].

4.3. Baselines

We compare our mode against 5 recent baselines, including
RigidFlow [25], NSFP [26], FastNSF [27], FastFlow [19],
ZeroFlow [44], PCA [17]. RigidFlow [25] shares the same
strategy as ours except that the initial transformation for ICP
is estimated by a pre-trained neural network. We use the re-
leased checkpoint by the authors (trained on KITTIr [24])
and report its results. NSFP [26] and FastNSF [27] come
from a family of work that employs test-time optimization,
with FastNSF being substantially faster, as indicated by its
name. Both methods require no training data or manual an-
notation. ZeroFlow [44] and FastFlow [19] are both data-
driven methods. The major difference is that FastFlow is
supervised by ground truth labels, while ZeroFlow learns
from pseudo labels generated by NSFP [26]. PCA [17] is a
fully-supervised data-driven approach that incorporates into
its design the multi-body rigidity. For ZeroFlow, we directly
use the pre-trained checkpoints released by the authors. We

2A point is considered as dynamic if its ground truth velocity is above
0.5m/s.

15505

Metrics Label Time Dynamic Foreground Static Foreground Static Background

EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m)↓ Acc-S (%) ↑ Acc-R (%) ↑
NSFP [26] - 90s 0.0966 61.12 79.64 0.0162 92.26 98.74 0.0538 89.56 93.32
Chodosh et al. [9] - 93s 0.1081 59.15 78.30 0.0156 95.54 98.80 0.0448 91.35 95.46
FastNSF [27] - 0.5s 0.2983 32.06 46.84 0.0146 97.69 99.30 0.0402 94.39 96.73
ZeroFlow [44] - 21ms 0.2229 15.20 36.56 0.0123 96.30 98.46 0.0198 96.75 97.84
RigidFlow [25] - 0.6s 0.2575 15.99 38.29 0.1299 30.11 58.37 0.2517 18.08 40.15

FastFlow [19] ✓ 21ms 0.1950 25.44 49.55 0.0170 89.17 96.19 0.0031 99.15 99.50
PCA [17] ✓ 35ms 0.1083 61.93 83.41 0.0156 98.35 97.78 0.0199 98.12 99.56

Ours - 3.3s 0.0799 76.10 88.53 0.0165 96.46 99.68 0.0270 96.83 98.51
Ours+FNN - 21ms 0.1254 41.22 67.31 0.0044 98.91 99.45 0.0058 99.58 99.62

Table 1. Comparison on Waymo dataset [17, 41]. This dataset contains paired LiDAR scans from successive time steps, after ego motion
compensation. We evaluate all methods using EPE, Acc-S, and Acc-R, on dynamic foreground, static foreground, and static background
separately. Overall, our model and its derivatives perform the best over multiple metrics. Notably, we are also able to outperform supervised
baselines, particularly for the dynamic foreground. Among all methods, ZeroFlow, FastFlow, and Ours+FNN have identical model designs,
thus having the same inference speed.

Metrics Label Time Dynamic Foreground Static Foreground Static Background

EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m)↓ Acc-S (%) ↑ Acc-R (%) ↑
NSFP [26] - 26s 0.1328 48.84 70.97 0.0343 87.65 96.37 0.0371 89.19 95.92
Chodosh et al. [9] - 35s 0.1311 49.40 71.78 0.0261 89.52 97.15 0.0213 91.37 96.51
FastNSF [27] - 0.5s 0.3684 23.60 39.24 0.0227 94.65 99.02 0.0268 93.13 98.19
ZeroFlow [44] - 29ms 0.2244 15.82 40.04 0.0205 94.67 97.80 0.0125 97.62 98.88

FastFlow [19] ✓ 29ms 0.1836 22.52 50.67 0.0198 92.49 96.86 0.0064 98.38 99.09

Ours - 3.5s 0.1653 48.61 70.70 0.0391 79.31 95.32 0.0320 86.68 95.68
Ours+FNN - 29ms 0.1697 36.01 62.88 0.0189 94.76 99.22 0.0035 99.37 99.61

Table 2. Comparison on Argoverse-v2 dataset [9, 44, 54]. The dataset contains pairs of successive LiDAR scans after ego motion
compensation. NSFP [26] and Chodosh et al. are the state-of-the-art for dynamic foreground. However, they require significantly longer
time than others for optimization, up to half a minute. In contrast, Ours+FNN, a feedforward neural network supervised by Ours, is capable
of real-time inference without decreasing the performance. Although being less superior on dynamic foreground, Ours+FNN achieves top
results on static foreground and background.

