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donuts with ice cream a cute sloth holds a box a flowering cherry tree

a blooming flower and dessert several lotus flowers growing in the water a cup of coffee next to the bread

Figure 1. Overview. Given an input image and a language description for editing, our method can generate realistic and relevant images
without the need for user-specified regions for editing. It performs local image editing while preserving the image context.

Abstract
Language has emerged as a natural interface for image

editing. In this paper, we introduce a method for region-
based image editing driven by textual prompts, without the
need for user-provided masks or sketches. Specifically, our
approach leverages an existing pre-trained text-to-image
model and introduces a bounding box generator to iden-
tify the editing regions that are aligned with the textual
prompts. We show that this simple approach enables flex-
ible editing that is compatible with current image genera-
tion models, and is able to handle complex prompts featur-
ing multiple objects, complex sentences, or lengthy para-
graphs. We conduct an extensive user study to compare our
method against state-of-the-art methods. The experiments
demonstrate the competitive performance of our method
in manipulating images with high fidelity and realism that
correspond to the provided language descriptions. Our
project webpage can be found at: https://yuanze-
lin.me/LearnableRegions_page.

1. Introduction

With the availability of a massive amount of text-image
paired data and large-scale vision-language models, recent
text-driven image synthesis models [8, 32–34, 39, 42, 43,
53, 57, 62] have enabled people to create and manipulate
specific visual contents of realistic images using natural lan-
guage descriptions in an interactive fashion.

Recent text-driven image editing methods [1, 2, 21, 30,
38, 39, 54] have shown impressive capabilities in editing
realistic images based on natural descriptions, with ap-
proaches typically falling into two paradigms: mask-based
or mask-free methods. Mask-based editing approaches [1,
39] are perceived intuitively for local image editing because
they allow users to specify precisely which areas of an im-
age to modify. However, these methods can be laborious, as
they demand users to manually create masks that are some-
times unnecessary, limiting their user experience in many
applications.

In contrast, mask-free editing approaches [6, 9, 21, 38,
54] do not require masks and can directly modify the ap-
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Input Image Region 1 Output 1 Region 2 Output 2 Region (Ours) Output (Ours)

Editing Text: a bowl of strawberries

Editing Text: a cup of coffee next to the bread

Figure 2. Effects of variations in editing regions on generated image quality. Region 1 and Region 2 are two prior regions drawn from
the self-attention map of DINO [7]. Region (ours), shown in the second-to-last column, represents the regions produced by our model
which have the best overall quality.

pearance or texture of the input image. These methods are
trained to create fine-grained pixel masks, which can be ap-
plied to either the RGB space or the latent embedding space
within the latent diffusion model framework. While there
has been significant advancement in mask-free editing, the
precision of editing in current methods relies heavily on the
accuracy of detailed masks at the pixel level. Current meth-
ods encounter difficulties with local modifications, particu-
larly when dealing with less accurate masks.

Current mask-free image editing approaches have pre-
dominantly concentrated on pixel masks [6, 10]. The use of
bounding boxes as an intermediate representation for edit-
ing images has not been thoroughly explored. Bounding
boxes can provide an intuitive and user-friendly input for
image editing. They facilitate a smoother interactive edit-
ing process by being quicker and easier for users to adjust
the box, unlike pixel masks that typically require more time
and precision to draw pixels accurately. Moreover, some
generative transformer models such as Muse [9] may sup-
port only box-like masks as opposed to pixel-level masking
for image editing.

This paper explores the feasibility of employing bound-
ing boxes as an intermediate representation within a mask-
free editing framework. Our objective is not to propose a
new image editing model, but to introduce a component that
enables an existing pretrained mask-based editing model to
perform mask-free editing via the learnable regions. To
this end, we propose a region-based editing network that
is trained to generate editing regions utilizing a text-driven
editing loss with CLIP guidance [42]. Our method can be
integrated with different image editing models. To demon-
strate its versatility, we apply it to two distinct image syn-
thesis models: non-autoregressive transformers as used in

MaskGIT [8] and Muse [9], as well as Stable Diffusion [45].
It is worth highlighting that the latent spaces in transformer
models (MaskGIT and Muse) are only compatible with box-
like masks and lack the precision for pixel-level masks in
image editing.

