
VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction

Jiaqi Lin1∗ Zhihao Li2∗ Xiao Tang2 Jianzhuang Liu3 Shiyong Liu2 Jiayue Liu1

Yangdi Lu2 Xiaofei Wu2 Songcen Xu2 Youliang Yan2 Wenming Yang1†

1Tsinghua University 2Huawei Noah’s Ark Lab 3Shenzhen Institute of Advanced Technology
∗ Equal contribution † Corresponding author

(a) Mega-NeRF (b) Switch-NeRF (c) Modified 3DGS (d) VastGaussian (ours) (e) Ground Truth
PSNR: 28.20
FPS: 141.73
Training: 3h

PSNR: 23.58
FPS: 180.21
Training: 20h

PSNR: 24.32
FPS: 0.129
Training: 39h

PSNR: 23.54
FPS: 0.253
Training: 28h

Figure 1. Renderings of three state-of-the-art methods and our VastGaussian from the Residence scene in the UrbanScene3D dataset [26].
(a, b) Mega-NeRF [44] and Switch-NeRF [61] produce blurry results with slow rendering speeds. (c) We modify 3D Gaussian Splatting
(3DGS) [21] so that it can be optimized for enough iterations on a 32 GB GPU. The rendered image is much sharper, but with a lot of
floaters. (d) Our VastGaussian achieves higher quality and much faster rendering than state-of-the-art methods in large scene reconstruction,
with much shorter training time.

Abstract

Existing NeRF-based methods for large scene recon-
struction often have limitations in visual quality and render-
ing speed. While the recent 3D Gaussian Splatting works
well on small-scale and object-centric scenes, scaling it
up to large scenes poses challenges due to limited video
memory, long optimization time, and noticeable appearance
variations. To address these challenges, we present Vast-
Gaussian, the first method for high-quality reconstruction
and real-time rendering on large scenes based on 3D Gaus-
sian Splatting. We propose a progressive partitioning strat-
egy to divide a large scene into multiple cells, where the
training cameras and point cloud are properly distributed
with an airspace-aware visibility criterion. These cells are
merged into a complete scene after parallel optimization.
We also introduce decoupled appearance modeling into the
optimization process to reduce appearance variations in
the rendered images. Our approach outperforms existing
NeRF-based methods and achieves state-of-the-art results
on multiple large scene datasets, enabling fast optimiza-
tion and high-fidelity real-time rendering. Project page:
https://vastgaussian.github.io.

1. Introduction

Large scene reconstruction is essential for many applica-
tions, including autonomous driving [22, 33, 54], aerial sur-
veying [6, 13], and virtual reality, which require photo-
realistic visual quality and real-time rendering. Some ap-
proaches [41, 44, 52, 53, 61] are introduced to extend neural
radiance fields (NeRF) [31] to large-scale scenes, but they
still lack details or render slowly. Recently, 3D Gaussian
Splatting (3DGS) [21] emerges as a promising approach
with impressive performance in visual quality and render-
ing speed, enabling photo-realistic and real-time rendering
at 1080p resolution. It is also applied to dynamic scene
reconstruction [28, 51, 55, 56] and 3D content generation
[12, 42, 59]. However, these methods focus on small-scale
and object-centric scenes. When applied to large-scale en-
vironments, there are several scalability issues. First, the
number of 3D Gaussians is limited by a given video mem-
ory, while the rich details of a large scene require numer-
ous 3D Gaussians. Naively applying 3DGS to a large-scale
scene would result in either low-quality reconstruction or
out-of-memory errors. For intuitive explanation, a 32 GB
GPU can be used to optimize about 11 million 3D Gaus-
sians, while the small Garden scene in the Mip-NeRF 360

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5166

https://vastgaussian.github.io

dataset [3] with an area of less than 100m2 already requires
approximately 5.8 million 3D Gaussians for a high-fidelity
reconstruction. Second, it requires sufficient iterations to
optimize an entire large scene as a whole, which could
be time-consuming, and unstable without good regulariza-
tions. Third, the illumination is usually uneven in a large
scene, and there are noticeable appearance variations in the
captured images, as shown in Fig. 2(a). 3DGS tends to pro-
duce large 3D Gaussians with low opacities to compensate
for these disparities across different views. For example,
bright blobs tend to come up close to the cameras with im-
ages of high exposure, and dark blobs are associated with
images of low exposure. These blobs turn to be unpleas-
ant floaters in the air when observed from novel views, as
shown in Fig. 2(b, d).

