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Figure 1. Text-to-4D synthesis with Align Your Gaussians (AYG). Top: Different dynamic 4D sequences. Dotted lines represent
dynamics of deformation field. Bottom: Multiple dynamic 4D objects are composed within a large dynamic scene; two time frames shown.

Abstract

Text-guided diffusion models have revolutionized image
and video generation and have also been successfully used
for optimization-based 3D object synthesis. Here, we in-
stead focus on the underexplored text-to-4D setting and syn-
thesize dynamic, animated 3D objects using score distilla-
tion methods with an additional temporal dimension. Com-
pared to previous work, we pursue a novel compositional
generation-based approach, and combine text-to-image,
text-to-video, and 3D-aware multiview diffusion models to
provide feedback during 4D object optimization, thereby si-
multaneously enforcing temporal consistency, high-quality
visual appearance and realistic geometry. Our method,
called Align Your Gaussians (AYG), leverages dynamic 3D
Gaussian Splatting with deformation fields as 4D represen-
tation. Crucial to AYG is a novel method to regularize the

distribution of the moving 3D Gaussians and thereby sta-
bilize the optimization and induce motion. We also pro-
pose a motion amplification mechanism as well as a new
autoregressive synthesis scheme to generate and combine
multiple 4D sequences for longer generation. These tech-
niques allow us to synthesize vivid dynamic scenes, out-
perform previous work qualitatively and quantitatively and
achieve state-of-the-art text-to-4D performance. Due to the
Gaussian 4D representation, different 4D animations can
be seamlessly combined, as we demonstrate. AYG opens
up promising avenues for animation, simulation and digital
content creation as well as synthetic data generation.

1. Introduction
Generative modeling of dynamic 3D scenes has the poten-
tial to revolutionize how we create games, movies, simu-
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Figure 2. Text-to-4D synthesis with
AYG. We generate dynamic 4D scenes
via score distillation. We initialize the 4D
sequence from a static 3D scene (gener-
ated first, Fig. 3), which is represented
by 3D Gaussians with means µi, scales
σi, opacities ηi and colors ℓi. Consec-
utive rendered frames x

cj
τj from the 4D

sequence at times τj and camera posi-
tions cj are diffused and fed to a text-
to-video diffusion model [7] (green ar-
rows), which provides a distillation gra-
dient that is backpropagated through the
rendering process into a deformation field
∆(x, y, z, τ) (dotted lines) that captures
scene motion. Simultaneously, random
frames x̃

c̃j
τj are diffused and given to a

text-to-image diffusion model [70] (red
arrows) whose gradients ensure that high
visual quality is maintained frame-wise.

lations, animations and entire virtual worlds. Many works
have shown how a wide variety of 3D objects can be synthe-
sized via score distillation techniques [10, 11, 31, 41, 52, 62,
79, 85, 88, 92, 109], but they typically only synthesize static
3D scenes, although we live in a moving, dynamic world.
While image diffusion models have been successfully ex-
tended to video generation [1, 7, 22, 28, 78, 90, 91, 107],
there is little research on similarly extending 3D synthesis
to 4D generation with an additional temporal dimension.

We propose Align Your Gaussians (AYG), a novel
method for 4D content creation. In contrast to previous
work [79], we leverage dynamic 3D Gaussians [36] as back-
bone 4D representation, where a deformation field [59, 63]
captures scene dynamics and transforms the collection of
3D Gaussians to represent object motion. AYG takes a
compositional generation-based perspective and leverages
the combined gradients of latent text-to-image [70], text-to-
video [7] and 3D-aware text-to-multiview-image [76] dif-
fusion models in a score distillation-based synthesis frame-
work. A 3D-aware multiview diffusion model and a regu-
lar text-to-image model are used to generate an initial high-
quality 3D shape. Afterwards, we compose the gradients
of a text-to-video and a text-to-image model; the gradients
of the text-to-video model optimize the deformation field to
capture temporal dynamics, while the text-to-image model
ensures that high visual quality is maintained for all time
frames (Fig. 2). To this end, we trained a dedicated text-to-
video model; it is conditioned on the frame rate and can cre-
ate useful gradients both for short and long time intervals,
which allows us to generate long and smooth 4D sequences.