choose ZeroFlow-1X as it does not require training on exter-
nal data [44]. For FastFlow, we directly use the checkpoints
from [44], which has done extensive comparisons between
FastFlow and ZeroFlow. For PCA [17], we take the offi-
cial checkpoints released by the authors. For NSFP and
FastNSF, we take the official implementation and adapt it
to corresponding datasets. We keep the default parameters,
except that weight decay is disabled [9]. For Chodosh et
al. [9], we use a third-party implementation3, as no official
code is available. We test baseline models on corresponding
datasets by ourselves due to the lack of certain metrics.

4.4. Comparison to state-of-the-art

Waymo. Tab. 1 shows the result on the Waymo Open
dataset [17, 41]. We compare the EPE, Acc-S, and Acc-
R metrics on dynamic foreground, static foreground, and
static background separately. Our method outperforms
not only the unsupervised competitors but also supervised
models trained with massive data and annotation, such as
PCA [17] and FastFlow [19], especially on dynamic fore-

3https://github.com/kylevedder/zeroflow/blob/
master/models/chodosh.py

ground, i.e., annotated objects that move faster than 0.5m/s.
Our advantage over the best-performing baseline NSFP [26]
is approximately 1.5cm per point in terms of EPE. No-
tably, our method not only excels in EPE but also improves
Acc-S substantially by more than 10% and Acc-R by 5%.
Regarding static objects, most models produce reasonably
good results and the performance gap among baselines is
marginal. Ours+FNN is a feedforward neural network that
shares the same architecture as ZeroFlow [44]. The only
difference is the source of supervision. Ours+FNN is super-
vised by the pseudo labels from Ours, while ZeroFlow uses
the NSFP pseudo-labels. Although less competitive than
Ours, Ours+FNN still outperforms ZeroFlow by a margin
of 10 cm, which shows the value of pseudo-labels gener-
ated from our method. NSFP and Chodosh et al. [9] are
also strong competitors in terms of performance, but they
are dramatically slow during inference. A single inference
takes more than 1 minute, preventing them from real-world
deployment. In contrast, Ours only takes around 3 seconds,
thus being approximately 30× faster. Ours+FNN further re-
duces the runtime by more than ×1000, without sacrificing
much performance. It is worth mentioning that ZeroFlow

15506

training requires calculating NSFP pseudo labels before-
hand. In this case, NSFP takes several months of GPU com-
pute [44], while Ours reduces the effort to several days. We
also compare Ours to RigidFlow [25] as both models fol-
low the “clustering + ICP” design. The main difference is
that RigidFlow requires a deep network for initial pose es-
timation, while Ours adopts histogram-based initialization.
In Tab. 1, Ours achieves ×3 better result on dynamic fore-
ground and ×10 on static part than RigidFlow in terms of
EPE, indicating the usefulness of the proposed initializa-
tion. We provide an additional comparison on KITTIo[24]
in the supplementary material to further validate the advan-
tage of our design.

Argoverse-v2. We also make comparisons on the recent
Argoverse-v2 datasets [9, 54]. Chodosh et al. [9] and
NSFP [26] are the leading methods and outperform oth-
ers on the dynamic foreground by approximately 3 cm in
EPE. However, as indicated by the running time, they are
remarkably slower than others (up to ×1000), due to the
time-consuming runtime optimization. FastNSF alleviates
this issue but suffers from observable performance drops. In
spite of the inferiority on dynamic foreground, Ours+FNN,
a feedforward neural network supervised by Ours, excels
in static foreground and background. More importantly, it
enables real-time inference, which is crucial for processing
large volumes of data. When compared to ZeroFlow - an-
other unsupervised model that shares the same architecture,
Ours+FNN is able to outperform significantly on dynamic
foreground (6cm in EPE and 10% in Acc-S and Acc-R).
Overall, we are able to achieve the best result among all
models that run in real time.

nuScenes. Additionally, we show a comparison on
nuScenes [5], composed of paired scans every 0.05 seconds,
after ego-motion compensation. Differing from Waymo and
Argoverse-v2, the data is captured by a single 32-beam
LiDAR, thus being much sparser. Generally, our model
achieves top results in all three categories, compared to
other unsupervised baselines, as shown in Tab. 3. Notably,
Ours is only marginally worse than the supervised baseline
PCA [17] in terms of EPE for the dynamic foreground.