Our experimental results demonstrate that the proposed
method can generate realistic images that match the con-
text of the provided language descriptions. Furthermore,
we conduct a user study to validate that our method out-
performs five state-of-the-art baseline methods. The results
indicate that our method edits images with greater fidelity
and realism, following the changes specified in the language
descriptions. The contributions of this work are as follows:

• Our approach enables mask-based text-to-image mod-
els to perform local image editing without needing
masks or other user-provided guidance. It can be inte-
grated with existing text-guided editing models to im-
prove their quality and relevance.

• We introduce a novel region generator model that em-
ploys a new CLIP-guidance loss to learn to find re-
gions for image editing. We demonstrate its applica-
bility by integrating it with two popular and distinct
text-guided editing models, MaskGIT [8] and Stable
Diffusion [45].

• Experiments show the high quality and realism of our
generated results. The user study further validates that
our method outperforms state-of-the-art image editing
baselines in producing favorable editing results.

2. Related Work
Text-to-Image Synthesis. In recent years, significant
progress has been made in text-to-image synthesis. While
early contributions are mainly based on Generative Adver-
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Figure 3. Framework of the proposed method. We first feed the input image into the self-supervised learning (SSL) model, e.g.,
DINO [7], to obtain the attention map and feature, which are used for anchor initialization. The region generation model initializes several
region proposals (e.g., 3 proposals in this figure) around each anchor point, and learns to select the most suitable ones among them with
the region generation network (RGN). The predicted region and the text descriptions are then fed into a pre-trained text-to-image model
for image editing. We utilize the CLIP model for learning the score to measure the similarity between the given text description and the
edited result, forming a training signal to learn our region generation model.

sarial Network (GAN) approaches [31, 56, 59, 60], the latest
models are mostly built on diffusion models [20, 22, 40, 44,
45, 48, 52, 61] or transformer models [14, 16, 43, 58]. For
example, DALL·E 2 [44] and Imagen [23] propose to con-
dition textual prompts to diffusion models, while Muse [9]
leverages masked generative transformers to generate im-
ages from texts. Other approaches [11, 12, 44] leverage pre-
trained CLIP models [42] to guide image generation based
on textual descriptions.

More recently, Stable Diffusion [45], trained on large
image-text pairs [49], has been made publicly available and
has served as the foundation for numerous image genera-
tion and manipulation works. ControlNet [61] proposes to
control Stable Diffusion with spatially localized conditions
for image synthesis. Different from these works, we aim to
introduce a component that can enable pre-trained text-to-
image models for mask-free local image editing.
Text-driven Image Manipulation. Several recent works
have utilized pre-trained generator models and CLIP [42]
for text-driven image manipulation [2, 3, 17, 30, 35, 41].
StyleCLIP [41] combines the generative ability of Style-
GAN [25] with CLIP to control latent codes, enabling a
wide range of image manipulations. VQGAN-CLIP [12]
uses CLIP [42] to guide VQ-GAN [16] for high-quality im-
age generation and editing.

There are several approaches [1, 18, 26, 27, 36, 37, 39,
47, 53] that use diffusion models for text-driven image ma-
nipulation. Imagic [26] can generate textual embeddings
aligning with the input images and editing prompts, and
fine-tune the diffusion model to perform edits. Instruct-
Pix2Pix [4] combines GPT-3 [5] and Stable Diffusion [45]
to edit images with human instructions. Our work is related

to the state-of-the-art methods DiffEdit [10] and MasaCtrl
[6]. DiffEdit [10] leverages DDIM inversion [13, 52] with
the automatically produced masks for local image editing.
MasaCtrl [6] proposes mutual self-attention and learns the
editing masks from the cross-attention maps of the diffusion
models. Motivated by the aforementioned works, we also
utilize diffusion models and CLIP guidance for text-driven
image manipulation. In contrast to DiffEdit [10] and Mas-
aCtrl [6], whose editing is much more sensitive to the gener-
ated mask regions, our proposed method focuses on learn-
ing bounding boxes for local editing, which can be more
flexible in accommodating diverse text prompts.