We developed several techniques to ensure stable opti-
mization and learn vivid dynamic 4D scenes in AYG: We
employ a novel regularization method that uses a modi-
fied version of the Jensen-Shannon divergence to regular-
ize the locations of the 3D Gaussians such that the mean
and variance of the set of 3D Gaussians is preserved as

they move. Furthermore, we use a motion amplification
method that carefully scales the gradients from the text-to-
video model and enhances motion. To extend the length
of the 4D sequences or combine different dynamic scenes
with changing text guidance, we introduce an autoregres-
sive generation scheme which interpolates the deformation
fields of consecutive sequences. We also propose a new
view-guidance method to generate consistent 3D scenes for
initialization of the 4D stage, and we leverage the concur-
rent classifier score distillation method [102].

We find that AYG can generate diverse, vivid, detailed
and 3D-consistent dynamic scenes (Fig. 1), achieving state-
of-the-art text-to-4D performance. We also show long,
autoregressively extended 4D scenes, including ones with
varying text guidance, which has not been demonstrated be-
fore. A crucial advantage of AYG’s 4D Gaussian backbone
representation is that different 4D animations can trivially
be combined and composed together, which we also show.

We envision broad applications in digital content cre-
ation, where AYG takes a step beyond the literature on text-
to-3D and captures our world’s rich dynamics. Moreover,
AYG can generate 4D scenes with exact tracking labels for
free, a promising feature for synthetic data generation.

Contributions. (i) We propose AYG, a system for text-
to-4D content creation leveraging dynamic 3D Gaussians
with deformation fields as 4D representation. (ii) We show
how to tackle the text-to-4D task through score distillation
within a new compositional generation framework, com-
bining 2D, 3D, and video diffusion models. (iii) To scale
AYG, we introduce a novel regularization method and a
new motion amplification technique. (iv) Experimentally,
we achieve state-of-the-art text-to-4D performance and gen-
erate high-quality, diverse, and dynamic 4D scenes. (v) For
the first time, we also show how our 4D sequences can
be extended in time with a new autoregressive generation
scheme and even creatively composed in large scenes.
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2. Background
3D Gaussian Splatting [36] represents 3D scenes by N
3D Gaussians with positions µi, covariances Σi, opacities
ηi and colors ℓi (Fig. 2). Rendering corresponds to projec-
tion of the 3D Gaussians onto the 2D camera’s image plane,
producing 2D Gaussians with projected means µ̂i and co-
variances Σ̂i. The color C(p) of image pixel p can be cal-
culated through point-based volume rendering [111] as

C(p) =
N∑
i=1

ℓiαi

i−1∏
j=1

(1− αj) , (1)

αi = ηi exp
[
−1

2
(p− µ̂i)

⊤
Σ̂−1

i (p− µ̂i)

]
, (2)

where j iterates over the Gaussians along the ray through
the scene from pixel p until Gaussian i. To accelerate ren-
dering, the image plane can be divided into tiles, which
are processed in parallel. Initially proposed for 3D scene
reconstruction, 3D Gaussian Splatting uses gradient-based
thresholding to densify areas that need more Gaussians to
capture fine details, and unnecessary Gaussians with low
opacity are pruned every few thousand optimization steps.

Diffusion Models and Score Distillation Sampling.
Diffusion-based generative models (DMs) [18, 27, 57, 80,
81] use a forward diffusion process that gradually perturbs
data, such as images or entire videos, towards entirely ran-
dom noise, while a neural network is learnt to denoise and
reconstruct the data. DMs have also been widely used for
score distillation-based generation of 3D objects [62]. In
that case, a 3D object, represented for instance by a neural
radiance field (NeRF) [54] or 3D Gaussians [36], like here,
with parameters θ is rendered from different camera views
and the renderings x are diffused and given to a text-to-
image DM. In the score distillation sampling (SDS) frame-
work, the DM’s denoiser is then used to construct a gradient
that is backpropagated through the differentiable rendering
process g into the 3D scene representation and updates the
scene representation to make the scene rendering look more
realistic, like images modeled by the DM. Rendering and
using DM feedback from many different camera perspec-
tives then encourages the scene representation to form a ge-
ometrically consistent 3D scene. The SDS gradient [62] is

∇θLSDS(x = g(θ)) = Et,ϵ

[
w(t) (ϵ̂ϕ(zt, v, t)− ϵ)

∂x

∂θ

]
,

where x denotes the 2D rendering, t is the time up to which
the diffusion is run to perturb x, w(t) is a weighting func-
tion, and zt is the perturbed rendering. Further, ϵ̂ϕ(zt, v, t)
is the DM’s denoiser neural network that predicts the dif-
fusion noise ϵ. It is conditioned on zt, the diffusion time t
and a text prompt v for guidance. Classifier-free guidance
(CFG) [26] typically amplifies the text conditioning.

