
FreeDrag: Feature Dragging for Reliable Point-based Image Editing

Pengyang Ling1* Lin Chen1,2* Pan Zhang2 Huaian Chen1† Yi Jin1† Jinjin Zheng 1

1University of Science and Technology of China 2Shanghai AI Laboratory

{lpyang27, chlin}@mail.ustc.edu.cn {anchen, jinyi08, jjzheng}@ustc.edu.cn zhangpan@pjlab.org.cn

Image & Edit DragGAN FreeDrag Image & Edit DragDiffusion FreeDrag

Figure 1. The comparison between the feature-centric FreeDrag and point-based DragGAN [33] and DragDiffusion[43]. Given an image

input, users can assign handle points (red points) and target points (blue points) to force the semantic positions of the handle points to reach

corresponding target points, and optional mask can also be provided by users to assign editing region.

Abstract

To serve the intricate and varied demands of image edit-

ing, precise and flexible manipulation in image content is

indispensable. Recently, Drag-based editing methods have

gained impressive performance. However, these methods

predominantly center on point dragging, resulting in two

noteworthy drawbacks, namely “miss tracking”, where dif-

ficulties arise in accurately tracking the predetermined han-

dle points, and “ambiguous tracking”, where tracked points

are potentially positioned in wrong regions that closely re-

semble the handle points. To address the above issues,

we propose FreeDrag, a feature dragging methodology de-

signed to free the burden on point tracking. The Free-

Drag incorporates two key designs, i.e., template feature

via adaptive updating and line search with backtracking,

the former improves the stability against drastic content

change by elaborately controlling the feature updating scale

after each dragging, while the latter alleviates the misguid-

ance from similar points by actively restricting the search

area in a line. These two technologies together contribute

to a more stable semantic dragging with higher efficiency.

Comprehensive experimental results substantiate that our

approach significantly outperforms pre-existing methodolo-

gies, offering reliable point-based editing even in various

complex scenarios.

1. Introduction

The domain of image editing utilizing generative models

has gained substantial attention and witnessed remarkable

advancements in recent years [10, 14, 24, 31, 36, 38]. In or-

der to effectively address the intricate and diverse demands

of image editing in real-world applications, it becomes im-

perative to achieve precise and flexible manipulation of im-

age content. Consequently, researchers have proposed two

primary categories of methodologies in this domain: (1)

harnessing prior 3D models [8, 12, 46] or manual annota-

tions [2, 17, 26, 34, 42] to enhance control over generative

models, and (2) employing textual guidance for conditional

generative models [37, 39, 41]. Nevertheless, the former

category of methodologies often encounters challenges in

generalizing to novel assets, while the latter category ex-
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hibits limitations in terms of precision and flexibility when

it comes to spatial attribute editing.

To tackle these aforementioned limitations, a recent pio-

neering study, known as DragGAN [33], has emerged as a

remarkable contribution in the realm of precise image edit-

ing. This work has garnered significant attention, primarily

due to its interactive point-based editing capability, termed

“drag” editing, which enables users to exert precise control

over the editing process by specifying pairs of handle and

target points on the given image. The DragGAN frame-

work introduces a two-step iterative process: (i) a motion

supervision step, which directs the handle points to migrate

towards their corresponding target positions, and (ii) a point

tracking step, which consistently tracks the relocated handle

points’ positions. In each iteration, the points derived from

the current iteration necessitate supervision from points of

the last iteration and are subsequently tracked for the next

iteration. We categorize this type of method, exemplified by

DragGAN and its variant [43], as point dragging solutions.

Notwithstanding the praiseworthy achievements exhib-

ited by point dragging solution, there exist several issues.

One issue is miss tracking, whereby point dragging en-

counters difficulty in effectively tracking the desired han-

dle points. This issue arises particularly in highly curved

regions with a large perceptual path length, as observed in

latent space [21]. In such cases, the optimized image under-

goes drastic changes, leading to handle points in subsequent

iterations being positioned outside the intended search re-

gion. Additionally, in certain scenarios, miss tracking leads

to the disappearance of handle points, as shown in Figure

2. It is important to note that during miss tracking, the cu-

mulative error in the motion supervision step increases pro-

gressively as iterations proceed, owing to the misalignment

of tracked features. Another issue that arises is ambiguous

tracking, where the tracked points are situated within other

regions that bear resemblance to the handle points. This

predicament emerges when there are areas in the image that

possess similar features to the intended handle points, lead-

ing to ambiguity in the tracking process. (see Figure 3).

This issue introduces a potential challenge as it can mis-

guide the motion supervision process in subsequent itera-

tions, leading to inaccurate or misleading directions.

