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Abstract

We introduce a new system for Multi-Session SLAM,

which tracks camera motion across multiple disjoint videos

under a single global reference. Our approach couples

the prediction of optical flow with solver layers to estimate

camera pose. The backbone is trained end-to-end using a

novel differentiable solver for wide-baseline two-view pose.

The full system can connect disjoint sequences, perform vi-

sual odometry, and global optimization. Compared to exist-

ing approaches, our design is accurate and robust to catas-

trophic failures. Code is available at https://github.
com/princeton-vl/MultiSlam_DiffPose

1. Introduction
Simultaneous Localization and Mapping (SLAM) is the

task of estimating camera motion and a 3D map from video.
The standard setup assumes a single continuous video.
However, video data in the wild often consists of not a sin-
gle continuous stream, but rather multiple disjoint sessions,
either deliberately such as in collaborative mapping when
multiple robots perform joint rapid 3D reconstruction, or
inadvertently due to visual discontinuities in the video
stream which can result from camera failures, extreme
parallax, rapid turns, auto-exposure lag, dark areas, or
extreme occlusion by dynamic objects. Handling such dis-
joint videos is important for many applications in AR and
robotics, and gives rise to the task of Multi-Session SLAM.

In Multi-Session SLAM, the input consists of multiple
disjoint video sequences and the goal is to estimate camera
poses for all video frames under a single global reference.
This is in contrast to “single-video SLAM”, whose input is
a single continuous video. In this work, we focus on the
monocular, RGB-only Multi-Session SLAM setting.

Several approaches have been proposed to deal with
Multi-Session SLAM, however existing solutions typically
require additional sensor data in order to remove gauge free-
doms and make tracking easier [16, 28, 37]. Only a small
number of methods, notably CCM-SLAM [36] and ORB-
SLAM3 [4], support Multi-Session SLAM from monocu-
lar video alone, due to the difficulty of aligning disjoint
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Figure 1. Our method estimates camera pose from multiple dis-
connected video streams.

sequences under the 7-DOF gauge freedoms in monocular
video. However, these approaches are based on classical
feature descriptors, making them less accurate on average
compared to recent designs based on deep networks.

In the standard SLAM setting, Teed and Deng [44]
proposed to use a deep optical flow network (RAFT [43])
to track 2D motion, while jointly updating camera poses
with a bundle adjustment layer. The method, DROID-
SLAM, is accurate and avoids tracking failures, but the
design assumes a continuous video stream and is not
capable of the wide-baseline matching and non-local opti-
mization necessary for Multi-Session SLAM. Deep Patch
Visual Odometry [45] (DPVO) introduced a sparse visual-
odometry-only analog of DROID-SLAM which achieves
similar accuracy on single-video SLAM, but at much lower
cost. However, DPVO also does not support Multi-Session
SLAM for the same reasons as DROID-SLAM.

We propose a method for Multi-Session SLAM, capa-
ble of both wide-baseline relative pose and visual odometry
using a single backbone architecture inspired by [45]. We
introduce a differentiable solver layer which minimizes the
symmetric epipolar distance (SED) from bi-directional op-
tical flow. From this we construct a method for two-view
pose which is capable of matching from far-apart views.
This same design can be repurposed for visual odometry
by swapping out the solver for bundle adjustment. By em-
ploying a unified backbone architecture for both tasks, we
enable a simple approach to Multi-Session SLAM.

We evaluate our approach on challenging real-world
datasets: EuRoC-MAV [2] and ETH3D [39]. Our sys-
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tem is more accurate than prior approaches, and is robust
to catastrophic failures. We also evaluate our two-view
pose method in isolation on the Scannet and Megadepth
datasets, and show that it is competitive with transformer-
based matching networks. For pairs of far-apart views, our
method is capable estimating accurate relative pose.

Our backbone predicts iterative updates to optical flow
coupled with a differentiable solver layer for estimating
camera pose. This framework, based on RAFT [43], has
worked exceptionally well for Visual Odometry [45] and
SLAM [44]. By leveraging this idea for wide-baseline
matching, we can extend these methods to the Multi-
Session setting without introducing substantial complexity.