Figure 3. In AYG’s initial 3D stage we synthesize a static 3D
scene leveraging a text-guided multiview diffusion model [76] and
a regular text-to-image model [70]. The text-to-image model re-
ceives viewing angle-dependent text prompts and leverages view
guidance (Sec. 3.4). See Fig. 2 for 4D stage and descriptions.

2.1. Related Work

See Supp. Material for an extended discussion. Here, we
only briefly mention the most relevant related literature.

As discussed, AYG builds on text-driven im-
age [5, 14, 21, 61, 67, 70, 72, 98], video [1, 7,
22, 25, 28, 38, 78, 90, 91, 94, 107] and 3D-aware
DMs [42, 44, 45, 56, 64, 75, 76, 104], uses score distillation
sampling [10, 11, 17, 31, 41, 48, 52, 62, 85, 88, 92, 96, 109]
and leverages 3D Gaussian Splatting [36] as well as defor-
mation fields [8, 59, 60, 63, 84] for its 4D representation.
The concurrent works DreamGaussian [83], GSGEN [12]
and GaussianDreamer [101] use 3D Gaussian Splatting to
synthesize static 3D scenes, but do not consider dynamics.
Dynamic 3D Gaussian Splatting has been used for 4D
reconstruction [50, 93, 110], but not for 4D generation. The
idea to compose the gradients of multiple DMs has been
used before for controllable image generation [19, 43], but
has received little attention in 3D or 4D synthesis.

Most related to AYG is Make-A-Video3D (MAV3D) [79],
to the best of our knowledge the only previous work
that generates dynamic 4D scenes with score distillation.
MAV3D uses NeRFs with HexPlane [9] features as 4D
representation, in contrast to AYG’s dynamic 3D Gaus-
sians, and it does not disentangle its 4D representation into
a static 3D representation and a deformation field model-
ing dynamics. MAV3D’s representation prevents it from
composing multiple 4D objects into large dynamic scenes,
which our 3D Gaussian plus deformation field representa-
tion easily enables, as we show. Moreover, MAV3D’s se-
quences are limited in time, while we show a novel au-
toregressive generation scheme to extend our 4D sequences.
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Figure 4. AYG’s JSD-based regular-
ization of the evolving 4D Gaussians
(see Sec. 3.4) calculates the 3D mean ντ

and diagonal covariance matrix Γτ of the
set of dynamic 3D Gaussians at different
times τ of the 4D sequence and regular-
izes them to not vary too much.

AYG outperforms MAV3D qualitatively and quantitatively
and synthesizes significantly higher-quality 4D scenes. Our
novel compositional generation-based approach contributes
to this, which MAV3D does not pursue. Finally, instead of
regular SDS, used by MAV3D, in practice AYG employs
classifier score distillation [102] (see Sec. 3.4).

3. Align Your Gaussians
In Sec. 3.1, we present AYG’s 4D representation, and in
Sec. 3.2, we introduce its compositional generation frame-
work with multiple DMs. In Sec. 3.3, we lay out AYG’s
score distillation framework in practice, and in Sec. 3.4, we
discuss several novel methods and extensions to scale AYG.

3.1. AYG’s 4D Representation

AYG’s 4D representation combines 3D Gaussian Splat-
ting [36] with deformation fields [59, 63] to capture the
3D scene and its temporal dynamics in a disentangled man-
ner. Specifically, each 4D scene consists of a set of N 3D
Gaussians as in Sec. 2. Following Kerbl et al. [36], we
also use two degrees of spherical harmonics to model view-
dependent effects, this is, directional color, and thereby im-
prove the 3D Gaussians’ expressivity. Moreover, we re-
strict the 3D Gaussians’ covariance matrices to be isotropic
with scales σi. We made this choice as our 3D Gaussians
move as a function of time and learning expressive dynam-
ics is easier for spherical Gaussians. We denote the col-
lection of learnable parameters of our 3D Gaussians as θ.
The scene dynamics are modeled by a deformation field
∆Φ(x, y, z, τ) = (∆x,∆y,∆z), defined through a multi-
layer perceptron (MLP) with parameters Φ. Specifically,
for any 3D location (x, y, z) and time τ , the deformation
field predicts a displacement (∆x,∆y,∆z). The 3D Gaus-
sians smoothly follow these displacements to represent a
moving and deforming 4D scene (Fig. 2). Note that in prac-
tice we preserve the initial 3D Gaussians for the first frame,
i.e. ∆Φ(x, y, z, 0) = (0, 0, 0), by setting ∆Φ(x, y, z, τ) =
(ξ(τ)∆x, ξ(τ)∆y, ξ(τ)∆z) where ξ(τ) = τ0.35 such that
ξ(0) = 0 and ξ(1) = 1. Following Luiten et al. [50], we
regularize the deformation field so that nearby Gaussians
deform similarly (“rigidity regularization”, see Supp. Mat.).