To remedy the aforementioned issues, we propose Free-

Drag, a feature dragging solution for interactive point-

based image editing. To address the miss tracking issue,

we introduce a template feature that is maintained for each

handle point to supervise the movements during the itera-

tive process. This template feature is implemented as an ex-

ponential moving average feature that dynamically adjusts

its weights based on the errors encountered in each itera-

tion. Even when miss tracking occurs in a specific iteration,

the maintained template feature remains intact, preventing

the optimized image from undergoing drastic changes. To

handle the ambiguous tracking issue, we propose the line

search with backtracking. Line search restricts the move-

ments along a specific line connecting the original handle

point and the corresponding target point. This constraint

effectively reduces the presence of ambiguous points and

minimizes the potential misguidance of the movement di-

rection in subsequent iterations. Moreover, the backtrack-

ing mechanism enables prompt adjustment for motion plan

by effectively discriminating abnormal motion, thereby en-

hancing the reliability of the total movement process. In

light of the fact that the points in each iteration undergo

supervision from template features and do not necessitate

exacting tracking precision, we classify our approach as a

feature dragging solution. To summarize, our key contribu-

tions are as follows:

• We propose FreeDrag, a feature dragging solution for re-

liable point-based image editing that incorporates adap-

tive template features and line search with backtracking,

marking a significant advancement in the field of flexible

and precise image editing.

• We propose FreeDragBench, a new evaluation dataset

with 2251 handmade dragging instructions that are tai-

lored for GAN-based dragging editing, equipped with a

new metric, which measures the editing accuracy of a pair

of symmetrical dragging instructions.

2. Related Work

2.1. Generative Adversarial Networks

Generative adversarial networks (GANs)[13] have main-

tained the dominant position in image generation for an ex-

tended period. Classical unconditional GANs [6], are de-

vised to learn the mapping function from low-dimension

random variables to realistic images that conform to the

distribution of training datasets. Typically, the Style-

GAN architecture [21–23, 30], which employs a mapping

network for low-dimension representation disentanglement

and a synthesis network for photorealistic image genera-

tion, has made significant success in both generation qual-

ity and flexible style manipulation. Meanwhile, conditional

GANs have been developed to enable versatile applications

by infusing additional conditions, such as segmentation

maps[19, 35], aerial photo[48], degraded images[9, 18, 50],

and 3D variables [7, 11].

2.2. Diffusion Models

The emerging diffusion models [15, 44], which conduct

gradual denoising procedures from Gaussian noises to natu-

ral images, have recently sparked a strong wave of more po-

tent image synthesis. Based on its promising generation ca-

pability, a series of versatile methods [3, 20, 25, 47, 51] are

developed to exceed the performance peaks of various gen-

eration tasks. Typically, Rombach et al. propose the Latent
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Diffusion Model (LDM)[40], which employs a pre-trained

auto-encoder for perceptual compression and then performs

high-quality sample in latent space, bringing a substantial

advancement in high-resolution image synthesis.

2.3. Pointbased Image Editing

Given an image, interactive image editing aims to mod-

ify certain image content in response to specific user in-

put, such as text instructions [4, 28, 29, 53], region mask

[27], and reference images [5, 49]. The uniqueness of point-

based image editing lies in that the user input is a set of

point coordinates, and the generative models are expected to

achieve precise image content manipulation to match the in-

tent of users. For instance, Endo [10] devises a latent trans-

former architecture to learn the mapping between two latent

codes in StyleGAN. However, this framework necessitates

the aid of a pre-trained optical flow network and demands a

training procedure tailored for each model, which limits its

practicability. Later, DragGAN [33] garners considerable

attention with remarkable performance, which performs a

cycle of point tracking and motion supervision in the fea-

ture map to persistently force the handle point to move to

the target point. This simple framework achieves impres-

sive performance and attracts subsequent works [32, 43] for

better combination with the popular diffusion models.

Generally, the GAN-based dragging approaches achieve

superior dragging compared to diffusion-based approaches

but exhibit inferior real image inversion. The GAN-based

approaches benefit from the attribute disentanglement of

StyleGAN, enhancing dragging capability. However, its

generative quality and real image inversion ability are com-

paratively limited. In contrast, diffusion models achieve

higher generative quality and superior real image inversion.

Nevertheless, it encounters challenges in balancing point

manipulation and appearance preservation due to the inter-

twined feature map, and demands more processing time.