2. Related Work
Most prior works treat Visual Simultaneous Localization

and Mapping (Visual SLAM) as an optimization problem
solving for a 3D scene model and camera trajectory which
best explains the visual measurements [3].
Indirect approaches to SLAM perform keypoint matching
as a pre-processing step, then estimate a 3D point cloud
and camera poses by optimizing the 2D reprojection error
over all matches [4, 20, 26, 27, 33, 38]. Reprojection-error
is easier to optimize than photometric alignment, making
indirect methods robust to lower camera hz [44]. Key-
point matching also enables a straightfoward approach to
estimating two-view relative pose, a necessary step for
Visual Multi-Session SLAM [14, 19, 25, 33, 46]. How-
ever, keypoint-based SLAM is less robust to low-texture
environments compared to those which use photometric
alignment [9, 10] or optical flow [44, 45].
Semi-Indirect approaches similarly optimize 2D repro-
jection error like indirect methods, but without requiring
matches as input [42, 44, 45]. Instead, these approaches
alternate between predicting optical flow residuals and
performing bundle adjustment. Semi-indirect methods do
not require repeatable keypoints across images, making
them robust to low-texture settings while retaining the
easier reprojection-error objective.

Our approach is most similar to Deep Patch Visual
Odometry [45] (DPVO), which is a sparse analog of
DROID-SLAM. DPVO predicts sparse optical flow instead
of dense, performing similarly to DROID-SLAM while
running faster and using half the memory.
Differentiable solver layers for camera pose estimation
have been used in order to learn outlier rejection with
data-driven training. For two-view relative pose, Ranftl
and Koltun [30] used a deep network to learn an itera-
tively reweighted least-squares algorithm, which solved
a weighted variant of the 8-point-algorithm [14] using
confidences predicted by the network. [30] required
matched points as input, wheras our approach can work
from images alone. Roessle and Nießner [31] proposed an

end-to-end architecture which used the weighted 8-point-
algorithm from [30] on top of matches produced using
Superglue [34], and supervised directly on the predicted
pose. [31] works well, but is unable to outperform existing
methods that use minimal solvers with LO-RANSAC [18]
instead of differentiable solvers. In contrast, our approach
is not built on top of an existing SOTA 2-view matcher; our
design is also iterative, applying a recurrent module and
solver layers multiple times to refine the prediction.

Multi-Session SLAM is the task of performing SLAM
on multiple trajectories of the same scene. Like SLAM,
Multi-Session SLAM is an online task where camera
motion is estimated from a stream of images. However,
in the Multi-Session setting, there are known breaks in the
data-stream over which the small-baseline assumption no
longer holds. While local optimization is sufficient for mo-
tion tracking from video, estimating wide-baseline camera
pose is often non-convex [40] and more challenging due
to large viewpoint changes. In monocular visual SLAM,
the scale of each sequence is also ambiguous; aligning
two trajectories requires estimating 7 degrees-of-freedom
(translation, rotation, scale) for all sequences, excluding
the first which can be considered the reference.

ORB-SLAM3 [4] performs Multi-Session SLAM by
matching between ORB [32] descriptors. While tracking
camera motion over each sequence, ORB-SLAM3 continu-
ally updates an Atlas of the scene - a lookup table between
keypoints and their 3D map point in the reference frame
of their original sequence. To align disjoint sequences,
candidate cross-sequence image pairs are identified using
image-retrieval [12], the 3D map points are obtained from
the Atlas, and the relative transformation is found using
the Umeyama algorithm [46]. Several methods perform
Multi-Session Visual Inertial SLAM [17, 28], however we
focus on the visual-only monocular setting where the scale
of each session is ambiguous and must be estimated when
joining sequences.

CCM-SLAM [35, 36] and SLAMM [7] perform Multi-
Session visual SLAM and are built on top of ORB-
SLAM [27] as well, but are optimized for limited bandwidth
and distributed processing, while ORB-SLAM3 performs
better and is optimized for accuracy and speed.