Apart from the intuitive decomposition into a backbone
3D representation and a deformation field to model dynam-
ics, a crucial advantage of AYG’s dynamic 3D Gaussian-
based representation is that different dynamic scenes, each
with its own set of Gaussians and deformation field, can be

Figure 5. AYG’s autoregressive extension scheme interpolates
the deformation fields of an initial and an extended 4D sequence
within an overlap interval between the two sequences (Sec. 3.4).

easily combined, thereby enabling promising 3D dynamic
content creation applications (see Fig. 1). This is due to the
explicit nature of this representation, in contrast to typical
NeRF-based representations. Moreover, learning 4D scenes
with score distillation requires many scene renderings. This
also makes 3D Gaussians ideal due to their rendering effi-
ciency [36]. Note that early on we also explored MAV3D’s
HexPlane- and NeRF-based 4D representation [79], but we
were not able to achieve satisfactory results.

3.2. Text-to-4D as Compositional Generation

We would like AYG’s synthesized dynamic 4D scenes to
be of high visual quality, be 3D-consistent and geometri-
cally correct, and also feature expressive and realistic tem-
poral dynamics. This suggests to compose different text-
driven DMs during the distillation-based generation to cap-
ture these different aspects. (i) We use the text-to-image
model Stable Diffusion (SD) [70], which has been trained
on a broad set of imagery and provides a strong general im-
age prior. (ii) We also utilize the 3D-aware text-conditioned
multi-view DM MVDream [76], which generates multi-
view images of 3D objects, was fine-tuned from SD on
the object-centric 3D dataset Objaverse [15, 16] and pro-
vides a strong 3D prior. It defines a distribution over four
multiview-consistent images corresponding to object ren-
derings from four different camera perspectives c1, ..., c4.
Moreover, we train a text-to-video DM, following Vide-
oLDM [7], but with a larger text-video dataset (HDVG-
130M [90] and Webvid-10M [4]) and additional condi-
tioning on the videos’ frame rate (see Supp. Material
for details). This video DM provides temporal feedback
when rendering 2D frame sequences from our dynamic 4D
scenes. All used DMs are latent DMs [70, 86], which means
that in practice we first encode renderings of our 4D scenes
into the models’ latent spaces, calculate score distillation
gradients there, and backpropagate them through the mod-
els’ encoders. All DMs leverage the SD 2.1 backbone and
share the same encoder. To keep the notation simple, we do
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Figure 6. Text-to-4D synthesis with AYG. Various samples shown in two views each. Dotted lines denote deformation field dynamics.

not explicitly incorporate the encoding into our mathemati-
cal description below and the visualizations (Figs. 2 and 3).

We disentangle optimization into first synthesizing a
static 3D Gaussian-based object θ, and then learning the
deformation field Φ to add scene dynamics.

Stage 1: 3D Synthesis (Fig. 3). We first use MV-
Dream’s multiview image prior to generate a static 3D scene
via score distillation (Supp. Mat. for details). Since MV-
Dream on its own would generate objects in random ori-
entations, we enforce a canonical pose by combining MV-
Dream’s gradients with those of regular SD, while augment-
ing the text-conditioning for SD with directional texts “front
view”, “side view”, “back view” and “overhead view” [62].
Formally, we can derive a score distillation gradient (see
Sec. 3.3) by minimizing the reverse Kulback-Leibler diver-
gence (KLD) from the rendering distribution to the product
of the composed MVDream and SD model distributions

KL
(
qθ

(
{zci}4, {z̃c̃j}K

) ∣∣∣∣∣∣∣∣pα3D ({zci}4)
K∏
j=1

pβim
(
z̃c̃j

))
,

similar to Poole et al. [62] (App. A.4). Here, p3D({zci}4)
represents the MVDream-defined multiview image distri-
bution over four diffused renderings from camera views ci,

denoted as the set {zci}4 (we omit the diffusion time t sub-
script for brevity). Moreover, pim(z̃

c̃j ) is the SD-based gen-
eral image prior and {z̃c̃j}K is another set of K diffused
scene renderings. In principle, the renderings for SD and
MVDream can be from different camera angles ci and c̃j ,
but in practice we choose K=4 and use the same render-
ings. Furthermore, α and β are adjustable temperatures of
the distributions p3D and pim, and qθ denotes the distribu-
tion over diffused renderings defined by the underlying 3D
scene representation θ, which is optimized through the dif-
ferentiable rendering. We also use the Gaussian densifica-
tion method discussed in Sec. 2 (see Supp. Material).