To address these issues, we propose Vast 3D Gaus-
sians (VastGaussian) for large scene reconstruction based
on 3D Gaussian Splatting. We reconstruct a large scene
in a divide-and-conquer manner: Partition a large scene
into multiple cells, optimize each cell independently, and
finally merge them into a full scene. It is easier to opti-
mize these cells due to their finer spatial scale and smaller
data size. A natural and naive partitioning strategy is to
distribute training data geographically based on their posi-
tions. This may cause boundary artifacts between two ad-
jacent cells due to few common cameras, and can produce
floaters in the air without sufficient supervision. Thus, we
propose visibility-based data selection to incorporate more
training cameras and point clouds progressively, which en-
sures seamless merging and eliminates floaters in the air.
Our approach allows better flexibility and scalability than
3DGS. Each of these cells contains a smaller number of 3D
Gaussians, which reduces the memory requirement and op-
timization time, especially when optimized in parallel with
multiple GPUs. The total number of 3D Gaussians con-
tained in the merged scene can greatly exceed that of the
scene trained as a whole, improving the reconstruction qual-
ity. Besides, we can expand the scene by incorporating new
cells or fine-tune a specific region without retraining the en-
tire large scene.

To reduce the floaters caused by appearance variations,
Generative Latent Optimization (GLO) [5] with appear-
ance embeddings [29] is proposed for NeRF-based meth-
ods [41, 61]. This approach samples points through ray-
marching, and the point features are fed into an MLP along
with appearance embeddings to obtain the final colors. The
rendering process is the same as the optimization, which
still requires appearance embeddings as input. It is not suit-
able for 3DGS as its rendering is performed by frame-wise
rasterization without MLPs. Therefore, we propose a novel
decoupled appearance modeling that is applied only in the
optimization. We attach an appearance embedding to the
rendered image pixel-by-pixel, and feed them into a CNN

(b)

(e) (f)

(c) (d)

Floaters

(a)

Figure 2. (a) Appearance may vary in adjacent training views.
(b) Dark or bright blobs may be created near cameras with training
images of different brightnesses. (c) 3D Gaussian Splatting uses
these blobs to fit the appearance variations, making the renderings
similar to the training images in (a). (d) These blobs appear as
floaters in novel views. (e) Our decoupled appearance modeling
enables the model to learn constant colors, so the rendered images
are more consistent in appearance across different views. (f) Our
approach greatly reduces floaters in novel views.

to obtain a transformation map for applying appearance ad-
justment on the rendered image. We penalize the structure
dissimilarities between the rendered image and its ground
truth to learn constant information, while the photometric
loss is calculated on the adjusted image to fit the appearance
variations in the training image. Only the consistent render-
ing is what we need, so this appearance modeling module
can be discarded after optimization, thus not slowing down
the real-time rendering speed.

Experiments on several large scene benchmarks confirm
the superiority of our method over NeRF-based methods.
Our contributions are summarized as follows:

• We present VastGaussian, the first method for high-
fidelity reconstruction and real-time rendering on large
scenes based on 3D Gaussian Splatting.

• We propose a progressive data partitioning strategy that
assigns training views and point clouds to different cells,
enabling parallel optimization and seamless merging.

• We introduce decoupled appearance modeling into the
optimization process, which suppresses floaters due to ap-
pearance variations. This module can be discarded after
optimization to obtain the real-time rendering speed.

5167

2. Related Work

2.1. Large Scene Reconstruction

There is significant progress in image-based large scene re-
construction over the past decades. Some works [1, 16,
23, 34, 38, 39, 62] follow a structure-from-motion (SfM)
pipeline to estimate camera poses and a sparse point cloud.
The following works [17, 19] produce a dense point cloud
or triangle mesh from the SfM output based on multi-
view stereo (MVS). As NeRF [31] becomes a popular
3D representation for photo-realistic novel-view synthe-
sis in recent years [35], many variants are proposed to
improve quality [2–4, 24, 45, 47–49, 57], increase speed
[8, 9, 11, 14, 20, 32, 36, 37, 40, 43, 46, 58, 60], extend to
dynamic scenes [7, 15, 18, 25, 27, 50], and so on. Some
methods [41, 44, 52, 53, 61] scale it to large scenes. Block-
NeRF [41] divides a city into multiple blocks and distributes
training views according to their positions. Mega-NeRF
[44] uses grid-based division and assigns each pixel in an
image to different grids through which its ray passes. Un-
like these heuristics partitioning strategies, Switch-NeRF
[61] introduces a mixture-of-NeRF-experts framework to
learn scene decomposition. Grid-NeRF [53] does not per-
form scene decomposition, but rather uses an integration of
NeRF-based and grid-based methods. While the rendering
quality of these methods is significantly improved over tra-
ditional ones, they still lack details and render slowly. Re-
cently, 3D Gaussian Splatting [21] introduces an expressive
explicit 3D representation with high-quality and real-time
rendering at 1080p resolution. However, it is non-trivial to
scale it up to large scenes. Our VastGaussian is the first one
to do so with novel designs for scene partitioning, optimiz-
ing, and merging.