3. Approach
Overview: We propose a backbone for matching between
�2 views, and then construct a method for multi-session
SLAM upon it. Our backbone approaches matching as
optical flow; it borrows several ideas from RAFT [43], such
as iteratively predicting flow residuals using a recurrent
network, and the correlation feature pyramid. Our method
maintains a running estimate of both camera pose and
bi-directional optical flow, and uses the update operator to
refine them both. We provide an overview in Fig. 2. An
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Figure 2. Overview of our backbone. Given a group of � 2 frames, our method jointly estimates bi-directional optical flow and camera
poses. This module is applicable to (1) wide-baseline two-view matching and (2) visual odometry. We use our backbone for Multi-Session
SLAM, which requires the ability to perform both (1) and (2). For each image, we select a set of 2D anchor points and initialize their depth
and the camera poses trivially. Our approach then iteratively refines the matches for each anchor, similar to RAFT [43], while updating the
camera poses. We alternate between matching and pose updates, where each one informs the update to the other. This entire procedure is
repeated several times until convergence.

invariant of our backbone is that the matches are always
clamped to plausible values given the pose estimates and
an assumption of rigid scene geometry, therefore WLOG
the matches can be considered a depth estimate.

At initialization, our backbone produces dense correla-
tion feature pyramids for each image and context features
which remain fixed throughout the forward pass. The up-
date operator uses an RNN to predict an update to the
matches, and a differentiable solver to update poses. Our
backbone treats the two-view and multi-view settings differ-
ently: In the two-view setting, the solver updates the poses
to minimize the symmetric epipolar distance (SED). In the
multi-view setting, the solver updates both poses and depth
to minimize the reprojection error. After the solver layer,
the matches are adjusted to agree with the poses/depth.

3.1. Initialization
Feature Extraction & Feature Pyramid: Similar to
RAFT, our method separately extracts context and corre-
lation feature for each image. The context features are
provided as input to the recurrent update operator, whereas
the correlation features are used to evaluate the visual
similarity between any two pixels using a dot product. The
context feature maps are produced at 1/8 resolution using
a residual network. We then apply a linear-self-attention
residual for long-range feature sharing. The correlation
feature maps are also produced using a residual network,
but with several exit ramps to produce features at 1/2, 1/4,
and 1/8 of the input image resolution. We also average-pool
the last one three additional times to produce a correlation
feature pyramid with 6 levels. We depict their architecture
in the Supplement.

Anchor-Point Selection: Our method predicts sparse op-
tical flow, where matches have one end anchored and the
other end free to move in R2. We use a mix of detector [8]-
chosen and randomly-chosen anchor points. Each point is
assigned an initial match in the other image(s) at the same

pixel coordinate. For the rest of the paper, we will refer to
the kth anchor point as ak, and its match in image j as mkj .

We index the context feature map at each ak to produce
a unique context feature vector ctxk 2 R384, which is used
by the update operator. Beyond this point, the full context
feature map is not used and is discarded to save memory.

Correlation: Similar to other RAFT-based methods,
we use correlation features to assess the visual align-
ment/similarity given by the current matching estimate. For
each (ak,mkj) pair, we bilinearly sample both feature pyra-
mids for their respective frames at locations ak and mkj and
take their inner product at each level, producing

hf i

k
, f i

kj
i 2 R : i = 1...6 (1)

To provide additional spatial context, we also perturb both
ak and mkj in 3 ⇥ 3 and 7 ⇥ 7 grids, respectively, and
calculate eq. 1 for all pairs. The resulting feature vector
Ckj 2 R(6⇥3⇥3⇥7⇥7) is then passed to the update operator.

3.2. Update Operator
The update operator produces a revision to all mkj and

the estimated relative pose. It consists of three stages, de-
picted in Fig. 3: (1) An RNN predicts a 2D update to mkj

and an associated confidence weight wkj . (2) We solve
for a pose estimate which is consistent with the newly pre-
dicted matches and confidence. (3) We adjust the matches to
be physically plausible assuming rigid scene geometry. In
the two-view setting, we clamp the matches to the epipolar
lines, and in the multi-view setting we reproject the anchor
points using the depth and poses from the solver.

Through the recurrent iterations, our method maintains a
running state for each anchor-match (ak,mkj) pair, consist-
ing of a hidden state vector hkj , a confidence weight wkj ,
and a match location mkj in frame j. This state is continu-
ally updated, during which mkj should ideally approach the
true match location of ak in j, and wkj should approach 1.
This is what we observe empirically.
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Figure 3. A single update iteration (two-view). For each anchor-match pair, we predict an update to the matches using the RNN. We then
solve for an update to the camera poses which minimizes the symmetric epipolar distance (SED), producing a new set of epipolar lines.
Finally, we clamp the matches back to the best-fit epipolar lines, and repeat the whole process again. In Fig. 8 and the Supplement, we
visualize these iterations on real-world images.