Stage 2: Adding Dynamics for 4D Synthesis (Fig. 2).
While in stage 1, we only optimize the 3D Gaussians, in
stage 2, the main 4D stage, we optimize (only) the defor-
mation field Φ to capture motion and extend the static 3D
scene to a dynamic 4D scene with temporal dimension τ .
To this end, we compose the text-to-image and text-to-video
DMs and formally minimize a reverse KLD of the form

KL
(
qΦ

(
{zciτi}F , {z̃

c̃j
τ̃j
}M

) ∣∣∣∣∣∣∣∣pγvid

(
{zciτi}F

) M∏
j=1

pκim

(
z̃
c̃j
τ̃j

))
,

where pvid({zciτi}F ) is the video DM-defined distribution
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Figure 7. Autoregressively extended text-to-4D synthesis. AYG
is able to autoregressively extend dynamic 4D sequences, combine
sequences with different text-guidance, and create looping anima-
tions, returning to the initial pose (also see Supp. Video).

over F 4D scene renderings {zciτi}F taken at times τi and
camera angles ci (F=16 for our model). Similar to before,
M additional renderings are given to the SD-based general
image prior, and γ and κ are temperatures. The renderings
{z̃c̃jτ̃j}M fed to regular SD can be taken at different times τ̃j
and cameras c̃j than the video model frames, but in practice
M=4 and we use three random renderings as well as the
8th middle frame among the ones given to the video model.
qΦ defines the distribution over renderings by the 4D scene
with the learnable deformation field parameters Φ. We
could render videos from the 4D scene with a fixed cam-
era, but in practice dynamic cameras, i.e. varying ci, help
to learn more vivid 4D scenes, similar to Singer et al. [79].

Moreover, following Singer et al. [79], our video DM
is conditioned on the frame rate (fps) and we choose the
times 0 ≤ τi ≤ 1 accordingly by sampling fps ∈ {4, 8, 12}
and the starting time. We render videos from the 4D scene
and condition the video DM with the sampled fps. This
helps generating not only sufficiently long but also tempo-
rally smooth 4D animations, as different fps correspond to
long-term and short-term dynamics. Therefore, when ren-
dering short but high fps videos they only span part of the
entire length of the 4D sequence. Also see Supp. Material.

Optimizing the deformation field while supervising both
with a video and image DM is crucial. The video DM gen-
erates temporal dynamics, but text-to-video DMs are not as
robust as general text-to-image DMs. Including the image
DM during this stage ensures stable optimization and that

high visual frame quality is maintained (ablations in Sec. 4).
A crucial advantage of the disentangled two stage design

is that AYG’s main 4D synthesis method—the main inno-
vation of this work—could in the future in principle also
be applied to 3D objects originating from other generation
systems or even to synthetic assets created by digital artists.

3.3. AYG’s Score Distillation in Practice

Above, we have laid out AYG’s general synthesis frame-
work. The full stage 2 score distillation gradient including
CFG can be expressed as (stage 1 proceeds analogously)

∇ΦLAYG
SDS = Et,ϵvid,ϵim

[
w(t)

{
γ

(
ωvid

[
ϵ̂vid(Z, v, t)− ϵ̂vid(Z, t)

]
+ ϵ̂vid(Z, v, t)− ϵvid︸ ︷︷ ︸

δvid
gen

)
+ κ

(
ωim

[
ϵ̂im(Z̃, v, t)− ϵ̂im(Z̃, t)