2.2. Varying Appearance Modeling

Appearance variation is a common problem in image-based
reconstruction under changing lighting or different camera
setting such as auto-exposure, auto-white-balance and tone-
mapping. NRW [30] trains an appearance encoder in a
data-driven manner with a contrastive loss, which takes a
deferred-shading deep buffer as input and produces an ap-
pearance embedding (AE). NeRF-W [29] attaches AEs to
point-based features in ray-marching, and feeds them into
an MLP to obtain the final colors, which becomes a stan-
dard practice in many NeRF-based methods [41, 44, 61].
Ha-NeRF [10] makes AE a global representation across dif-
ferent views, and learns it with a view-consistent loss. In
our VastGaussian, we concatenate AEs with rendered im-
ages, feed them into a CNN to obtain transformation maps,
and use the transformation maps to adjust the rendered im-
ages to fit the appearance variations.

3. Preliminaries

In this paper, we propose VastGaussian for large scene re-
construction and rendering based on 3D Gaussian Splatting
(3DGS) [21]. 3DGS represents the geometry and appear-
ance via a set of 3D Gaussians G. Each 3D Gaussian is
characterized by its position, anisotropic covariance, opac-
ity, and spherical harmonic coefficients for view-dependent
colors. During the rendering process, each 3D Gaussian is
projected to the image space as a 2D Gaussian. The pro-
jected 2D Gaussians are assigned to different tiles, sorted
and alpha-blended into a rendered image in a point-based
volume rendering manner [63].

The dataset used to optimize a scene contains a sparse
point cloud P and training views V = {(Ci, Ii)}, where Ci
is the i-th camera, and Ii is the corresponding image. P and
{Ci} are estimated by Structure-from-Motion (SfM) from
{Ii}. P is used to initialize 3D Gaussians, and V is used
for differentiable rendering and gradient-based optimization
of 3D Gaussians. For camera Ci, the rendered image Ir

i =
R(G, Ci) is obtained by a differentiable rasterizer R. The
properties of 3D Gaussians are optimized with respect to
the loss function between Ir

i and Ii as follows:

L = (1− λ)L1(Ir
i , Ii) + λLD-SSIM(Ir

i , Ii), (1)

where λ is a hyper-parameter, and LD-SSIM denotes the D-
SSIM loss [21]. This process is interleaved with adaptive
point densification, which is triggered when the cumulative
gradient of the point reaches a certain threshold.

4. Method

3DGS [21] works well on small and object-centric scenes,
but it struggles when scaled up to large environments due to
video memory limitation, long optimization time, and ap-
pearance variations. In this paper, we extend 3DGS to large
scenes for real-time and high-quality rendering. We propose
to partition a large scene into multiple cells that are merged
after individual optimization. In Sec. 4.1, we introduce a
progressive data partitioning strategy with airspace-aware
visibility calculation. Sec. 4.2 elaborates how to optimize
individual cells, presenting our decoupled appearance mod-
eling to capture appearance variations in images. Finally,
we describe how to merge these cells in Sec. 4.3.

4.1. Progressive Data Partitioning

We partition a large scene into multiple cells and assign
parts of the point cloud P and views V to these cells for
optimization. Each of these cells contains a smaller number
of 3D Gaussians, which is more suitable for optimization
with lower memory capacity, and requires less training time
when optimized in parallel. The pipeline of our progressive
data partitioning strategy is shown in Fig. 3.

5168

Input data (a) Camera-position-based
region division

(b) Position-based
data selection

(c) Visibility-based
camera selection

(d) Coverage-based
point selection

Selected Camera Selected PointCamera Point

(e) Naive solution: airspace-agnostic (f) Our solution: airspace-aware

Ωij
surf/ Ωi ≤ Th
Not Selected

Ωi

(j+1)-th Cell

Other Cells

j-th Cellj-th Cell

Ωij
air/ Ωi > Th
Selected Floaters

j-th Cell
(g) Floaters caused by depth ambiguity

Ωij
surf Ωij

air
Ωi

Figure 3. Progressive data partitioning. Top row: (a) The whole scene is divided into multiple regions based on the 2D camera positions
projected on the ground plane. (b) Parts of the training cameras and point cloud are assigned to a specific region according to its expanded
boundaries. (c) More training cameras are selected to reduce floaters, based on an airspace-aware visibility criterion, where a camera
is selected if it has sufficient visibility on this region. (d) More points of the point cloud are incorporated for better initialization of 3D
Gaussians, if they are observed by the selected cameras. Bottom row: Two visibility definitions to select more training cameras. (e) A
naive way: The visibility of the i-th camera on the j-th cell is defined as Ωsurf

ij /Ωi, where Ωi is the area of the image Ii, and Ωsurf
ij is the

convex hull area formed by the surface points in the j-th cell that are projected to Ii. (f) Our airspace-aware solution: The convex hull
area Ωair

ij is calculated on the projection of the j-th cell’s bounding box in Ii. (g) Floaters caused by depth ambiguity with improper point
initialization, which cannot be eliminated without sufficient supervision from training cameras.