RNN Module: The learnable component of the update op-
erator is the recurrent network which predicts updates to
hkj , mkj and wkj for all anchor points. We visualize this
operator in Fig. 4.

The input to the RNN are the context features, the pre-
vious hidden state, and the correlation features generated
from the current matching estimate, all of which are added
together and normalized with layernorm. A self-attention
residual is also applied to edges with the same source and
destination frame, followed by three gated-residual-units,
whose architecture is depicted in the Supplement. The out-
put is an updated hidden state, from which we predict an
updated match and confidence using the flow head and con-
fidence head, respectively, which are implemented as two-
layer MLPs. The confidence head includes a softmax to
restrict wkj 2 (0, 1).
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Figure 4. The RNN Module. For each anchor-match pair
(ak,mkj), it predicts an update to mkj and an associated con-
fidence wkj . It also updates a hidden state hkj 2 R384. Internally,
the RNN shares features via attention between updates with the
same incoming and outgoing frame.

3.3. Two-View Solver and Pre-Conditioning
Our two-view solver aims to align the relative pose be-

tween two frames to the predicted matches by minimizing
the distance between each match and its epipolar line. This
strategy is accurate, however the objective function is non-
convex, meaning it will only converge to the global mini-
mum if it is initialized close to it. In contrast, the 8-point-
algorithm, a common approach to this task, has the opposite

problem; it does not suffer from local minimum since it is a

homogeneous least squares, but the solution is sub-optimal.
In Fig. 6, we visualize how our solver either converges to
within a fraction of a degree, or not at all, meanwhile the
8-point-algorithm is more robust but less accurate.

The approach our method uses is to pre-condition the
pose estimate using a weighted, dense variant of the 8-
point algorithm [30], and then run our solver layer to re-
fine the pose. This combined strategy obtains the best of
both worlds, since the pre-conditioning will typically ini-
tialize the pose within the basin of convergence of our
solver, which then refines the prediction further. We visu-
alize this basin on the TartanAir [48] dataset using ground-
truth matches in Fig. 6.
Pre-conditioning: We solve the homogeneous least
squares problem [14]

argmin
F

||diag(~w)M~F||2 s.t. ||F||2 = 1 (2)

where M and ~w are constructed from the anchor-match
pairs and confidence predictions. The points are normalized
to [�1, 1] beforehand. Afterwards, we reshape and uncali-
brate F to obtain the essential matrix.

We obtain the four relative pose candidates following the
procedure detailed in [13] and in the supplement. During
training, we select the pose candidate closest to the ground-
truth on the SE(3) manifold. During inference, we select
the candidate by testing for chirality [13].
SED Solver Layer: The solver layer seeks to minimize the
distance between each match mkj , and the epipolar line in-
duced by the current pose estimate and its respective an-
chor point ak. The solver objective is bi-directional, since
every image contains a unique set of anchor points; the
objective is also known as the titular symmetric epipolar
distance (SED) [11]. We parameterize the pose update as
small rotations to the translation direction and orientation:
⇠t, ⇠R 2 so(3). These are the free variables in eq. 3. Let
K(i) be the set of anchor indices for frame i, R and t be the
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Figure 5. The flow of gradients through our solver. The updated
matches from the RNN are supervised directly, and then detached
from the gradient tape. The solver output is supervised with a pose
loss. In the backward pass, gradients from the pose loss are used
to supervise the confidence head in order to learn outlier rejection.

output of the pre-conditioning stage, and epi(x,R, t) com-
pute the epipolar line for a point x given the relative pose
(R, t). Formally, the minimization objective in our solver is

lkj = epi(ak, (e
⇠RR)i!j , (e

⇠tt)i!j) : k 2 K(i)

Ei!j =
X

k2K(i)

wkj · kerr(mkj , lkj)k22

SED = argmin
⇠R,⇠t

⇣
Ei!j + Ej!i

⌘
(3)

where err computes the 2D point-to-line error. The pre-
dicted weights wkj are included to allow the network to
down-weight the contribution of any match which it deems
unreliable. This solver layer is implemented in Pytorch, en-
abling gradients to propagate backward from the pose loss
to the confidence head using autograd. We depict the gradi-
ent flow in Fig. 5.