]
+ ϵ̂im(Z̃, v, t)− ϵim︸ ︷︷ ︸

δim
gen

)}
∂{x}
∂Φ

]
, (3)

where Z := {zciτi}F , Z̃ := {z̃c̃jτ̃j}M , ωvid/im are the CFG
scales for the video and image DMs, ϵ̂vid(Z, v, t) and
ϵ̂im(Z̃, v, t) are the corresponding denoiser networks and
ϵvid and ϵim are the diffusion noises (an analogous SDS gra-
dient can be written for stage 1). Moreover, {x} denotes
the set of all renderings from the 4D scene through which
the SDS gradient is backpropagated, and which are diffused
to produce Z and Z̃. Recently, ProlificDreamer [92] pro-
posed a scheme where the control variates ϵvid/im above are
replaced by DMs that model the rendering distribution, are
initialized from the DMs guiding the synthesis (ϵ̂vid(Z, v, t)
and ϵ̂im(Z̃, v, t) here), and are then slowly fine-tuned on the
diffused renderings (Z or Z̃ here). This means that at the
beginning of optimization the terms δvid/im

gen in Eq. (3) would
be zero. Inspired by this observation and aiming to avoid
ProlificDreamer’s cumbersome fine-tuning, we instead pro-
pose to simply set δvid/im

gen = 0 entirely and optimize with

∇ΦLAYG
CSD = Et,ϵvid,ϵim

[
w(t)

{
ωvid

[
ϵ̂vid(Z, v, t)− ϵ̂vid(Z, t)︸ ︷︷ ︸

δvid
cls

]
+ ωim

[
ϵ̂im(Z̃, v, t)− ϵ̂im(Z̃, t)︸ ︷︷ ︸

δim
cls

]}∂{x}
∂Φ

]
, (4)

where we absorbed γ and κ into ωvid/im. Interestingly, this
exactly corresponds to the concurrently proposed classifier
score distillation (CSD) [102], which points out that the
above two terms δvid/im

cls in Eq. (4) correspond to implicit
classifiers predicting v from the video or images, respec-
tively. CSD then uses only δvid/im

cls for score distillation, re-
sulting in improved performance over SDS. We discovered
that scheme independently, while aiming to inherit Prolific-
Dreamer’s strong performance. Supp. Material for details.
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Figure 8. AYG (ours) vs. MAV3D [79]. We show four 4D frames
for different times and camera angles (also see Supp. Video).

3.4. Scaling Align Your Gaussians

To scale AYG and achieve state-of-the-art text-to-4D per-
formance, we introduce several further novel techniques.

Distribution Regularization of 4D Gaussians. We de-
veloped a method to stabilize optimization and ensure real-
istic learnt motion. We calculate the means ντ and diagonal
covariances Γτ of the entire set of 3D Gaussians (using their
means µi) at times τ along the 4D sequence (Fig. 4). Defin-
ing a Normal distribution N (ντ ,Γτ ) with these means and
covariances, we regularize with a modified version of the
Jensen-Shannon divergence JSD (N (ν0,Γ0)||N (ντ ,Γτ ))
between the 3D Gaussians at the initial and later frames
τ (see Supp. Material). This ensures that the mean and
the diagonal covariance of the distribution of the Gaussians
stay approximately constant and encourages AYG to gen-
erate meaningful and complex dynamics instead of simple
global translations and object size changes.

Extended Autoregressive Generation. By default,
AYG produces relatively short 4D sequences, which is due
to the guiding text-to-video model, which itself only gen-
erates short video clips (see Blattmann et al. [7]). To over-
come this limitation, we developed a method to autoregres-
sively extend the 4D sequences. We use the middle 4D
frame from a first sequence as the initial frame of a second
sequence, optimizing a second deformation field, optionally
using a different text prompt. As the second sequence is ini-
tialized from the middle frame of the first sequence, there is
an overlap interval with length 0.5 of the total length of each
sequence. When optimizing for the second deformation
field, we smoothly interpolate between the first and second

Table 1. Comparison to MAV3D [79] by user study on synthe-
sized 4D scenes with 28 text prompts. Numbers are percentages.

Method AYG (ours) MAV3D [79] Equal
preference preferred preferred preference

Overall Quality 53.6 38.8 7.6
3D Appearance 47.4 37.2 15.4
3D Text Alignment 45.9 38.8 15.3
Motion Amount 45.9 38.8 15.3
Motion Text Alignment 47.4 33.7 18.9
Motion Realism 44.4 43.9 11.7

deformation fields for the overlap region (Fig. 5). Specif-
ically, we define ∆interpol

Φ12
= (1 − χ(τ))∆Φ1

+ χ(τ)∆Φ2

where χ is a linear function with χ(τ0.5) = 0 and χ(τ1.0) =
1, τ0.5 and τ1.0 represent the middle and last time frames of
the first sequence, ∆interpol

Φ12
is the interpolated deformation

field, and ∆Φ1 (kept fixed) and ∆Φ2 are the deformation
fields of the first and second sequence, respectively. We
additionally minimize LInterpol-Reg. = ||∆Φ1

− ∆interpol
Φ12

||22
within the overlap region to regularize the optimization pro-
cess of ∆Φ2 . For the non-overlap regions, we just use the
corresponding ∆Φ. With this careful interpolation tech-
nique the deformation field smoothly transitions from the
first sequence’s into the second sequence’s. Without it, we
obtained abrupt, unrealistic transitions.