3. Proposed Method

Text-driven image editing manipulates the visual content
of input images to align with the contexts or modifications
specified in the text. Our goal is to enable text-to-image
models to perform mask-free local image editing. To this
end, we propose a region generation network that can pro-
duce promising regions for image editing.

Figure 3 shows the overall pipeline of our proposed
method for text-driven image editing.

3.1. Edit-Region Generation

Given the input image as X ∈ R3×H×W and text with p
words as T ∈ Zp, we first use a pre-trained visual trans-
former model, ViT-B/16 [15], for feature extraction. This
model is pre-trained using the DINO self-supervised learn-
ing objective [7]. The feature F ∈ Rd×h×w from the last
layer has been shown to contain semantic segmentation of
objects [7, 51], which can serve as a prior in our problem.
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Then we initialize K anchor points {Ci}Ki=1 located at
the top-K scoring patches of the self-attention map from the
[CLS] token query of the DINO pre-trained transformer as
shown in [7], where the [CLS] token carries guidance to
locate the semantically informative parts of the objects.

Following this, we define a set of bounding box propos-
als Bi = {Bj}Mj=1 for each anchor point Ci, where each
bounding box is centered at their corresponding anchor
point. For simplicity, we parameterize the bounding box
with a single parameter such that each Bj is a square box
with shape j × j.

Subsequently, we train a region generation network to
explicitly consider all unique bounding boxes derived from
the same anchor point. For a given anchor point Ci, we then
have:

fj = ROI-pool(F,Bj), (1)
S([f1, · · · , fM ]) = [π1, · · · , πM ], (2)

where [·] concatenates features along the channel dimen-
sion, and the ROI-pool operation [19] is used to perform
pooling for the feature F ∈ Rd×h×w with respect to the
box Bj , resulting in a feature tensor fj ∈ Rd×l×l. In our
experiments, we set l as 7. S is the proposed region genera-
tion network consisting of two convolutional layers and two
linear layers, with a ReLU activation layer between consec-
utive layers. The output from the final linear layer, denoted
as πj in Eq. (2) as the logits for the bounding box with size
j, is fed into a softmax function to predict the scores for the
bounding box proposal, i.e., Softmax([π1, · · · , πM ]).

To learn the parameters of the region generation network,
we use the Gumbel-Softmax trick [24]. We re-parameterize
πj by adding a small Gumbel noise gj = − log(− log(uj))
where uj ∼ Uniform(0, 1). During training, we apply
straight-through gradient estimation, in which backward
propagation uses the differentiable variable (i.e., softmax)
while the forward pass still takes the argmax, treating π as
the categorical variable. For each anchor point, once we
obtain the editing region with the highest softmax score,
we first generate a corresponding box-like mask image, and
then feed the mask image, input image, and editing prompt
into the text-to-image model to obtain the edited image.
Thus, we can get K edited images considering all anchor
points, in Section 3.3, we explain how to produce the final
edited image as inference output.

3.2. Training Objectives

As the CLIP model [42] can estimate the similarity between
images and texts, we employ it to guide our image editing
based on user-specified prompts.

To train our models, we propose a composite editing loss
that consists of three components: 1) the CLIP guidance
loss LClip stands for the cosine distance between features

extracted from generated images and texts, specifically de-
rived from the last layers of CLIP’s encoders. 2) the di-
rectional loss LDir [41] controls the direction of the applied
edit within the CLIP space [17, 41], and 3) the structural
loss LStr takes into account the self-similarity [29, 50] of
features between source and generated images, which facil-
itates editing in texture and appearance while preserving the
original spatial layout of objects in the source images. The
total loss L and each loss term are:

L = λCLClip + λSLStr + λDLDir, (3)

LClip = Dcos(Ev(Xo), Et(T )), (4)

LStr = ||Q(fXo
)−Q(fX)||2, (5)