3. Motivation

Given a set of n handle points {p1, p2, p3..., pn} and a cor-

responding set of n target points {t1, t2, t3..., tn}, the objec-

tive of point-based dragging is to displace pi to its respective

ti. Illustrated in Fig. 4, the widely adopted DragGAN [33]

accomplishes this objective through two sequential steps in

each motion: (i) Motion Supervision, wherein the current

handle point is consistently directed towards its target point

by leveraging the feature of itself. (ii) Point Tracking, in-

volving the search for the handle point in the proximity of

the handle point from the last motion. Denoting the initial

feature map as F0, the tracked handle point pki for the k-th

motion possesses the most similar feature to F0(p
0
i ) in the

2D tracking area centered at pk−1
i .

While the point dragging pipeline depicted in Fig. 4

presents a promising solution for point-based image edit-

Originl k+5k-th StepOriginl k+5k-th Step

Figure 2. Miss tracking of DragGAN [33] due to the drastic

change in layout (first and second rows) and the disappearance

of handle points (third and last rows).

Image & Edit DragGANk-th Step FreeDrag

Figure 3. Ambiguous tracking in DragGAN [33] due to the exis-

tence of similar structures.
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Figure 4. Concept illustration of point dragging pipeline. pki
denotes the tracked position of i-th handle point in k-th motion

(p0i = pi), and ti indicates the corresponding i-th target point.

ing, it is noted that it frequently encounters challenges, in-

cluding handle point loss, imprecise editing, and distorted

image generation in certain scenarios. These issues are at-

tributed to the intrinsic instability of point dragging, encom-

passing miss tracking and ambiguous tracking. (i) Miss

Tracking: This occurs in situations where point dragging

encounters difficulty in effectively tracking the designated

handle points. Given the presence of highly curved regions

with substantial perceptual path lengths, as discerned in la-

tent space [21], the optimized image undergoes significant

alterations following motion supervision. Consequently, the

handle point pk+1
i deviates outside the intended search re-

gion of pki , as shown in Figure 2, leading to miss tracking

in the point tracking step. In specific scenarios, pk+1
i may

completely vanish from the entire feature map, exemplified
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Figure 5. Illustration of proposed feature dragging pipeline. hk

i denotes the searched point in k-th drag, which lies in the line formed by p0i
and ti, and T k

i denotes the corresponding template feature. (a) Concept of feature dragging. (b) The coupling movement under multiple

points dragging. (c) The visualization of Eq. 9.

by the disappeared glasses in Figure 2. It is imperative to

underscore that during miss tracking, the cumulative error

in the motion supervision step progressively amplifies with

iterations due to the misalignment of tracked features. (ii)

Ambiguous Tracking: This occurs when the tracked points

are positioned within other regions that bear resemblance to

the handle points. This challenge arises when there are ar-

eas in the image exhibiting features similar to the intended

handle points, such as the blue boundary lines and horse’s

hooves in Figure 3, which may misdirect the motion super-

vision process in subsequent iterations, resulting in inaccu-

rate or misleading directional adjustments.

4. Methodology

In light of the instability associated with point dragging,

which heavily depends on accurate point tracking in each

step, we introduce a feature dragging approach termed

FreeDrag, as illustrated in Fig. 5(a). Here, hk
i represents

the target position in the k-th drag, and Fr(h
k
i ) signifies the

feature aggregate centered at hk
i with a radius r in the fea-

ture map F , which can be expressed as:

Fr(h
k
i ) =

∑

qi∈Ω(hk

i
,r)

F (qi). (1)

Here, Ω(hk
i , r) denotes the square patch centered at hk

i with

a side length of 2r. In the k-th drag, we promote hk
i to be the

carrier of T k
i by compelling the feature aggregate Fr(h

k
i ) to

closely align with the template feature T k
i (as depicted by

the red line in Fig. 5(a)), i.e.,

Ldrag =

n
∑

i=1

∥

∥Fr(h
k
i )− T k

i

∥

∥

1
. (2)

In order to facilitate high-quality feature dragging, multi-

ple optimization steps are performed from the same position

hk
i , with consistent supervision as defined in Eq. 2.

The template feature undergoes adaptive updating ac-

cording the quality of each dragging, as detailed in Section

4.1. This updated template feature guides the feature of the

handle point in the subsequent dragging. By gradually com-

pelling hk
i to approach ti, the template feature effectively

transitions to the final ti, indirectly encouraging the handle

point to move towards the ultimate position. Additionally,

we enforce constraints on hk
i and iterate to update the sub-

sequent handle point hk+1
i along the line extending from p0i

to ti (as illustrated by the blue line in Fig. 5(a)). This ap-

proach not only provides a reliable movement direction but

also significantly reduces the risk of misguidance arising

from potential similar points.