Motion Amplification. When a set of 4D scene ren-
derings is given to the text-to-video model, it produces a
(classifier) score distillation gradient for each frame i. We
expect most motion when the gradient for each frame points
into a different direction. With that in mind, we propose a
motion amplification technique. We post-process the video
model’s individual frame scores δvid

cls i (i ∈ {1, ..., F}) as
δvid

cls i →
〈
δvid

cls i

〉
+ ωma

(
δvid

cls i −
〈
δvid

cls i

〉)
, where

〈
δvid

cls i

〉
is

the average score over the F video frames and ωma is the
motion amplifier scale. This scheme is inspired by CFG
and reproduces regular video model scores for ωma=1. For
larger ωma, the difference between the individual frames’
scores and the average is amplified, thereby encouraging
larger frame differences and more motion.

View Guidance. In AYG’s 3D stage, for the text-to-
image model we use a new view guidance. We construct
an additional implicit classifier term ωvg

[
ϵ̂im(z, vaug, t) −

ϵ̂im(z, v, t)
]
, where vaug denotes the original text prompt v

augmented with directional texts such as “front view” (see
Sec. 3.2) and ωvg is the guidance scale. View guidance am-
plifies the effect of directional text prompt augmentation.

Negative Prompting. We also use negative prompt
guidance during both the 3D and 4D stages. During the
4D stage, we use “low motion, static statue, not moving, no
motion” to encourage AYG to generate more dynamic and
vivid 4D scenes. Supp. Material for 3D stage and details.

4. Experiments
Text-to-4D. In Fig. 6, we show text-to-4D sequences gen-
erated by AYG (hyperparameters and details in Supp. Ma-
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Align Your Gaussians Overall 3D 3D Text Motion Motion Text Motion
(full model) Quality Appearance Alignment Amount Alignment Realism

v.s. w/o rigidity regularization 45.8/13.3 43.3/19.2 38.3/15.0 40.8/15.0 42.5/18.3 30.8/26.7
v.s. w/o motion amplifier 43.3/23.3 37.5/28.3 30.8/26.7 45.8/10.8 37.5/26.7 33.3/31.7
v.s. w/o initial 3D stage 67.5/15.0 57.5/21.7 64.2/15.0 60.8/21.7 60.8/20.8 59.2/24.2
v.s. w/o JSD-based regularization 40.0/25.0 40.0/27.5 36.7/27.5 41.7/24.2 39.2/29.2 45.0/24.2
v.s. w/o image DM score in 4D stage 42.5/22.5 39.2/27.5 36.7/25.8 33.3/25.9 37.5/30.0 27.5/40.0
v.s. SDS instead of CSD 44.2/35.8 40.0/27.5 35.8/35.0 35.0/27.5 35.0/34.2 32.5/35.8
v.s. 3D stage w/o MVDream 66.7/21.7 48.3/34.2 38.3/34.2 41.7/22.5 40.0/27.5 40.8/27.5
v.s. 4D stage with MVDream 50.8/27.5 38.3/34.2 41.6/29.2 39.2/35.0 44.2/30.0 39.2/31.7
v.s. video model with only fps 4 46.7/15.8 27.5/36.7 30.0/23.3 36.7/30.0 31.7/26.7 32.5/28.3
v.s. video model with only fps 12 48.3/29.2 30.8/29.2 29.2/28.3 35.0/28.3 35.0/30.0 39.2/26.7
v.s. w/o dynamic cameras 32.5/25.0 32.5/31.7 35.0/33.3 35.0/32.5 35.8/33.3 32.5/25.0
v.s. w/o negative prompting 44.2/28.3 38.3/32.5 31.7/29.2 29.2/31.6 33.3/30.0 37.5/28.3

Table 2. Ablation study by user
study on synthesized 4D scenes
with 30 text prompts. For each pair
of numbers, the left number is the
percentage that the full AYG model
is preferred and the right number
indicates preference percentage for
ablated model as described in left
column. The numbers do not add
up to 100 and the difference is due
to users voting “no preference” (de-
tails in Supp. Material).

terial). AYG can generate realistic, expressive, detailed and
vivid dynamic 4D scenes (4D scenes can be rendered at
varying speeds and frame rates). Importantly, our method
demonstrates zero-shot generalization capabilities to cre-
ative text prompts corresponding to scenes that are unlikely
to be found in the diffusion models’ training images and
videos. More results in Supp. Material and on project page.