4.5. Scene flow over a longer temporal horizon

So far we compared different methods on scene flow from
two successive frames. We also test the capability of various
methods on samples with a longer time difference. This is
particularly useful when processing temporally downsam-
pled data [38]. Thus we conduct experiments on scene flow
estimation from clips of LiDAR scans, each of which con-
tains 5 consecutive scans from Waymo, following [17]. We
calculate scene flow between the first frame and the remain-
ing frames, thus resulting in 4 pairs of LiDAR scans whose

Figure 3. Scene flow errors with increasing time gap. We show
the EPE values for dynamic foreground with respect to the time
duration. As the time gap increases, Ours degrades gracefully and
the gap to PCA [17], a supervised model designated for this task,
is marginal till 0.3 seconds. In contrast, other methods fail to gen-
eralize to a longer duration. Ours+Tracker, an extension of Ours
that does tracking over time, is able to achieve comparable results
without relying on learning from costly annotation.

time difference gradually increases from 0.1 to 0.4 seconds.
We plot the EPE errors over time for the dynamic fore-

ground in Fig. 3. With the increase of time, the performance
of Ours decreases gracefully. The difference between Ours
and PCA [17], a fully supervised data-driven approach on
this task, is insignificant within a temporal window of 0.3
seconds. In comparison, FastFlow [19], ZeroFlow [44] and
Ours+FNN fail to produce a reliable estimation, as the er-
ror becomes substantially large, since these methods are not
trained for this scenario. FastNSF [27] does not produce
reasonable predictions at t = 0.4s and is thus absent from
comparison. We exclude NSFP [26] here because its per-
formance is highly unstable. We are unable to find a set of
hyperparameters that work at all time steps. To conclude,
our design not only works competitively for scene flow from
successive scans but also generalizes to further-away scans
within a temporal window of 0.4 seconds. Quantitative
comparisons are available in Tab. 4.

We also extend Ours to a tracker, namely Ours+Tracker,
which associates clusters over time, i.e., over the entire clip.
We provide its details in the supplementary material. In
Tab. 4, Our+Tracker is able to further improve the result
over dynamic foreground by approximately 2cm in EPE as
we no longer lose track over time. However, it deteriorates
in Acc-S/R, since errors accumulate over time.

4.6. Limitations

Our design is a feature-engineering solution that only ex-
ploits geometric information during scene flow. However,
it can fail when (1) ground removal and clustering do not

15507

Metrics Label Dynamic Foreground Static Foreground Static Background

EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m)↓ Acc-S (%) ↑ Acc-R (%) ↑
NSFP [26] - 0.1527 38.82 59.46 0.0406 80.69 91.84 0.0812 66.25 79.92
Chodosh et al. [9] - 0.1571 33.27 57.17 0.0404 75.82 90.49 0.0776 63.61 80.17
FastNSF [27] - 0.1591 42.63 61.43 0.0418 80.09 91.84 0.0902 58.81 77.28

PCA [17] ✓ 0.1340 31.89 64.91 0.0356 80.34 95.35 0.0514 64.16 88.95

Ours - 0.1445 49.59 66.02 0.0298 87.26 96.22 0.0403 80.60 91.75
Ours+FNN - 0.1850 21.52 45.35 0.0150 96.05 98.76 0.0090 98.10 98.81

Table 3. Comparison on nuScenes dataset [5]. nuScenes dataset contains paired scans captured by a 32-beam LiDAR sensor. Ours
outperforms the unsupervised baselines on all metrics, while getting close to the fully supervised baseline PCA [17].

Metrics Label Dynamic Foreground Static Foreground Static Background

EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m)↓ Acc-S (%) ↑ Acc-R (%) ↑
NSFP [26] - 0.8533 20.22 36.37 0.0257 95.12 98.25 0.0575 93.67 96.88
FastNSF [27] - 4.1415 24.72 39.15 0.0360 96.10 98.33 0.6372 93.11 95.77
ZeroFlow [44] - 0.7097 10.30 25.04 0.0231 94.51 97.14 0.0340 95.71 97.17
FastFlow [19] - 0.6968 16.46 32.83 0.0241 88.68 95.43 0.0049 99.07 99.47