4.1. Template Features via Adaptive Updating

Concerning the template feature, it necessitates retaining

the feature of the initial handle point on one hand, while

on the other hand, it should undergo updates to accommo-

date reasonable geometric and appearance changes in each

dragging. Accordingly, we introduce an adaptive updating

strategy that permits a flexible updating scale, enabling the

template feature to undergo few updates in chaotic situa-

tions and more updates in fine conditions. Specifically, the

adaptive updating strategy for the template feature is formu-

lated as follows:

T k+1
i = λk

i · Fr(h
k
i ) + (1− λk

i ) · T
k
i . (3)

Here, λk
i represents the coefficient controlling the updat-

ing scale of the template feature in the k-th dragging. For

consistency, we specifically define λ0
i = 0, h0

i = p0i , and

T 0
i = Fr(p

0
i ). Intuitively, for the k-th dragging, a smaller

λk
i is employed for low-quality feature dragging. This aids

in maintaining T k+1
i relatively constant in chaotic situa-

tions. Conversely, a larger λk
i is utilized for high-quality

feature dragging, promoting sufficient updating of T k+1
i in

fine conditions.

For simplicity, the feature discrepancy of between

Fr(h
k
i ) and T k

i is denoted as L(i,k). Since Eq. 2 is reused

in multiple optimization steps for each feature dragging,

we define L(i,k) at the initial/end optimization step in each

dragging as Lin
(i,k) and Len

(i,k), respectively. Accordingly.

Lin
(i,k) controls the difficulty of k-th feature dragging from

T k
i to Fr(h

k
i ), and a larger Lin

(i,k) indicates more arduous

challenge for feature dragging. While Len
(i,k) reflects the

quality of each feature dragging, i,e, a smaller Len
(i,k) means
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fewer discrepancy between T k
i and Fr(h

k
i ) at the last op-

timization step, which implies higher quality feature drag-

ging from T k
i to Fr(h

k
i ). Therefore, the adaptive coefficient

λk
i in Eq. 3 is devised as:

λk
i = (1 + exp(α · (Len

(i,k) − β)))−1, (4)

where α and β denote two positive constants, and exp(·)
represents the exponential function. Given a hyperparam-

eter l, we determine α and β by considering the following

typical scenarios: (i) the well-optimized case, where we set

Len
(i,k) = 0.2 · l with λ = 0.5; and (ii) the ill-optimized case,

where we set Len
(i,k) = 0.8 · l with λ = 0.1, i.e.,

0.5 = (1 + exp(α · (0.2 · l − β)))−1, (5)

0.1 = (1 + exp(α · (0.8 · l − β)))−1. (6)

Solving the equation yields α = ln(9)/(0.6 · l) and β =
0.2 · l. It is noteworthy that we impose a constraint on the

maximum value of λ to mitigate the potential impact of in-

correct updating.

4.2. Line Search with Backtracking

For the target position hk
i in the k-th dragging, we contem-

plate its localization from two perspectives: i) Reliable mo-

tion direction; ii) Appropriate feature discrepancy at the be-

ginning of each drag, denoted as Lin
(i,k). A too small value of

Lin
(i,k) fails to furnish adequate discrepancy in Eq. 2 for gra-

dient optimization, while an excessively large Lin
(i,k) height-

ens the risk of unsuccessful feature dragging.

From the first goal, illustrated in Fig. 5(a), we con-

straint hk
i to the line extending from p0i to ti. This ap-

proach not only ensures a reliable movement direction but

also markedly diminishes the risk of misguidance stemming

from potential similar points. As for the second goal, point

localization is conducted based on both feature discrepancy

and motion distance, expressed as:

hk+1
i = S(hk

i , ti, T
k+1
i , d, l) (7)

= argmin
qi∈π(hk

i
,ti,d)

∥

∥∥Fr(qi)− T k+1
i ∥1 − l

∥

∥

1
, (8)

where l and d are two hyperparameters that control initial

feature distance Lin
(i,k) and maximum single movement dis-

tance, respectively, and π(hk
i , ti, d) represents the point set,

which includes hk
i +j ·

ti−hk

i

|ti−hk

i |2
with j = 0.1·d, 0.2·d, ..., d.

Additionally, as depicted in Fig. 5(b), during the joint

optimization of multiple points dragging, the motion direc-

tion of a specific point may be influenced by the overall

trend. This can result in the handle point deviating from

the target point in certain steps. For instance, in compari-

son to p02, the handle point p12 is farther away from h1
2. To

address this issue, we integrate a backtracking mechanism

to identify such abnormal movements, facilitating prompt

adjustments for the subsequent dragging plan. Concretely,

backtracking is implemented by introducing two additional

options for the dragging plan: frozen and fallback the point,

which can be expressed as:

hk+1
i =















S(hk
i , ti, T

k+1
i , d, l), if Len

(i,k) ≤ 0.5 · l

hk
i , elif Len

(i,k) ≤ Lin
(i,k)