LDir = Dcos(Ev(Xo)− Ev(X), Et(T )− Et(TROI)), (6)

where Ev and Et are the visual and textual encoder of the
CLIP model. We empirically set the weights λC = 1,
λD = 1, and λS = 1 for our composite editing loss. Here,
X , T , and Xo denote the input image, text prompt, and the
edited image by the proposed region, respectively. fXo

and
fX indicate the visual features of Xo and X from the last
layer of CLIP’s visual encoder, while Q(fXo

) and Q(fX)
denote the similarity matrix of fXo and fX respectively. For
simplicity, we use the cosine distance Dcos to measure the
similarity between images and texts. Note that TROI rep-
resents a given region-of-interest of the source image for
editing (e.g., in Figure 5, when T is “a big tree with many
flowers in the center”, then TROI could be “tree”).

During training, our loss functions encourage the region
generator to produce appropriate regions for editing by tak-
ing into account the similarity between the edited images
and the given text descriptions.

3.3. Inference

During the inference process, we define a quality score
to rank the edited images generated from different anchor
points and select the image with the highest score for pre-
sentation to the user.

While there exist more advanced methods, we use a sim-
ple weighted average to compute the quality score:

S = α · St2i + β · Si2i, (7)

where St2i estimates the cosine similarity scores between
the given text descriptions and the edited images, Si2i mea-
sures the cosine similarity scores between the source images
and the edited images, and α and β are the coefficients to
control the influences of St2i and Si2i. We adopt the fea-
tures extracted from the last layer of CLIP’s encoders for
similarity calculation.

In our experiments, we set α and β as 2 and 1 respec-
tively, since a higher value for α can encourage the model
to place more weight on the faithfulness of text-conditioned
image editing. The edited image with the highest quality
score S is chosen as the final edited image.
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a cup whose logo is named as “coffee" a steam train running on the sea many blooming jasmine flowers in the blanket

a plate of beefsteak and vegetable a piece of Oreo cookie and bread a bottle of wine and several wine cups

a wooden bridge in front of the mountain a huge castle in the back of the person a wooden cabinet on top of the table

A cartoon panda is preparing food. It wears A little horse is jumping from the left side to The cartoon character is smiling. It looks
cloth which has blue and white colors and the right side. It jumps fast since its jumping funny. The shape of its face is square, and
there are several plates of food on the table stride is large, and it has red skin its eyes and mouth are very large

Figure 4. Image editing results with simple and complex prompts. Given the input images and prompts, our method edits the image
without requiring masks from the users. The learned region is omitted for better visualization. The 1st row contains diverse prompts for
one kind of object. The 2nd row displays prompts featuring multiple objects. The 3rd row shows prompts with geometric relations, and the
last row presents prompts with extended length.

3.4. Compatibility with Pretrained Editing Models

Our proposed region generator can be integrated with var-
ious image editing models [1, 8, 39, 45] for modifying the
content of source images conditioning on the prompts, and
to demonstrate its versatility, we apply it to two distinct im-
age synthesis models: non-autoregressive transformers as
used in MaskGIT [8] or Muse [9], as well as diffusion U-
Nets [46] as used in Stable Diffusion [45].

The transformer and diffusion models represent distinct
base editing models to verify the applicability of the pro-

posed method. It is worth noting that MaskGIT and Muse
are transformers that operate over discrete tokens created by
a VQ autoencoder [55], unlike diffusion models [22, 45, 52]
operating within the continuous space. As a result, the la-
tent spaces in MaskGIT and Muse are only compatible with
box-like masks and lack the precision for pixel-level masks
in image editing.

For our experiments, we use the official MaskGIT model
instead of the Muse model [9], which is not publicly avail-
able. We also limit the text prompt to the class vocabulary
that the model is trained on.
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Input Image Plug-and-Play InstructPix2Pix Null-text DiffEdit MasaCtrl Ours

Editing Text: a dish of pancake

Editing Text: a big tree with many flowers in the center

Editing Text: several apples and pears

Editing Text: a cup of coffee next to the bread

Editing Text: some strawberries and other fruit

Editing Text: a blooming flower and dessert

Figure 5. Comparison with existing methods. We compare our method with existing text-driven image editing methods. From left to
right: Input image, Plug-and-Play [54], InstructPix2Pix [4], Null-text [38], DiffEdit [10], MasaCtrl [6], and ours.