Camera-position-based region division. As shown in
Fig. 3(a), we partition the scene based on the projected cam-
era positions on the ground plane, and make each cell con-
tain a similar number of training views to ensure balanced
optimization between different cells under the same num-
ber of iterations. Without loss of generality, assuming that
a grid of m×n cells fits the scene in question well, we first
partition the ground plane into m sections along one axis,
each containing approximately |V|/m views. Then each of
these sections is further subdivided into n segments along
the other axis, each containing approximately |V|/(m×n)
views. Although here we take grid-based division as an ex-
ample, our data partitioning strategy is also applicable to
other geography-based division methods, such as sectoriza-
tion and quadtrees.
Position-based data selection. As illustrated in Fig. 3(b),
we assign part of the training views V and point cloud P
to each cell after expanding its boundaries. Specifically,
let the j-th region be bounded in a ℓhj × ℓwj rectangle; the
original boundaries are expanded by a certain percentage,
20% in this paper, resulting in a larger rectangle of size
(ℓhj +0.2ℓhj)×(ℓwj +0.2ℓwj). We partition the training views
V into {Vj}m×n

j=1 based on the expanded boundaries, and
segment the point cloud P into {Pj} in the same way.

Visibility-based camera selection. We find that the se-
lected cameras in the previous step are insufficient for high-
fidelity reconstruction, which can lead to poor detail or
floater artifact. To solve this problem, we propose to add
more relevant cameras based on a visibility criterion, as
shown in Fig. 3(c). Given a yet-to-be-selected camera Ci,
let Ωij be the projected area of the j-th cell in the image Ii,
and let Ωi be the area of Ii; visibility is defined as Ωij/Ωi.
Those cameras with a visibility value greater than a pre-
defined threshold Th are selected.

Note that different ways of calculating Ωij result in dif-
ferent camera selections. As illustrated in Fig. 3(e), a natu-
ral and naive solution is based on the 3D points distributed
on the object surface. They are projected on Ii to form
a convex hull of area Ωsurf

ij . This calculation is airspace-
agnostic because it takes only the surface into account.
Therefore some relevant cameras are not selected due to its
low visibility on the j-th cell in this calculation, which re-
sults in under-supervision for airspace, and cannot suppress
floaters in the air.

We introduce an airspace-aware visibility calculation, as
shown in Fig. 3(f). Specifically, an axis-aligned bounding
box is formed by the point cloud in the j-th cell, whose
height is chosen as the distance between the highest point

5169

3D Gaussians

T

render

downsample

appearance

embedding

…

CNNCNN

ℒD−SSIM ℒ1

Figure 4. Decoupled appearance modeling. The rendered image
Ir
i is downsampled to a smaller resolution, concatenated by an

optimizable appearance embedding ℓi in a pixel-wise manner to
obtain Di, and then fed into a CNN to generate a transformation
map Mi. Mi is used to perform appearance adjustment on Ir

i to
get an appearance-variant image Ia

i , which is used to calculate the
loss L1 against the ground truth Ii, while Ir

i is used to calculate
the D-SSIM loss.

and the ground plane. We project the bounding box onto
Ii and obtain a convex hull area Ωair

ij . This airspace-aware
solution takes into account all the visible space, which en-
sures that given a proper visibility threshold, the views with
significant contributions to the optimization of this cell are
selected and provide enough supervision for the airspace.
Coverage-based point selection. After adding more rele-
vant cameras to the j-th cell’s camera set Vj , we add the
points covered by all the views in Vj into Pj , as illustrated
in Fig. 3(d). The newly selected points can provide bet-
ter initialization for the optimization of this cell. As illus-
trated in Fig. 3(g), some objects outside the j-th cell can
be captured by some views in Vj , and new 3D Gaussians
are generated in wrong positions to fit these objects due to
depth ambiguity without proper initialization. However, by
adding these object points for initialization, new 3D Gaus-
sians in correct positions can be easily created to fit these
training views, instead of producing floaters in the j-th cell.
Note that the 3D Gaussians generated outside the cell are
removed after the optimization of the cell.

4.2. Decoupled Appearance Modeling

There are obvious appearance variations in the images taken
in uneven illumination, and 3DGS tends to produce floaters
to compensate for these variations across different views, as
shown in Fig. 2(a–d).

To address this problem, some NeRF-based methods
[29, 41, 44, 61] concatenate an appearance embedding to
point-based features in pixel-wise ray-marching, and feed
them into the radiance MLP to obtain the final color. This
is not suitable for 3DGS, whose rendering is performed by

frame-wise rasterization without MLPs. Instead, we intro-
duce decoupled appearance modeling into the optimization
process, which produces a transformation map to adjust
the rendered image to fit the appearance variations in the
training image, as shown in Fig. 4. Specifically, we first
downsample the rendered image Ir

i to not only prevent the
transformation map from learning high-frequency details,
but also reduce computation burden and memory consump-
tion. We then concatenate an appearance embedding ℓi of
length m to every pixel in the three-channel downsampled
image, and obtain a 2D map Di with 3 +m channels. Di is
fed into a convolutional neural network (CNN), which pro-
gressively upsamples Di to generate Mi that is of the same
resolution as Ir

i . Finally, the appearance-variant image Ia
i

is obtained by performing a pixel-wise transformation T on
Ir
i with Mi:

Ia
i = T (Ir

i ;Mi). (2)

In our experiments, a simple pixel-wise multiplication
works well on the datasets we use. The appearance embed-
dings and CNN are optimized along with the 3D Gaussians,
using the loss function modified from Eq. (1):

L = (1− λ)L1(Ia
i , Ii) + λLD-SSIM(Ir

i , Ii). (3)

Since LD-SSIM mainly penalizes the structural dissimilar-
ity, applying it between Ir

i and the ground truth Ii makes
the structure information in Ir

i close to Ii, leaving the ap-
pearance information to be learned by ℓi and the CNN. The
loss L1 is applied between the appearance-variant render-
ing Ia

i and Ii, which is used to fit the ground truth image
Ii that may have appearance variations from other images.
After training, Ir

i is expected to have a consistent appear-
ance with other images, from which the 3D Gaussians can
learn an average appearance and correct geometry of all the
input views. This appearance modeling can be discarded
after optimization, without slowing down the real-time ren-
dering speed.

4.3. Seamless Merging

After optimizing all the cells independently, we need to
merge them to get a complete scene. For each optimized
cell, we delete the 3D Gaussians that are outside the orig-
inal region (Fig. 3(a)) before boundary expansion. Other-
wise, they could become floaters in other cells. We then
merge the 3D Gaussians of these non-overlapping cells. The
merged scene is seamless in appearance and geometry with-
out obvious border artifacts, because some training views
are common between adjacent cells in our data partitioning.
Therefore, there is no need to perform further appearance
adjustment like Block-NeRF [41]. The total number of 3D
Gaussians contained in the merged scene can greatly exceed
that of the scene trained as a whole, thus improving the re-
construction quality.

5170

Scene Building Rubble Campus Residence Sci-Art

Metrics SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS

Mega-NeRF 0.569 21.48 0.378 0.575 24.70 0.407 0.561 23.93 0.513 0.648 22.86 0.330 0.769 26.25 0.263
Switch-NeRF 0.594 22.07 0.332 0.586 24.93 0.377 0.565 24.03 0.495 0.675 23.41 0.280 0.793 27.07 0.224
Grid-NeRF (grid branch) – – – 0.780 25.47 0.213 0.767 25.51 0.174 0.807 24.37 0.142 – – –
Grid-NeRF (nerf branch) – – – 0.767 24.13 0.207 0.757 24.90 0.162 0.802 23.77 0.137 – – –
Modified 3DGS 0.769 23.01 0.164 0.800 26.78 0.161 0.712 23.89 0.289 0.825 23.40 0.142 0.843 25.24 0.166

VastGaussian (Ours) 0.804 23.50 0.130 0.823 26.92 0.132 0.816 26.00 0.151 0.852 24.25 0.124 0.885 26.81 0.121

Table 1. Quantitative evaluation of our method compared to previous work on five large scenes. We report SSIM↑, PSNR↑ and LPIPS↓ on
test views. The best and second best results are highlighted. “–” denotes missing data from the Grid-NeRF paper.

5. Experiments

5.1. Experimental Setup

Implementation. We evaluate our model with 8 cells in
our main experiments. The visibility threshold is 25%. The
rendered images are downsampled by 32 times before be-
ing concatenated with the appearance embeddings of length
64. Each cell is optimized for 60, 000 iterations. The den-
sification [21] starts at the 1, 000th iteration and ends at the
30, 000th iteration, with an interval of 200 iterations. The
other settings are identical to those of 3DGS [21]. Both the
appearance embeddings and the CNN use a learning rate of
0.001. We perform Manhattan world alignment to make the
y-axis of the world coordinate perpendicular to the ground
plane. We describe the CNN architecture in the supplement.
Datasets. The experiments are conducted on five large-
scale scenes: Rubble and Building from the Mill-19 dataset
[44], and Campus, Residence, and Sci-Art from the Urban-
Scene3D dataset [26]. Each scene contains thousands of
high-resolution images. We downsample the images by 4
times for training and validation, following previous meth-
ods [44, 61] for fair comparison.
Metrics. We evaluate the rendering quality using three
quantitative metrics: SSIM, PSNR, and AlexNet-based
LPIPS. The aforementioned photometric variation makes
the evaluation difficult, as it is uncertain which photomet-
ric condition should be replicated. To address this issue, we
follow Mip-NeRF 360 [3] to perform color correction on
the rendered images before evaluating the metrics of all the
methods, which solves a per-image least squares problem
to align the RGB values between the rendered image and its
corresponding ground truth. We also report the rendering
speed at 1080p resolution, average training time, and video
memory consumption.
Compared methods. We compare our VastGaussian with
four methods: Mega-NeRF [44], Switch-NeRF [61], Grid-
NeRF [53], and 3DGS [21]. For 3DGS, we need to increase
optimization iterations to make it comparable in our main
experiments, but naively doing that causes out-of-memory
errors. Therefore, we increase the densification interval
accordingly to build a feasible baseline (termed Modified