S(hk
i −d ·

ti−hk

i

∥ti−hk

i ∥2

, ti, T
k+1
i , 2d, 0), else

(9)

For better comprehension, Eq. 9 has been visually rep-

resented in Fig. 5(c). To elaborate, the first scenario corre-

sponds to a normal high-quality optimization, where hk+1
i

closer to ti is assigned for further movement (depicted by

the blue line in Fig. 5(c)). The second scenario corresponds

to insufficient feature dragging, where hk
i is reused as tk+1

i

for continued feature dragging towards the same point. In

the exceptional case, i.e., Len
(i,k) > max

{

0.5 · l, Lin
(i,k)

}

,

we set l = 0 and double the search range (illustrated by

the yellow line in Fig. 5(c)) to immediately locate the point

closest to the template feature T k+1
i , promptly avoiding de-

terioration.

4.3. Termination Signal

For each feature dragging towards hk
i , the maximum op-

timization step of each feature dragging is set as 5. To

enhance efficiency, we pause the optimization process if

Len
(i,k) already falls below 0.5 · l. The final termination

signal is obtained by determining if the remaining distance

||hk
i − ti||2 ≤ 2.

4.4. Directional Editing

If the optional binary mask is provided by users, the mask

loss can be obtained as:

Lmask = ∥(F0 − F )⊙ (1−M)∥1, (10)

where F0 denotes the initial feature without any dragging,

and ⊙ is the element-wise multiplication. The total training

loss can be expressed as:

Ltotal = Ldrag + γ · Lmask. (11)

where γ is the hyperparameter for loss balance.

5. Experiments

Since the proposed feature dragging pipeline is constructed

based on the feature map, thus it can be effortlessly im-

plemented on StyleGAN2 models [22] and latent diffusion

models[40] by extracting corresponding feature maps.

5.1. Implementation Details

Parameter r in Eq. 1 is set as 3, and parameter γ in

Eq. 11 is set as 10. For StyleGAN2 models, the feature

map is extracted after the 6th block and the optimization

for latent code is conducted in the extended W+ space[1].

We set l = 0.4 and d = 4 for elephant and lion mod-

els that are observed to likely perform larger movement
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in a single optimization step, and l = 0.3 and d = 3 for

other StyleGAN2 models. For diffusion models, following

DragDiffusion[43], we fine-tune a LoRA [16] with rank of

16 on the UNet parameters for each image, which is used for

both image inversion and dragging editing, and the feature

map is extracted from the U-Net. We also replace the fea-

ture map with diffusion latent in Eq. 10 to keep consistent

with DragDiffusion. The parameters l and d are empirically

set as 1 and 5 in diffusion models, respectively. To reflect

the performance of different dragging pipelines themselves,

FreeDrag and DragDiffusion utilize the same LoRA param-

eters for the same image. To fully capture the potential of

each method, the max step is set as 300 for all methods.

5.2. Dataset Construction

Since there is no public dataset to evaluate the drag-based

editing in StyleGAN2, we propose FreeDragBench, which

is the first dataset customized for GAN-based dragging edit-

ing. As presented in Table 1, FreeDragBench consists of

600 images randomly generated by five different Style-

GAN2 models, equipped with 2251 dragging instructions

tailored for image content (including the editing in the pose,

size, position, etc.), as shown in Fig. 6.

Furthermore, since the ground-truth corresponding to

dragging instruction is not available, we propose a new met-

ric to measure the accuracy of dragging editing, i.e., the

Content Consistency under Symmetrical Dragging (CCSD).

To be specific, as depicted Fig. 7, we reuse the reverse side

of the original dragging instruction to construct a symmet-

rical dragging instruction pair and measure the content con-

sistency under this symmetrical dragging instruction pair.

To avoid penalizing stochastic elements with no effect on

perception, LPIPS[52] is used for similarity measurement.

A low CCSD value requires accurate dragging in symmet-

rical editing, which could be used as an effective measure-

ment metric in the absence of ground-truth.

5.3. Qualitative Evaluation

As depicted in Fig. 9, FreeDrag successfully avoids the ab-

normal disappearance of handle points (e.g., the vanished

eyes in the human face, and the mouth of cartoon character

and cat), showcasing its superiority in fine-detail editing.

Meanwhile, FreeDrag achieves better stability against dras-

tic content distortions (see the eye of the horse), steadily

attaining the editing intent. Moreover, FreeDrag exhibits

better robustness in handling similar points, resulting in re-

liable and precise dragging editing, as demonstrated in the

examples of the third row. Additionally, FreeDrag effec-

tively mitigates the potential misguidance during optimiza-

tion steps, leading to more natural and coherent editing re-

sults, as observed in the last row in Fig. 9.