4. Experimental Results

Implementation Details. In our evaluation, we collect
high-resolution and free-to-use images covering a variety of
objects from Unsplash (https://unsplash.com/). For
edit-region generation, the total number of bounding box

proposals (i.e., M ) is 7 and the CLIP guidance model is
initialized with ViT-B/16 weights. We do not use super-
resolution models to enhance the quality of the resultant im-
ages. By default, we adopt the pre-trained Stable Diffusion-
v-1-2 as our editing model. Our main experiments are con-
ducted using two A5000 GPUs, where we train the model
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Input Image Edited Image Input Image Edited Image Input Image Edited Image

Editing Text: a lion a rooster cat face

Figure 6. Generated results using MaskGIT [8] as the image synthesis model. Aside from using the Stable Diffusion, our method can
also generate reasonable editing results with the non-autoregressive transformer-based MaskGIT.

for 5 epochs using Adam optimizer [28] with an initial
learning rate of 0.003.

4.1. Qualitative Evaluation

We assess the performance of our proposed method on a di-
verse set of high-quality images featuring various objects.
Figure 4 shows that our approach takes an image and a lan-
guage description to perform mask-free edits. We display
complex text prompts that feature one category of object
(the 1st row), multiple objects (the 2nd row), geometric rela-
tions (the 3rd row), and long paragraphs (the 4th row).

4.2. Comparisons with Prior Work

We compare our method with five state-of-the-art text-
driven image editing approaches: Plug-and-Play [54] pre-
serves the semantic layout of the source image by injecting
features from the source image into the generation process
of the target image. InstructPix2Pix [4] first utilizes GPT-3
and Stable Diffusion to produce paired training data for im-
age editing. It then trains a diffusion model with classifier-
free guidance under conditions. Null-text Inversion [38]
enables text-based image editing with Stable Diffusion, us-
ing an initial DDIM inversion [13, 52] as a pivot for opti-
mization, tuning only the null-text embedding in classifier-
free guidance. DiffEdit [10] automatically generates masks
for the regions that require editing by contrasting predic-
tions of the diffusion model conditioned on different text
prompts. MasaCtrl [6] performs text-based non-rigid im-
age editing by converting self-attention in diffusion models
into mutual self-attention, and it extracts the masks from the
cross-attention maps as the editing regions.

In all experiments, we report the results of the compared
methods using their official code, except for DiffEdit1. Fig-
ure 5 displays the editing results from existing methods. We
have the following observations, InstructPix2Pix inevitably
leads to undesired changes in the global appearance (e.g.,
background). DiffEdit and MasaCtrl will yield unsatisfac-
tory results when using the more complex prompts contain-

1As there’s no official code of DiffEdit, we use the code https://
github.com/Xiang-cd/DiffEdit-stable-diffusion

Compared Methods Preference for Ours

vs. Plug-and-Play [54] 80.5% ±1.9%
vs. InstructPix2Pix [4] 73.2% ±2.2%
vs. Null-text [38] 88.2% ±1.6%
vs. DiffEdit [10] 91.9% ±1.3%
vs. MasaCtrl [6] 90.8% ±1.4%

Average 84.9%

Table 1. User studies. We show the percentage (mean, std) of user
preference for our approach over compared methods.

Input Image Result Input Image Result

Editing Text: a large flying fish a cat wearing sunglasses

Figure 7. Failure cases. We show two failure cases generated by
our method.

ing multiple objects. Other methods generate less realistic
results (e.g., coffee in the 4th row) or results that do not cor-
respond with the text prompt (e.g., only one apple and pear
in the 3rd row).

4.3. User Study

To evaluate the quality of the edited images, we conduct
a user study using 60 input images and text prompts. We
employ paired comparisons to measure user preference. In
each test, we show an input image, a text prompt, and two
edited images generated by our method and one of the com-
pared approaches. We ask the subject to choose the one
that performs better in coherence with the text prompt while
maintaining fidelity to the input image.