Dataset Mill-19 UrbanScene3D

Metrics Training VRAM FPS Training VRAM FPS

Mega-NeRF 30h19m 5.0G 0.25 28h01m 5.0G 0.31
Switch-NeRF 41h58m 9.9G 0.12 38h47m 9.9G 0.15
Grid-NeRF 17h44m 14.0G 0.26 17h38m 14.0G 0.30
Modified 3DGS 19h32m 31.1G 177.75 20h12m 31.2G 210.99

VastGaussian 2h25m 10.4G 126.45 2h56m 11.9G 171.92

Table 2. Comparison of training time, training video memory con-
sumption (VRAM), and rendering speed.

3DGS). The other configurations are the same as those in
the original 3DGS paper. For Grid-NeRF, its code is re-
leased without rendered images and carefully tuned config-
uration files due to its confidentiality requirements. These
unavailable files are critical to its performance, making its
results not reproducible. Therefore, we use its code to eval-
uate only its training time, memory and rendering speed,
while the quality metrics are copied from its paper.

5.2. Result Analysis

Reconstruction quality. In Tab. 1, we report the mean
SSIM, PSNR, and LPIPS metrics in each scene. Our Vast-
Gaussian outperforms the compared methods in all the
SSIM and LPIPS metrics by significant margins, suggest-
ing that it reconstructs richer details with better rendering in
perception. In terms of PSNR, VastGaussian achieves bet-
ter or comparable results. We also show visual comparison
in Fig. 5. The NeRF-based methods fall short of details and
produce blurry results. Modified 3DGS has sharper render-
ing but produces unpleasant floaters. Our method achieves
clean and visually pleasing rendering. Note that due to
the noticeable over-exposure or under-exposure in some test
images, VastGaussian exhibits slightly lower PSNR values,
but produces significantly better visual quality, sometimes
even being more clear than the ground truth, such as the
example on the 3rd row in Fig. 5. The high quality of Vast-
Gaussian is partly thanks to its large number of 3D Gaus-
sians. Take the Campus scene for example, the number of
3D Gaussians in Modified 3DGS is 8.9 million, while for
VastGaussian the number is 27.4 million.

5171

Ground Truth VastGaussian (Ours) Mega-NeRF Switch-NeRFModified 3DGS

Figure 5. Qualitative comparison between VastGaussian and previous work. Floaters are pointed out by green arrows.

Efficiency and memory. In Tab. 2, we report the train-
ing time, video memory consumption during optimization,
and rendering speed. Mega-NeRF, Switch-NeRF and Vast-
Gaussian are trained on 8 Tesla V100 GPUs, while Grid-
NeRF and Modified 3DGS on a single V100 GPU as they
do not perform scene decomposition. The rendering speeds
are tested on a single RTX 3090 GPU. Our VastGaussian re-
quires much shorter time to reconstruct a scene with photo-
realistic rendering. Compared to Modified 3DGS, Vast-
Gaussian greatly reduces video memory consumption on a
single GPU. Since VastGaussian has more 3D Gaussians in
the merged scene than Modified 3DGS, its rendering speed

is slightly slower than Modified 3DGS, but is still much
faster than the NeRF-based methods, achieving real-time
rendering at 1080p resolution.

5.3. Ablation Study

We perform ablation study on the Sci-Art scene to evaluate
different aspects of VastGaussian.
Data partition. As shown in Fig. 6 and Tab. 3, both
visibility-based camera selection (VisCam) and coverage-
based point selection (CovPoint) can improve visual qual-
ity. Without each or both of them, floaters can be created in
the airspace of a cell to fit the views observing regions out-

5172

Full Model

w/o CovPoint

w/o VisCam

w/o VisCam & CovPoint

Figure 6. The visibility-based camera selection and coverage-
based point selection can reduce floaters in the airspace.

Model setting SSIM PSNR LPIPS

1) w/o VisCam 0.694 20.05 0.261
2) w/o CovPoint 0.874 26.14 0.128
3) w/o VisCam & CovPoint 0.699 20.35 0.253
4) airspace-aware → agnostic 0.855 24.54 0.128
5) w/o Decoupled AM 0.858 25.08 0.148

Full model 0.885 26.81 0.121

Table 3. Ablation on data partition, visibility calculation and de-
coupled appearance modeling (Decoupled AM).

side the cell. As shown in Fig. 7, the visibility-based camera
selection can ensure more common cameras between adja-
cent cells, which eliminates the noticeable boundary artifact
of appearance jumping when it is not implemented.
Airspace-aware visibility calculation. As illustrated in the
4th row of Tab. 3 and Fig. 8, the cameras selected based on
the airspace-aware visibility calculation provide more su-
pervision for the optimization of a cell, thus not producing
floaters that are presented when the visibility is calculated
in the airspace-agnostic way.
Decoupled appearance modeling. As shown in Fig. 2 and
the 5th row of Tab. 3, our decoupled appearance modeling
reduces the appearance variations in the rendered images.
Therefore, the 3D Gaussians can learn consistent geome-
try and colors from training images with appearance vari-
ations, instead of creating floaters to compensate for these
variations. Please also see the videos in the supplement.
Different number of cells. As shown in Tab. 4, more cells
reconstruct better details in VastGaussian, leading to better
SSIM and LPIPS values, and shorter training time when the
cells are optimized in parallel. However, when the cell num-
ber reaches 16 or bigger, the quality improvement becomes

with VisCam w/o VisCam

Figure 7. The visibility-based camera selection can eliminate the
appearance jumping on the cell boundaries.