PCA [17] ✓ 0.1970 53.31 77.49 0.0216 97.16 99.44 0.0289 97.16 99.44

Ours - 0.2209 67.59 84.66 0.0272 96.08 99.16 0.0711 96.49 97.96
Ours+FNN - 0.5636 30.76 51.73 0.0105 97.44 98.54 0.0085 99.43 99.51

Ours+Tracker - 0.1799 58.98 80.98 0.0341 88.53 97.73 0.0722 93.74 97.46

Table 4. Scene flow on Waymo dataset [41], over a longer temporal horizon (5 consecutive frames, up to 0.4 seconds). Given a
clip of 5 consecutive scans, we compute the flow between the first frame and the other frames, leading to 4 pairs per clip. The result is
averaged over all points. Most methods fail to generalize to a longer temporal duration, while Ours still produces reasonably good results,
compared to PCA [17] which is specifically designed for this task. Additionally, we also include Ours+Tracker, an extension of our design
that utilizes intermediate scans and tracks clusters iteratively over time. It offers better results than the fully supervised PCA. It is worth
mentioning that Ours+Tracker takes as input intermediate scans while others do not.

work decently, resulting in over/under segmentation; (2)
there are multiple similar objects nearby in a scene; (3)
an object is no longer in the perception range, particularly
for fast-moving objects; (4) point density decreases as ICP
struggles to match sparse clusters. Moreover, the naive
matching strategy for cluster association (Section 3.7) does
not take into consideration the one-to-one correspondence,
such that a cluster might be matched multiple times. Fur-
ther, the rigid body assumption may not always hold for
deformable objects, such as bendy or articulated buses and
trucks.

We include typical failure cases in the supplementary
material for qualitative comparison.

5. Conclusion
We propose a learning-free framework for scene flow es-
timation, particularly for LiDAR-based perception in au-
tonomous driving. Our design is inspired by motion rigidity
that assumes objects in a scene move without any defor-
mation. To trace motion, we adopt classic ICP matching
which finds the optimal transformation that aligns two clus-
ters. We then recover the scene flow per cluster from the
transformation matrix. To aid ICP, we develop a histogram-
based voting for translation initialization, enabling better

ICP matching. Further, we train a feedforward neural net-
work that is capable of real-time inference using the pseudo
labels from our model. We show quantitatively on Waymo,
Argoverse-v2 and nuScenes the advantage of our model
over other unsupervised baselines, not only from succes-
sive time steps but also from a longer time duration. Future
work will fit our design into a neural network for exploiting
both geometric and semantic features.

References
[1] Stefan Baur, David Emmerichs, Frank Moosmann, Peter

Pinggera, Bjorn Ommer, and Andreas Geiger. Slim: Self-
supervised lidar scene flow and motion segmentation. In In-
ternational Conference on Computer Vision (ICCV), 2021.
2

[2] Stefan Andreas Baur, David Josef Emmerichs, Frank Moos-
mann, Peter Pinggera, Björn Ommer, and Andreas Geiger.
Slim: Self-supervised lidar scene flow and motion segmen-
tation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 13126–13136, 2021. 1,
5

[3] Aseem Behl, Despoina Paschalidou, Simon Donné, and An-
dreas Geiger. Pointflownet: Learning representations for
rigid motion estimation from point clouds. In Proceedings

15508

of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7962–7971, 2019. 1, 2

[4] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures, pages 586–606. Spie, 1992. 2, 3, 4

[5] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 2, 3, 5, 7, 8

[6] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander.
Density-based clustering based on hierarchical density esti-
mates. In Pacific-Asia conference on knowledge discovery
and data mining, pages 160–172. Springer, 2013. 3

[7] Yang Chen and Gérard Medioni. Object modelling by regis-
tration of multiple range images. Image and vision comput-
ing, 10(3):145–155, 1992. 3

[8] Wencan Cheng and Jong Hwan Ko. Bi-pointflownet: Bidi-
rectional learning for point cloud based scene flow estima-
tion. In European Conference on Computer Vision, pages
108–124. Springer, 2022. 2

[9] Nathaniel Chodosh, Deva Ramanan, and Simon Lucey. Re-
evaluating lidar scene flow for autonomous driving. arXiv
preprint arXiv:2304.02150, 2023. 2, 5, 6, 7, 8

[10] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
2514–2523, 2020. 3

[11] David F Crouse. On implementing 2d rectangular assign-
ment algorithms. IEEE Transactions on Aerospace and Elec-
tronic Systems, 52(4):1679–1696, 2016. 4