To compare AYG to MAV3D [79], we performed a com-
prehensive user study where we took the 28 rendered videos
from MAV3D’s project page2 and compared them to corre-
sponding generations from AYG with the same text prompts
(Table 1). We asked the users to rate overall quality, 3D
appearance and text alignment, as well as motion amount,
motion text alignment and motion realism (user study de-
tails in Supp. Material). AYG outperforms MAV3D on all
metrics, achieving state-of-the-art text-to-4D performance
(we also evaluated R-Precision [32, 58] on a larger prompt
set used by MAV3D [78, 79], performing on par, see Supp.
Mat.; however, R-Precision is a meaningless metric to eval-
uate dynamic scenes). Qualitative comparisons are shown
in Fig. 8 (more in Supp. Mat.). We see that AYG produces
more detailed 4D outputs. Note that MAV3D uses an extra
background model, while AYG does not. Adding a similar
background model would be easy but is left to future work.

Ablation Studies. Next, we performed an ablation study
on AYG’s different components. We used a set of 30 text
prompts and generated 4D scenes for versions of AYG with
missing or modified components, see Table 2. Using the
same categories as before, we asked users to rate preference
of our full method vs. the ablated AYG variants. Some com-
ponents have different effects with respect to 3D appearance
and motion, but we generally see that all components matter
significantly in terms of overall quality, i.e., for all ablations
our full method is strongly preferred over the ablated AYG
versions. This justifies AYG’s design. A thorough discus-
sion is presented in the Supp. Material, but we highlight
some relevant observations. We see that our novel JSD-
based regularization makes a major difference, and we also
observe that the motion amplifier indeed has a strong effect
for “Motion Amount”. Moreover, our compositional ap-
proach is crucial. Running the 4D stage without image DM

2https://make-a-video3d.github.io/

feedback produces much worse 3D and overall quality. Also
the decomposition into two stages is important—carrying
out 4D synthesis without initial 3D stage performs poorly.

Temporally Extended 4D Synthesis and Large Scene
Composition. In Fig. 7, we show autoregressively ex-
tended text-to-4D results with changing text prompts (also
see Supp. Video). AYG can realistically connect differ-
ent 4D sequences and generate expressive animations with
changing dynamics and behavior. We can also create se-
quences that loop endlessly by enforcing that the last frame
of a later sequence matches the first frame of an earlier one
and suppressing the deformation field there (similar to how
we enforce zero deformation at τ=0 in Sec. 3.1). Finally,
due to the explicit nature of the dynamic 3D Gaussians,
AYG’s 4D representation, multiple animated 4D objects can
be easily composed into larger scenes, each shape with its
own deformation field defining its dynamics. We show this
in Fig. 1, where each dynamic object in the large scene is
generated, except for the ground plane. These capabilities,
not shown by previous work [79], are particularly promising
for practical content creation applications.

5. Conclusions
We presented Align Your Gaussians for expressive text-to-
4D synthesis. AYG builds on dynamic 3D Gaussian Splat-
ting with deformation fields as well as score distillation with
multiple composed diffusion models. Novel regularization
and guidance techniques allow us to achieve state-of-the-art
dynamic scene generation and we also show temporally ex-
tended 4D synthesis as well as the composition of multiple
dynamic objects within a larger scene. AYG has many po-
tential applications for creative content creation and it could
also be used in the context of synthetic data generation. For
example, AYG would enable synthesis of videos and 4D se-
quences with exact tracking labels, useful for training dis-
criminative models. AYG currently cannot easily produce
topological changes of the dynamic objects. Overcoming
this limitation would be an exciting avenue for future work.
Other directions include scaling AYG beyond object-centric
generation and personalized 4D synthesis. The initial 3D
object could be generated from a personalized diffusion
model (e.g. DreamBooth3D [66, 71]) or with image-to-3D
methods [29, 42, 44, 45, 64] and then animated with AYG.
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