To minimize eq. 3, we employ the Levenberg Marquardt
algorithm. This requires computing the Jacobian for all
terms. We provide the full derivations in the Supplement,
but define the residual function err in its entirety here.
Let l be the epipolar line produced by (a, e⇠RR, e⇠tt). We
can express each term of eq. 3 as:

err(m, l) =

 
lxmx + lymy + lz

l2
x
+ l2

y

!
lx
ly

�
(4)

and the epipolar line as

E = (e⇠RR)>[e⇠tt]⇥

l = F

2

4
ax
ay
1

3

5 =

"
(K>

2 )�1EK>
1

#2

4
ax
ay
1

3

5 (5)

where F and E are the fundamental and essential matrices.

3.4. Adapting our backbone to Visual Odometry
To adapt our backbone to VO, we make several changes:

Figure 6. Convergence of our solver, given ground-truth matches
(from TartanAir [48]). Our SED solver is accurate, but only con-
verges to the global minimum when initialized close to it. We
initialize the pose using the 8-pt-algorithm to ensure it is within
the SED convergence basin.

Multi-view Solver (BA): Our local optimizer minimizes
reprojection error and treats depth as a separate variable.
This is identical to the bundle adjustment from DPVO. For-
mally, let F be the set of connected frames, G be the global
poses, dk be the depth estimate for anchor k, and ⇧(·) be
the 3D ! 2D projection function. The bundle adjustment
objective is:

argmin
G,d

X

(i,j)2F

X

k2K(i)

wkj ·
��⇧[G�1

j
Gi⇧

�1(ak, dk)]�mkj

��2

(6)
The preconditioning stage is not necessary as we can
linearly-extrapolate the camera poses from previous frames
to achieve good initialization.
Clamping: Since epipolar lines do not make sense in the
multi-view setting, we reset the optical flow using the pose
and depth from the bundle adjustment.
RNN changes: We include mechanisms in the RNN to
share latent features between updates if they stem from the
same anchor point. Specifically, we use the message pass-
ing and temporal convolutions from DPVO [45].

3.5. Trajectory Alignment
In the Multi-Session SLAM problem, we estimate a rel-

ative Sim(3) between pairs of disjoint trajectories in order
to align them. All anchor points already have a depth esti-
mate dk as result of the bundle adjustment (eq. 6) from the
VO system. We use our two-view method to estimate the
relative rotation and translation direction, and compute the
translation magnitude and relative scaling by comparing the
dk’s to the depth from the triangulated two-view matches.
1) Estimate relative rotation, translation direction, and

matches. We first retrieve a candidate image pair (i, j) us-
ing NetVLAD [1], one from each trajectory, and apply our
two-view model to estimate their relative rotation and trans-
lation direction.
2) Align the depth from the two-view and SLAM operators.
We previously defined dk as the depth output of the VO

19630



system. Let d0
k

be the triangulated depth obtained from our
two-view matches:

d0
k
=

(
triang(Ri!j , ti!j , ak,mkj) : k 2 K(i)

triang(Rj!i, tj!iak,mki) : k 2 K(j)
(7)

We solve

argmax
si2R>0

X

k2K(i)

1

"
1

�
<

dk
si · d0k

< �

#
(8)

to recover the translation magnitude, where the hyperpa-
rameter � = 1.05. In layman terms, eq. 9 seeks what trans-

lation magnitude would align the most triangulated points

to the existing 3D map? We can obtain a reasonably good
solution to eq 9 by brute-force checking si = dk/d0k 8k 2
K(i), similar to RANSAC. If the number of inliers is too
small, we retry on a new candidate pair. Conversely, the
scale-difference is si/sj , where sj is estimated the same
way, but for anchor points in K(j):

argmax
sj2R>0

X

k2K(j)

1

"
1

�
<

dk
sj · d0k

< �

#
(9)

Given the rotation Rj!i and translation tj!i from the two-
view solver layers, the resulting transformation can be used
to align the two trajectories:

Sj!i =


si
sj
R sjt

0 1

�
2 Sim(3) (10)

The graphs are then merged by concatenating all buffers.