For image editing with the combination of diffusion

models, FreeDrag also attains impressive performance. As

Category Face Cat Car Horse Elephant

Image number 200 100 100 100 100

Instruction number 1068 406 337 227 213

Table 1. Statistic of images and instructions of FreeDragBench.

Figure 6. Several examples in the proposed FreeDragBench.

Drag

Calculate Similarity via LPIPS

Reverse Points Drag

Figure 7. Visualization of the proposed CCSD metric.

Segmentation of original image Drawn segmentation Segmentation of EditGAN result

Original image Result of EditGAN

Dragging instruction

Result of FreeDrag

Figure 8. Comparison with EditGAN[26] in editing accuracy.

shown in Fig. 10, FreeDrag outperforms DragDiffusion in

both editing accuracy (see the examples from the first to

third columns) and structure preservation (see the examples

from the fourth to last columns), thus achieving superior

quality of point-based dragging editing.

Additionally, we further conduct a comparison with

EditGAN[26], which performs fine-grained editing by

drawing object-level masks. As shown in Fig. 8, FreeDrag

better follows editing instructions.

5.4. Quantitative Evaluation

For quantitative evaluation, we implement comparison

with DragGAN and DragDiffusion in FreeDragBench and

DragBench[43], respectively. Specifically, for the compari-

son in FreeDragBench, we use FID and the proposed CCSD

to evaluate the image quality and editing accuracy, respec-

tively. For DragBench that owns images with varying res-

olution, we follow the setting in DragDiffusion[43], i.e.,

Mean Distance (MD) for dragging accuracy measurement

and LPIPS [52] for image fidelity evaluation. The mean
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Image & Edit DragGAN FreeDragImage & Edit DragGAN FreeDragImage & Edit DragGAN FreeDragImage & Edit DragGAN FreeDrag

Figure 9. Demonstration of the edited results of FreeDrag and DragGAN[32] in eight different StyleGAN2 models.

Category Face Cat Car Horse Elephant Time

Metric FID CCSD FID CCSD FID CCSD FID CCSD FID CCSD Second

DragGAN[33] 38.07 0.83 19.14 0.56 36.36 0.73 21.90 1.20 11.17 1.19 8.26

FreeDrag 29.50 0.35 15.67 0.23 33.50 0.37 21.18 0.68 10.86 0.82 2.74

Table 2. Quantitative evaluation on FreeDragBench. A lower FID score indicates better fidelity in single dragging editing, while lower

CCSD (×10) scores imply higher accuracy in two symmetrical dragging editing. The time is calculated on Face category.

DragBench MD ↓ LPIPS (×10) ↓ Time (Sec) ↓
DragDiffusion[43] 38.76 1.38 71.77

FreeDrag 33.49 1.02 63.62

Table 3. Quantitative evaluation on DragBench. The time con-

sumption is computed on DragBench which only includes the

dragging process because a fine-tuned LoRA can be used for mul-

tiple image editing with different dragging instructions.

distance is obtained by calculating the corresponding rela-

tionship of points between the original image and the edited

image based on DIFT[45].

As presented in Table 2, FreeDrag consistently attains

higher scores in all categories, which further validates its

superiority in achieving precise dragging editing and bet-

ter image fidelity preservation. Moreover, it can be ob-

served that FreeDrag gains significant improvement in time

consumption, which can be attributed to that the proposed

line search effectively alleviates the interference of similar

Metric w/o updating w/o backtracking Ours

CCSD (×10) 0.82 0.52 0.35

Table 4. Quantitative ablation on human face model.

points and thus successfully avoids unrewarding dragging

steps, allowing for higher efficiency.

For the quantitative evaluation in diffusion models, we

utilize the public DragBench dataset [43] that is customized

for diffusion-based dragging evaluation. The results of

DragDiffusion and FreeDrag are presented in Table. 3. It

is observed that FreeDrag outperforms DragDiffusion with

higher dragging accuracy and lower time-consumption, im-

plying a promising potential for versatile applications.

5.5. Ablation Study

The parameters l and d determine the initial feature discrep-

ancy and maximum single movement distance, thus con-

trolling the style of total dragging editing. Specifically, a

too small l or d implies a more conservative editing strat-
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Figure 10. Demonstration of real image editing results of FreeDrag and DragDiffusion[32].

(a) (b) (c) (d)

Figure 11. The edited results by using different parameters. (a)

Original images with dragging instructions. (b) Edited results with

{l = 0.15, d = 1.5}. (c) Edited results with {l = 0.3, d = 3}. (d)

Edited results with {l = 0.45, d = 4.5}.