[12] Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wol-
fram Burgard. Rigid scene flow for 3d lidar scans. In 2016
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1765–1770. IEEE, 2016. 1, 2

[13] Guanting Dong, Yueyi Zhang, Hanlin Li, Xiaoyan Sun, and
Zhiwei Xiong. Exploiting rigidity constraints for lidar scene
flow estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
12776–12785, 2022. 2

[14] Emeç Erçelik, Ekim Yurtsever, Mingyu Liu, Zhijie
Yang, Hanzhen Zhang, Pınar Topçam, Maximilian Listl,
Yılmaz Kaan Caylı, and Alois Knoll. 3d object detec-
tion with a self-supervised lidar scene flow backbone. In
European Conference on Computer Vision, pages 247–265.
Springer, 2022. 1

[15] Zan Gojcic, Or Litany, Andreas Wieser, Leonidas J Guibas,
and Tolga Birdal. Weakly supervised learning of rigid 3d
scene flow. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5692–5703,
2021. 2

[16] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 3254–3263, 2019. 2

[17] Shengyu Huang, Zan Gojcic, Jiahui Huang, Andreas Wieser,
and Konrad Schindler. Dynamic 3d scene analysis by point
cloud accumulation. In European Conference on Computer
Vision, pages 674–690. Springer, 2022. 2, 5, 6, 7, 8

[18] Zhao Jin, Yinjie Lei, Naveed Akhtar, Haifeng Li, and Mu-
nawar Hayat. Deformation and correspondence aware un-
supervised synthetic-to-real scene flow estimation for point
clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7233–
7243, 2022. 2

[19] Philipp Jund, Chris Sweeney, Nichola Abdo, Zhifeng Chen,
and Jonathon Shlens. Scalable scene flow from point clouds
in the real world. IEEE Robotics and Automation Letters, 7
(2):1589–1596, 2021. 5, 6, 7, 8

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[21] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flow-
step3d: Model unrolling for self-supervised scene flow es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4114–
4123, 2021. 2

[22] Itai Lang, Dror Aiger, Forrester Cole, Shai Avidan, and
Michael Rubinstein. Scoop: Self-supervised correspon-
dence and optimization-based scene flow. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5281–5290, 2023. 2

[23] Seungjae Lee, Hyungtae Lim, and Hyun Myung. Patch-
work++: Fast and robust ground segmentation solving partial
under-segmentation using 3d point cloud. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 13276–13283. IEEE, 2022. 3, 5

[24] Ruibo Li, Guosheng Lin, and Lihua Xie. Self-point-flow:
Self-supervised scene flow estimation from point clouds with
optimal transport and random walk. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 15577–15586, 2021. 2, 5, 7

[25] Ruibo Li, Chi Zhang, Guosheng Lin, Zhe Wang, and Chun-
hua Shen. Rigidflow: Self-supervised scene flow learning
on point clouds by local rigidity prior. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16959–16968, 2022. 2, 5, 6, 7

[26] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Neural scene flow prior. Advances in Neural Information
Processing Systems, 34:7838–7851, 2021. 1, 2, 5, 6, 7, 8

[27] Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kae-
semodel Pontes, and Simon Lucey. Fast neural scene flow.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9878–9890, 2023. 1, 2,
5, 6, 7, 8

[28] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 529–537, 2019. 1, 2

[29] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-
net: Deep learning on dynamic 3d point cloud sequences. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9246–9255, 2019. 2

15509

[30] Leland McInnes and John Healy. Accelerated hierarchi-
cal density based clustering. In Data Mining Workshops
(ICDMW), 2017 IEEE International Conference on, pages
33–42. IEEE, 2017. 5

[31] Leland McInnes, John Healy, and Steve Astels. hdbscan:
Hierarchical density based clustering. The Journal of Open
Source Software, 2(11):205, 2017. 5

[32] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015. 2

[33] Himangi Mittal, Brian Okorn, and David Held. Just go with
the flow: Self-supervised scene flow estimation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11177–11185, 2020. 1, 2

[34] Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R Qi,
Xinchen Yan, Scott Ettinger, and Dragomir Anguelov. Mo-
tion inspired unsupervised perception and prediction in au-
tonomous driving. In European Conference on Computer
Vision, pages 424–443. Springer, 2022. 1

[35] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored
point cloud registration revisited. In Proceedings of the IEEE
international conference on computer vision, pages 143–
152, 2017. 3