Airspace-aware Airspace-agnostic

Figure 8. Heavy floaters appear when the visibility is calculated in
the airspace-agnostic way.

#Cell #GPU SSIM PSNR LPIPS Training

4 4 0.870 26.39 0.136 2h46m
8 8 0.885 26.81 0.121 2h39m

16 16 0.888 26.80 0.116 2h30m
24 24 0.892 26.64 0.110 2h19m

Table 4. Effect of different cell numbers.

marginal, and PSNR slightly decreases because there may
be gradual brightness changes in a rendered image from
cells that are far apart.

6. Conclusion and Limitation
In this paper, we propose VastGaussian, the first high-
quality reconstruction and real-time rendering method on
large-scale scenes. The introduced progressive data par-
titioning strategy allows for independent cell optimization
and seamless merging, obtaining a complete scene with suf-
ficient 3D Gaussians. Our decoupled appearance modeling
decouples appearance variations in the training images, and
enables consistent rendering across different views. This
module can be discarded after optimization to obtain faster
rendering speed. While our VastGaussian can be applied to
spatial divisions of any shape, we do not provide an optimal
division solution that should consider the scene layout, the
cell number and the training camera distribution. In addi-
tion, there are a lot of 3D Gaussians when the scene is huge,
which may need a large storage space and significantly slow
down the rendering speed.

5173

References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M Seitz, and Richard Szeliski.
Building rome in a day. Communications of the ACM, 2011.
3

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, 2021. 3

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In CVPR, 2022. 2, 6

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. In ICCV, 2023. 3

[5] Piotr Bojanowski, Armand Joulin, David Lopez-Pas, and
Arthur Szlam. Optimizing the latent space of generative net-
works. In ICML, 2018. 2

[6] Ilker Bozcan and Erdal Kayacan. Au-air: A multi-modal un-
manned aerial vehicle dataset for low altitude traffic surveil-
lance. In ICRA, 2020. 1

[7] Ang Cao and Justin Johnson. Hexplane: A fast representa-
tion for dynamic scenes. In CVPR, 2023. 3

[8] Junli Cao, Huan Wang, Pavlo Chemerys, Vladislav Shakhrai,
Ju Hu, Yun Fu, Denys Makoviichuk, Sergey Tulyakov, and
Jian Ren. Real-time neural light field on mobile devices. In
CVPR, 2023. 3

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
3

[10] Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng,
Xuan Wang, and Jue Wang. Hallucinated neural radiance
fields in the wild. In CVPR, 2022. 3

[11] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In CVPR, 2023. 3

[12] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3d using
gaussian splatting. arXiv preprint arXiv:2309.16585, 2023.
1

[13] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen
Duan, Guorong Li, Weigang Zhang, Qingming Huang, and
Qi Tian. The unmanned aerial vehicle benchmark: Object
detection and tracking. In ECCV, 2018. 1

[14] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 3

[15] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
CVPR, 2023. 3

[16] Christian Früh and Avideh Zakhor. An automated method
for large-scale, ground-based city model acquisition. IJCV,
2004. 3

[17] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and
Richard Szeliski. Towards internet-scale multi-view stereo.
In CVPR, 2010. 3

[18] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell,
and Angjoo Kanazawa. Monocular dynamic view synthesis:
A reality check. In NeurIPS, 2022. 3

[19] Michael Goesele, Noah Snavely, Brian Curless, Hugues
Hoppe, and Steven M Seitz. Multi-view stereo for commu-
nity photo collections. In ICCV, 2007. 3

[20] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In ICCV, 2021.
3

[21] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM ToG, 2023. 1, 3, 6

[22] Wei Li, CW Pan, Rong Zhang, JP Ren, YX Ma, Jin Fang,
FL Yan, QC Geng, XY Huang, HJ Gong, et al. Aads: Aug-
mented autonomous driving simulation using data-driven al-
gorithms. Science robotics, 2019. 1

[23] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana
Lazebnik, and Jan-Michael Frahm. Modeling and recog-
nition of landmark image collections using iconic scene
graphs. In ECCV, 2008. 3

[24] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
CVPR, 2023. 3

[25] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,
Hujun Bao, and Xiaowei Zhou. Efficient neural radiance
fields for interactive free-viewpoint video. In SIGGRAPH
Asia, 2022. 3