3.6. Training
We train our backbone separately for VO and for two-

view pose. It is trained using a matching loss and a pose
loss. The pose loss for the two-view training

Lpose2V =
12X

t=1

cos�1

✓
t̄t · t̄gt

◆
+ ↵

��[(Rt)T Rgt]
��
SO(3)

(11)
penalizes angle error for both the predicted translation di-
rection and predicted orientation. The pose loss for the VO
training is the SE3 manifold distance between the predicted
and ground-truth poses:

LposeV O =
TX

t=1

��[(Gt)�1Ggt]
��
SE(3)

(12)

The matching loss

Lmatching =
1

|N |

NX

a

TX

t=1

��mt

a
�mgt

a

��
2

(13)

is a standard endpoint-error [24, 43], applied only on pixels
which have valid depth and are verified to be visible in both
images. Our update operator is applied 12 times per train-
ing example; supervision is applied after every update (See
Fig. 5). The final loss is L = Lpose + � · Lmatching.

Two-view
Operator

NetVLAD

Stage 1: Image Retrieval Stage 2: !"# 3
Estimation

24x

!"#(3)

Image !
+ depth 

Stage 3: Graph Merging

Image "
+ depth 

Figure 7. High-level overview of our approach to aligning disjoint
trajectories. We use NetVLAD [1] to retrieve two co-visible im-
ages, one from each trajectory, and apply our two-view update op-
erator to estimate a relative Sim(3) alignment, following the pro-
cedure detailed in Sec 3.5. We then transform the second trajectory
into the reference frame of the first, and merge all buffers.

Following prior work [23], we pre-train our two-view
method on synthetic homographies (without pose loss) for
two epochs on the Oxford-Paris 1M Distractors dataset [29].
We then tune our model on a 50/50 mixture of Scannet [6]
and Megadepth [21] for 100,000 steps and a batch size of
120, using 10 A6000 GPUs for 5 days. The VO backbone
is trained using the procedure from [45] on TartanAir.

3.7. Multi-Session SLAM System

Overview: To perform Multi-Session SLAM, we use
our VO-trained backbone to perform visual odometry and
global optimization; our two-view backbone connects dis-
joint trajectories following the procedure in Sec 3.5. Our
full system builds the pose graph incrementally: new video
frames inserted into the graph as they are received, and un-
joined trajectories are aligned and merged as soon as a con-
nection is found.

VO Frontend: Our VO frontend extracts features and es-
timates camera poses and depth for incoming frames, op-
erating on a sliding window covering the most recently ob-
served 20 keyframes. Keyframing occurs retroactively on
the 4th oldest keyframe if it is found to be redundant. New
poses are initialized using a linear-motion model, and depth
is copied from the previous frame. Like DPVO [45], we ini-
tialize after 8 frames with significant motion are observed.

Global Optimization: We perform global optimization by
introducing proximity factors using the existing pose and
depth measurements, following the approach from DROID-
SLAM [44], and update the matches and poses/depth using
the update operator. We only run the backend periodically,
and after joining trajectories.

Trajectory Joining: We query the database of NetVLAD
descriptors to find co-visible frames. If several pairs are re-
trieved, we compute relative poses in a mini-batch and use
the estimate with the highest inlier-ratio.
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Overall Approach Pose error AUC [%] "
@5� @10� @20�

Superglue [34] Matching 16.2(17.7) 33.8(35.6) 51.8(54.2)
LightGlue [23] # 16.5(19.4) 33.4(36.9) 50.1(53.5)
LoFTR [41] RANSAC [15] 22.1(25.7) 40.1(45.0) 47.6(61.4)
MatchFormer [47] (LO-RANSAC [18]) 24.3(27.3) 43.9(47.6) 61.4(64.9)
ASpanFormer [5] 25.6(28.4) 46.0(48.8) 63.3(65.8)

Roessle&Nießner [31] Matching!W8PA 20.7 41.6 61.7

Roessle&Nießner [31] Matching!W8PA!BA 25.7 47.2 66.4

Optical-Flow
Ours �!