[36] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:
Scene Flow on Point Clouds Guided by Optimal Transport.
In European Conference on Computer Vision, 2020. 2

[37] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 4, 5

[38] Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic,
Srinath Sridhar, and Leonidas J Guibas. Caspr: Learning
canonical spatiotemporal point cloud representations. Ad-
vances in neural information processing systems, 33:13688–
13701, 2020. 7

[39] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of
the icp algorithm. In Proceedings third international confer-
ence on 3-D digital imaging and modeling, pages 145–152.
IEEE, 2001. 3

[40] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (fpfh) for 3d registration. In 2009
IEEE international conference on robotics and automation,
pages 3212–3217. IEEE, 2009. 3

[41] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020. 2, 3, 5, 6, 8

[42] Ivan Tishchenko, Sandro Lombardi, Martin R Oswald, and
Marc Pollefeys. Self-supervised learning of non-rigid resid-
ual flow and ego-motion. In 2020 international conference
on 3D vision (3DV), pages 150–159. IEEE, 2020. 2

[43] Arash K Ushani, Ryan W Wolcott, Jeffrey M Walls, and
Ryan M Eustice. A learning approach for real-time tempo-
ral scene flow estimation from lidar data. In 2017 IEEE In-

ternational Conference on Robotics and Automation (ICRA),
pages 5666–5673. IEEE, 2017. 1, 2

[44] Kyle Vedder, Neehar Peri, Nathaniel Chodosh, Ishan Khatri,
Eric Eaton, Dinesh Jayaraman, Yang Liu, Deva Ramanan,
and James Hays. Zeroflow: Fast zero label scene flow via
distillation. arXiv preprint arXiv:2305.10424, 2023. 2, 5, 6,
7, 8

[45] Kavisha Vidanapathirana, Shin-Fang Chng, Xueqian Li, and
Simon Lucey. Multi-body neural scene flow. arXiv preprint
arXiv:2310.10301, 2023. 2

[46] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis
Wiesmann, Jens Behley, and Cyrill Stachniss. Kiss-icp: In
defense of point-to-point icp–simple, accurate, and robust
registration if done the right way. IEEE Robotics and Au-
tomation Letters, 8(2):1029–1036, 2023. 3

[47] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d
scene flow estimation with a rigid motion prior. In 2011
International Conference on Computer Vision, pages 1291–
1298. IEEE, 2011. 2

[48] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-
wise rigid scene flow. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1377–1384,
2013. 2

[49] Haiyan Wang, Jiahao Pang, Muhammad A Lodhi, Yingli
Tian, and Dong Tian. Festa: Flow estimation via spatial-
temporal attention for scene point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14173–14182, 2021. 2

[50] Yue Wang and Justin M Solomon. Deep closest point: Learn-
ing representations for point cloud registration. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 3523–3532, 2019. 3

[51] Yuqi Wang, Yuntao Chen, and ZHAO-XIANG ZHANG. 4d
unsupervised object discovery. Advances in Neural Informa-
tion Processing Systems, 35:35563–35575, 2022. 1

[52] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor
Prisacariu, and Min Chen. Flownet3d++: Geometric losses
for deep scene flow estimation. In Proceedings of the
IEEE/CVF winter conference on applications of computer
vision, pages 91–98, 2020. 2

[53] Andreas Wedel, Thomas Brox, Tobi Vaudrey, Clemens Rabe,
Uwe Franke, and Daniel Cremers. Stereoscopic scene flow
computation for 3d motion understanding. International
Journal of Computer Vision, 95:29–51, 2011. 2

[54] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:
Next generation datasets for self-driving perception and fore-
casting. In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks (NeurIPS
Datasets and Benchmarks 2021), 2021. 2, 3, 5, 6, 7

[55] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: Cost volume on point clouds for (self-
) supervised scene flow estimation. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part V 16, pages 88–107.
Springer, 2020. 2

15510

[56] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast
and certifiable point cloud registration. IEEE Transactions
on Robotics, 37(2):314–333, 2020. 3

[57] Guangyao Zhai, Xin Kong, Jinhao Cui, Yong Liu, and Zhen
Yang. Flowmot: 3d multi-object tracking by scene flow as-
sociation. arXiv preprint arXiv:2012.07541, 2020. 1

[58] Xiyu Zhang, Jiaqi Yang, Shikun Zhang, and Yanning Zhang.
3d registration with maximal cliques. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17745–17754, 2023. 3

[59] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847, 2018. 5

15511