Image & Edit w/o updating FreeDragw/o backtrackingImage & Edit w/o updating FreeDragw/o backtracking

Figure 12. Illustration of the effect of adaptive updating strategy

in template feature and backtracking mechanism in line search.

egy, which prefers small motion and refuses large updating

scale, thus failing to reach the target point in limited opti-

mization steps, as shown in Fig. 11(b). In contrast, a too

large l or d means a more impulsive editing strategy, which

appears to accept large updating scale and larger movement

distance and thus increases the risk of coarse feature up-

dating, resulting in damage to editing accuracy, as can be

observed in Fig. 11(d).

Furthermore, we assign λ = 0 in Eq. 3 to obtain a sta-

tionary template feature to evaluate the effect of adaptive

updating strategy and adopt Eq. 7 rather than Eq. 9 to eval-

uate the effect of backtracking mechanism. As can be ob-

served in Fig. 12, both of them play necessary roles for

better editing quality. The quantitative ablation in Table 4

also validates their necessity.

6. Conclusion

In this work, we propose FreeDrag, a novel feature drag-

ging framework for reliable point-based image editing. By

incorporating an adaptive template feature, FreeDrag allows

for flexible control in the scale of each feature updating,

which contributes to stronger stability under drastic content

change, resulting in a better immunity against point miss-

ing. Meanwhile, the established line search with backtrack-

ing effectively mitigates the misguidance caused by simi-

lar points and allows timely adjustment for motion plan by

effectively discriminating abnormal motion, leading to re-

liable and continuous movements towards the final target

point. Extensive experiments demonstrate the reliability of

FreeDrag in precise semantic dragging and stable structure

preservation, indicating superior editing quality.

Acknowledgement. This work is supported in part by the

Postdoctoral Fellowship Program of CPSF GZB20230713,

in part by the Anhui Provincial Key Research and De-

velopment Plan 202304a05020072, in part by the Fun-

damental Research Funds for the Central Universities

WK2090000065, and in part by the Anhui Provincial Nat-

ural Science Foundation 2308085QF226. This work is

partially supported by the National Key R&D Program of

China (2022ZD0160201), and Shanghai Artificial Intelli-

gence Laboratory.

6867



References

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent

space? In Proceedings of the IEEE/CVF international con-

ference on computer vision, pages 4432–4441, 2019. 5

[2] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka.

Styleflow: Attribute-conditioned exploration of stylegan-

generated images using conditional continuous normalizing

flows. ACM Transactions on Graphics (ToG), 40(3):1–21,

2021. 1

[3] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended

latent diffusion. ACM Transactions on Graphics (TOG), 42

(4):1–11, 2023. 2

[4] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-

structpix2pix: Learning to follow image editing instructions.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 18392–18402, 2023.

3

[5] Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao,

and Hengshuang Zhao. Anydoor: Zero-shot object-level im-

age customization. arXiv preprint arXiv:2307.09481, 2023.

3

[6] Antonia Creswell, Tom White, Vincent Dumoulin, Kai

Arulkumaran, Biswa Sengupta, and Anil A Bharath. Gen-

erative adversarial networks: An overview. IEEE signal pro-

cessing magazine, 35(1):53–65, 2018. 2

[7] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin

Tong. Disentangled and controllable face image genera-

tion via 3d imitative-contrastive learning. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 5154–5163, 2020. 2

[8] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin

Tong. Disentangled and controllable face image genera-

tion via 3d imitative-contrastive learning. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 5154–5163, 2020. 1

[9] Yu Dong, Yihao Liu, He Zhang, Shifeng Chen, and Yu

Qiao. Fd-gan: Generative adversarial networks with fusion-

discriminator for single image dehazing. In Proceedings of

the AAAI Conference on Artificial Intelligence, pages 10729–

10736, 2020. 2

[10] Yuki Endo. User-controllable latent transformer for stylegan

image layout editing. In Computer Graphics Forum, pages

395–406. Wiley Online Library, 2022. 1, 3

[11] Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ran-

jan, Michael J Black, and Timo Bolkart. Gif: Generative

interpretable faces. In 2020 International Conference on 3D

Vision (3DV), pages 868–878. IEEE, 2020. 2

[12] Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ran-

jan, Michael J Black, and Timo Bolkart. Gif: Generative

interpretable faces. In 2020 International Conference on 3D

Vision (3DV), pages 868–878. IEEE, 2020. 1

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. Advances in

neural information processing systems, 27, 2014. 2

[14] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,

Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-

age editing with cross attention control. arXiv preprint

arXiv:2208.01626, 2022. 1

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. Advances in neural information

processing systems, 33:6840–6851, 2020. 2

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-

Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.