�! 30.9 51.1 67.6
Clamp Solver

Table 1. Two-view results on Scannet [6]. Existing methods per-
form matching as pre-processing, then use a solver; our method
is iterative. Results in parenthesis use the LO-RANSAC [18]
estimator. “W8PA!BA” = weighted 8-point-algo. & bundle-
adjustment. Our design outperforms prior approaches. We use
the same model weights as in Tab. 2.

Overall Approach Pose error AUC [%] "
@5� @10� @20�

Superglue [34] Matching 49.7(65.8) 67.1(78.7) 80.6(87.5)
LightGlue [23] # 49.9(66.7) 67.0(79.3) 80.1(87.9)
LoFTR [41] RANSAC [15] 52.8(66.4) 69.2(78.6) 81.2(86.5)
MatchFormer [47] (LO-RANSAC [18]) 53.3(66.5) 69.7(78.9) 81.8(87.5)
ASpanFormer [5] 55.3(69.4) 71.5(81.1) 83.1(88.9)

Roessle&Nießner [31] Matching!W8PA 46.9 62.8 76.3

Roessle&Nießner [31] Matching!W8PA!BA 61.2 74.9 85.0

Optical-Flow
Ours �!

�! 60.4 72.7 81.3
Clamp Solver

Table 2. Two-view results on Megadepth [21]. Existing methods
perform matching as pre-processing, then use a solver; our method
is iterative. “W8PA!BA” = weighted 8-point-algo. & bundle-
adjustment. Results in parenthesis use the LO-RANSAC [18] es-
timator. Our radically different design leads to better results in-
doors (Tab. 1), but is less competitive in photo-tourism settings
where high-volume matching is easier and therefore RANSAC-
based methods work better. We use the same model weights as in
Tab. 1.

4. Experiments
We evaluate the performance of our two-view method in

isolation, and our Multi-Session SLAM system as a whole.

4.1. Two-View Evaluation
We evaluate our two-view method on two popular

relative pose benchmarks: The Scannet [6] 1500 and
MegaDepth [21] 1500 test datasets. We compare to exist-
ing matching networks [5, 23, 34, 41, 47], which are typ-
ically in service of improving COLMAP [38]-based SfM
pipelines [22, 33]. In contrast, our approach is in service
of Multi-Session SLAM. We report pose error AUC, as is
done in prior matching work (higher is better). We use the
same configuration and model weights on both datasets.

Most existing methods perform matching as a pre-
processing step using a deep network, then estimate pose
with a minimal solver using RANSAC [15, 18]. Roessle

and Nießner [31] replace the RANSAC optimizer with
a weighted-8-point algorithm and bundle adjustment. In
contrast, our two-view method couples the prediction of
pose and matches, refining the predictions over many
iterations. We ablate over our two-view model in Tab. 3.
Scannet: We report two-view results on Scannet [6] in
Tab. 1. Our approach outperforms existing methods on
Scannet, which contains fewer salient keypoints and many
texture-less surfaces and motion blur.
MegaDepth: We report two-view results on
Megadepth [21] in Tab. 2. On Megadepth, the match-
ing problem is substantially easier since photo-tourism
images contain many salient keypoints, resulting in better
performance across all methods; our approach is on-par
with existing approaches using the OpenCV RANSAC pose
estimator [15], but not the LO-RANSAC [18] estimator.

4.2. Multi-Session SLAM evaluation
We evaluate our approach on Multi-Session SLAM

on the EuRoC-MAV [2] and ETH3D [39] datasets, since
they provide camera poses under a single global reference.
Following the evaluation for single-video SLAM, we align
the final predictions to the ground truth by computing a
global 7-DOF alignment to account for the guage freedoms.
We report RMSE ATE[m] in metric units. We sample 96
anchors in each video frame using a mix of random and
Superpoint [8] keypoints. Our two-view method uses those
same anchors to join pairs of trajectories. We use the same
weights and configuration on both datasets.
EuRoC-MAV: In Tab. 9 and Fig. 10, we report results on