There are 203 participants in this study, where each par-
ticipant evaluates 40 pairs of images. The image set and
compared method for each image are randomly selected for
each user. The order in each comparison pair is shuffled
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when presenting to each user. All the methods are com-
pared for the same number of times.

Table 1 shows the user study results. The proposed
method performs favorably against all five compared ap-
proaches. On average, our method is preferred in 84.9% of
all the comparisons, which demonstrates the effectiveness
of the proposed method.

Failure cases. We present some failure cases of our ap-
proach to analyze the reasons. As shown in Figure 7, the
failure results can be caused by improper anchor point ini-
tialization, especially when the anchor points fall into the
background area.

4.4. Ablation Study

Compatibility with image synthesis models. To demon-
strate the generalizability of the proposed method, we con-
duct experiments using MaskGIT [8], a distinct image gen-
erative transformer. As shown in Figure 6, we can gen-
erate results that adhere to the text prompt while preserv-
ing the background content. Note that the latent spaces
within MaskGIT exclusively accommodate box-like masks,
lacking the requisite precision for manipulating pixel-level
masks in the context of image editing.

Effect of different loss components. To evaluate the in-
fluences of different loss components in our training loss, in
Figure 8, we show the results generated without the direc-
tional loss LDir that controls the directional edit, or with-
out the structural loss LStr that focuses on preserving the
appearance of the source image. We observe that the re-
sult without LDir does not fully match the context of the
text prompt, and the result without LStr fails to preserve
the posture and shape of the object from the source image.
In contrast, our method using all loss components can gen-
erate results that adhere to the text prompt while preserving
the concept in the source image.

Effect of region generation methods. In Table 2, we
present the user study results by comparing our method
with two other baselines for bounding box generation. (1)
Random-anchor-random-size: The editing regions are
bounding boxes centered at anchor points uniformly sam-
pled from the whole image, with height and width uni-
formly sampled from [0, H] and [0,W ], where H and W
are the height and width of the image. We clamp the re-
gions exceeding the image boundary. (2) DINO-anchor-
random-size: The editing regions are bounding boxes cen-
tered at anchor points selected from the DINO self-attention
map, which are identical to those generated by our method,
but with height and width uniformly sampled from [0, H]
and [0,W ]. For both baselines, we use the same number of

Input Image w/o LDir w/o LStr Ours

Editing Text: a high quality photo of a lovely dog

Figure 8. Effect of different loss components. The 2nd and 3rd

columns present results without LDir and LStr respectively. The
last column is generated by the model using all loss components.

Compared Methods Preference for Ours

vs. Random-anchor-random-size 83.9% ±2.6%
vs. DINO-anchor-random-size 71.0% ±3.2%

Table 2. Ablation study of region generation methods. We show
the percentage (mean, std) of user preference for our approach over
two compared baselines.

anchor points as our method, and select the image with the
highest quality score S to present to the user.

The results show that our method is preferred in 83.9%
compared with Random-anchor baseline. Even when com-
pared to the competitive baseline where the anchor point
is selected from the DINO self-attention map with the ran-
domly chosen bounding box size, the proposed method is
still preferred in 71.0% of all comparisons. These results
validate the effectiveness of our model in generating mean-
ingful editing regions.

4.5. Limitation

We observe two limitations of our method. First, the per-
formance is affected by the choice of the self-supervised
model, particularly regarding anchor initialization. Second,
since no user-specified region guidance is provided, the pre-
dicted region may include background areas, resulting in
unintentional modifications in certain image contents. To
address this, we plan to model the mask using more fine-
grained representations (e.g., patches).

5. Conclusion

In this paper, we propose a method for editing given images
based on freely provided language descriptions, including
paragraphs, without the need for user-specified edit regions.
We introduce a region generation network and incorporate
text-driven editing training losses to generate high-quality
and realistic images. The proposed method seamlessly inte-
grates with various image synthesis models. Experiments
including user studies are conducted, demonstrating the
competitive performance of our proposed method.
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