Lora: Low-rank adaptation of large language models. arXiv

preprint arXiv:2106.09685, 2021. 6

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017. 1

[18] Yeying Jin, Wenhan Yang, and Robby T Tan. Unsupervised

night image enhancement: When layer decomposition meets

light-effects suppression. In European Conference on Com-

puter Vision, pages 404–421. Springer, 2022. 2

[19] Chanyong Jung, Gihyun Kwon, and Jong Chul Ye. Ex-

ploring patch-wise semantic relation for contrastive learn-

ing in image-to-image translation tasks. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 18260–18269, 2022. 2

[20] Animesh Karnewar, Andrea Vedaldi, David Novotny, and

Niloy J Mitra. Holodiffusion: Training a 3d diffusion model

using 2d images. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

18423–18433, 2023. 2

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 4401–4410, 2019. 2, 3

[22] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improv-

ing the image quality of stylegan. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 8110–8119, 2020. 5

[23] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,

Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free

generative adversarial networks. Advances in Neural Infor-

mation Processing Systems, 34:852–863, 2021. 2

[24] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen

Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:

Text-based real image editing with diffusion models. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 6007–6017, 2023. 1

[25] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-

fusionclip: Text-guided diffusion models for robust image

manipulation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2426–

2435, 2022. 2

[26] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim,

Antonio Torralba, and Sanja Fidler. Editgan: High-precision

semantic image editing. Advances in Neural Information

Processing Systems, 34:16331–16345, 2021. 1, 6

6868



[27] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher

Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting

using denoising diffusion probabilistic models. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 11461–11471, 2022. 3

[28] Yueming Lyu, Tianwei Lin, Fu Li, Dongliang He, Jing

Dong, and Tieniu Tan. Deltaedit: Exploring text-free train-

ing for text-driven image manipulation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6894–6903, 2023. 3

[29] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-

jun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided

image synthesis and editing with stochastic differential equa-

tions. arXiv preprint arXiv:2108.01073, 2021. 3

[30] Ron Mokady, Omer Tov, Michal Yarom, Oran Lang, Inbar

Mosseri, Tali Dekel, Daniel Cohen-Or, and Michal Irani.

Self-distilled stylegan: Towards generation from internet

photos. In ACM SIGGRAPH 2022 Conference Proceedings,

pages 1–9, 2022. 2

[31] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and

Daniel Cohen-Or. Null-text inversion for editing real im-

ages using guided diffusion models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6038–6047, 2023. 1

[32] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and

Jian Zhang. Dragondiffusion: Enabling drag-style manipula-

tion on diffusion models. arXiv preprint arXiv:2307.02421,

2023. 3, 7, 8

[33] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie

Liu, Abhimitra Meka, and Christian Theobalt. Drag your

GAN: Interactive point-based manipulation on the generative

image manifold. arXiv preprint arXiv:2305.10973, 2023. 1,

2, 3, 7

[34] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 2337–2346,

2019. 1

[35] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-

Yan Zhu. Contrastive learning for unpaired image-to-image

translation. In Computer Vision–ECCV 2020: 16th Euro-

pean Conference, Glasgow, UK, August 23–28, 2020, Pro-

ceedings, Part IX 16, pages 319–345. Springer, 2020. 2

[36] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun

Li, Jingwan Lu, and Jun-Yan Zhu. Zero-shot image-to-image

translation. arXiv preprint arXiv:2302.03027, 2023. 1

[37] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gen-

eration with clip latents. arXiv preprint arXiv:2204.06125,

2022. 1

[38] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel

Cohen-Or. Pivotal tuning for latent-based editing of real im-

ages. ACM Transactions on graphics (TOG), 42(1):1–13,

2022. 1

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 10684–10695, 2022. 1

[40] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 10684–10695, 2022. 3, 5

[41] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,

Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,

et al. Photorealistic text-to-image diffusion models with deep

language understanding. Advances in Neural Information

Processing Systems, 35:36479–36494, 2022. 1

[42] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-

terpreting the latent space of gans for semantic face editing.

In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 9243–9252, 2020. 1

[43] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vin-

cent YF Tan, and Song Bai. Dragdiffusion: Harnessing diffu-

sion models for interactive point-based image editing. arXiv

preprint arXiv:2306.14435, 2023. 1, 2, 3, 6, 7

[44] Jiaming Song, Chenlin Meng, and Stefano Ermon.

Denoising diffusion implicit models. arXiv preprint

arXiv:2010.02502, 2020. 2

[45] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng

Phoo, and Bharath Hariharan. Emergent correspondence

from image diffusion. arXiv preprint arXiv:2306.03881,

2023. 7

[46] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian

Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zoll-
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