the EuRoC MAV dataset [2]. Following the evaluation from
[4], we compare on four groups of disjoint trajectories
across the three distinct environments: 3 in the Machine
Hall, 5 in the Machine Hall, 3 in Vicon 1, and 3 in Vicon 2.
Ground-truth poses are obtained using a laser tracker and
Vicon cameras. These video sequences are long, with the
entirety of the Machine-Hall sequence being 11.5 minutes
of video (13.7K frames) spread across 5 sequences. Our
approach achieves significantly lower error than ORB-
SLAM3 on all groups, including 12x lower error on the
Vicon 2 sequences (0.022 vs 0.284). Video is recorded at
20-FPS; all methods run in real-time. We also compare
to CCM-SLAM [36], which only provides results on the
on MH01-03 sequence, the mono-inertial ORB-SLAM3,
and the mono-inertial VINS [28]. We outperform the other
approaches on all trajectory groups.
ETH3D: In Tab. 4, we report results on the training set
from ETH3D [39]. We compare across 5 unique scenes
composed of multiple trajectories: 1-4 from Sofa, 3&4 from
Table, 1-3 from Plant Scene, 1&2 from Einstein, and 2&3
from Planar. Sequences are excluded if they belong to the
official ETH3D test set (with no ground-truth) or are from
a different scene altogether. The sequences are trimmed
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Initialization 1st Iteration 3rd Iteration 12th Iteration

Low Confidence High Confidence

Figure 8. Qualitative results on Scannet. Our two-view variant is able to estimate accurate relative poses across wide camera baselines. It
initializes all matches with uniform depth and identity relative pose. Progressive applications of our update operator lead to more accurate
matches and higher predicted confidence. Some image pairs (row 2) take more iterations to converge than others (row 1).

Scene name MH01-03 MH01-05 V101-103 V201-203 Cam.

# Disjoint Trajectories 3 5 3 3 hz

Ours 0.022 0.036 0.030 0.022 20Mono-Visual

CCM-SLAM [36] 0.077 - - - 38Mono-Visual

ORB-SLAM3 [4] 0.030 0.058 0.058 0.284 20Mono-Visual

VINS [28] - 0.210 - - -Mono-Inertial

ORB-SLAM3 0.037 0.065 0.040 0.048 20Mono-Inertial

Figure 9. Multi-Session SLAM evaluation on EuRoC MAV [2]
using RMSE ATE[m] #. We perform similarly to ORB-SLAM3
(within 2mm) in the Machine Hall, but perform best in the Vicon 1
and Vicon 2 rooms. Results for baseline approaches were obtained
from [4].

Figure 10. Our prediction on the Vicon1 [2] sequences. Our
method is accurate and robust to chaotic motion.

from a single, longer video; to make joining the trajectories
non-trivial, we reverse every other sequence, ensuring that
there is a sufficient disconnect between subsequent videos.
This is a novel benchmark, so [28, 36] do not report results.

Ablation Experiment Pose error AUC @10�[%] "
Megadepth Val Scannet Val

Baseline Full model 53.3 33.9

Architecure
Shallower correlation pyramid 44.3 27.1
No attention in update-op 48.6 30.5
No ReLU-attn in feat-extractor 47.4 29.7

Solver
No pre-conditioning 35.5 20.6
No SED solver 23.8 13.1
No clamping step 21.9 10.7

Table 3. Two-view ablation experiments on two validation sets.
Our proposed RNN and feature extractor changes from DPVO
improve the result. Removing components from our proposed
solver design decreases performance, as does removing the
reprojection step.

Scene name Sofa Table Plant Scene Einstein Planar

# Disjoint Trajectories 4 2 3 2 2

ORB-SLAM3 [4] FAIL 0.018 FAIL FAIL 0.010Mono-Visual (no init) (init!lost) (init!lost)

Ours 0.013 0.010 0.009 0.005 0.035Mono-Visual

Table 4. Multi-Session SLAM evaluation on ETH3D [39] using
RMSE ATE[m] #. Our method is robust to catastrophic failures.

ORB-SLAM3 fails on Sofa, Plant Scene, and Einstein

for various reasons (couldn’t initialize, or lost the feature
tracks). Our approach outperforms ORB-SLAM3 on 4/5
groups, and does not fail on any. ORB-SLAM3 only suc-
ceeds on 2/5 groups.

5. Conclusion
We introduce a new method for mono-visual Multi-

Session SLAM. Our system utilizes a novel backbone
which can estimate two-view pose and perform visual
odometry. We leverage a novel differentiable solver which
minimizes the symmetric epipolar distance. We compare
against existing approaches and show strong performance
across several datasets. This work was partially supported
by IARPA and the National Science Foundation.
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