[26] Liqiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie, and
Hui Huang. Capturing, reconstructing, and simulating: the
urbanscene3d dataset. In ECCV, 2022. 1, 6

[27] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu
Tseng, Ayush Saraf, Changil Kim, Yung-Yu Chuang, Jo-
hannes Kopf, and Jia-Bin Huang. Robust dynamic radiance
fields. In CVPR, 2023. 3

[28] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint
arXiv:2308.09713, 2023. 1

[29] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 2, 3, 5

[30] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues
Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-
Brualla. Neural rerendering in the wild. In CVPR, 2019.
3

[31] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 3

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM ToG, 2022. 3

[33] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. In
CVPR, 2021. 1

5174

[34] Marc Pollefeys, David Nistér, J-M Frahm, Amir Ak-
barzadeh, Philippos Mordohai, Brian Clipp, Chris Engels,
David Gallup, S-J Kim, Paul Merrell, et al. Detailed real-
time urban 3d reconstruction from video. IJCV, 2008. 3

[35] Ravi Ramamoorthi. Nerfs: The search for the best 3d repre-
sentation. arXiv preprint arXiv:2308.02751, 2023. 3

[36] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 3

[37] Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srini-
vasan, Ben Mildenhall, Andreas Geiger, Jon Barron, and Pe-
ter Hedman. Merf: Memory-efficient radiance fields for real-
time view synthesis in unbounded scenes. ACM ToG, 2023.
3

[38] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016. 3

[39] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo
tourism: exploring photo collections in 3d. In SIGGRAPH.
2006. 3

[40] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 3

[41] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In CVPR, 2022. 1, 2, 3, 5

[42] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for effi-
cient 3d content creation. arXiv preprint arXiv:2309.16653,
2023. 1

[43] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Er-
rui Ding, Jingdong Wang, and Gang Zeng. Delicate textured
mesh recovery from nerf via adaptive surface refinement. In
ICCV, 2023. 3

[44] Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-scale
nerfs for virtual fly-throughs. In CVPR, 2022. 1, 3, 5, 6

[45] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In CVPR, 2022. 3

[46] Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Men-
glei Chai, Yun Fu, and Sergey Tulyakov. R2l: Distilling neu-
ral radiance field to neural light field for efficient novel view
synthesis. In ECCV, 2022. 3

[47] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In NeurIPS, 2021. 3

[48] Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu,
Taku Komura, Christian Theobalt, and Wenping Wang. F2-
nerf: Fast neural radiance field training with free camera tra-
jectories. In CVPR, 2023.

[49] Yiming Wang, Qin Han, Marc Habermann, Kostas Dani-
ilidis, Christian Theobalt, and Lingjie Liu. Neus2: Fast
learning of neural implicit surfaces for multi-view recon-
struction. In ICCV, 2023. 3

[50] Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan,
Jonathan T. Barron, and Ira Kemelmacher-Shlizerman. Hu-
mannerf: Free-viewpoint rendering of moving people from
monocular video. In CVPR, 2022. 3

[51] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 1

[52] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
Bungeenerf: Progressive neural radiance field for extreme
multi-scale scene rendering. In ECCV, 2022. 1, 3

[53] Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan,
Nanxuan Zhao, Christian Theobalt, Bo Dai, and Dahua Lin.
Grid-guided neural radiance fields for large urban scenes. In
CVPR, 2023. 1, 3, 6

[54] Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou,
Pei Sun, Dumitru Erhan, Sean Rafferty, and Henrik Kret-
zschmar. Surfelgan: Synthesizing realistic sensor data for
autonomous driving. In CVPR, 2020. 1

[55] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 1

[56] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene representa-
tion and rendering with 4d gaussian splatting. arXiv preprint
arXiv:2310.10642, 2023. 1

[57] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In NeurIPS, 2021.
3

[58] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P Srinivasan, Richard Szeliski, Jonathan T Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. arXiv preprint arXiv:2302.14859, 2023.
3

[59] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng
Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. Gaussian-
dreamer: Fast generation from text to 3d gaussian splatting
with point cloud priors. arXiv preprint arXiv:2310.08529,
2023. 1

[60] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 3

[61] MI Zhenxing and Dan Xu. Switch-nerf: Learning scene de-
composition with mixture of experts for large-scale neural
radiance fields. In ICLR, 2022. 1, 2, 3, 5, 6

[62] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian Fang,
Ping Tan, and Long Quan. Very large-scale global sfm by
distributed motion averaging. In CVPR, 2018. 3

[63] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Ewa volume splatting. In VIS, 2001. 3

5175

	. Introduction
	. Related Work
	. Large Scene Reconstruction
	. Varying Appearance Modeling

	. Preliminaries
	. Method
	. Progressive Data Partitioning
	. Decoupled Appearance Modeling
	. Seamless Merging

	. Experiments
	. Experimental Setup
	. Result Analysis
	. Ablation Study

	. Conclusion and Limitation

