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Abstract

This paper presents a novel category agnostic model
for visual rearrangement task, which can help an embod-
ied agent to physically recover the shuffled scene configu-
ration without any category concepts to the goal configu-
ration. Previous methods usually follow a similar archi-
tecture, completing the rearrangement task by aligning the
scene changes of the goal and shuffled configuration, ac-
cording to the semantic scene graphs. However, construct-
ing scene graphs requires the inference of category labels,
which not only causes the accuracy drop of the entire task
but also limits the application in real world scenario. In
this paper, we delve deep into the essence of visual re-
arrangement task and focus on the two most essential is-
sues, scene change detection and scene change matching.
We utilize the movement and the protrusion of point cloud
to accurately identify the scene changes and match these
changes depending on the similarity of category agnostic
appearance feature. Moreover, to assist the agent to explore
the environment more efficiently and comprehensively, we
propose a closer-aligned-retrace exploration policy, aiming
to observe more details of the scene at a closer distance.
We conduct extensive experiments on AI2THOR Rearrange-
ment Challenge based on RoomR dataset and a new multi-
room multi-instance dataset MrMiR collected by us. The ex-
perimental results demonstrate the effectiveness of our pro-
posed method.

1. Introduction

Rearrangement task remains a practical challenge for em-
bodied agents that assist humans in real life, whose goal
is to bring a given physical environment into the goal state
with a goal specification [2]. In this paper, we focus on a
branch of the general rearrangement task based on Expe-
rienceGoal, i.e., visual rearrangement task[45], which re-
quires an agent to recover the scene configuration after it
was shuffled randomly. Due to the excessive complexity of
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Figure 1. Influence of different scene change representations
on scene change detection sensitivity and scene change match-
ing simplicity. To strike a balance between these two issues, we
select point cloud as our scene change representation.

the state space, the end-to-end deep reinforcement learning
methods previously used for navigation struggle to cover
this task, resulting in performance only marginally above
chance [18, 45]. Recent works demonstrate that the mod-
ular methods, such as MaSS [41] and TIDEE [38], effec-
tively reduce the complexity of the rearrangement task by
dividing the task into several modules. These methods use
a pre-trained detector to assign category labels to each ob-
ject and infer the rearrangement goals through matching the
semantic scene graphs of both the goal and shuffled config-
uration.

However, the introduction of category information may
not be that necessary as the essential goal of visual rear-
rangement task is equal to “make it like what it was before”.
Even without the category labels, we can still perform the
task by memorizing the appearance characteristics and the
state information of objects in the scene. Besides, due to the
limited accuracy of the detector, the transition from visual
input to category information will inevitably lead to errors,
which can accumulate and propagate to subsequent mod-
ules, thereby causing the accuracy drop of the entire task.
Previous works achieve large gains with ground-truth se-
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mantic segmentation[18, 41]. Moreover, there are inherent
limitations of the methodologies based on category infor-
mation. Once the detector is trained, these methods are re-
stricted to a fixed set of categories and powerless against the
object categories not previously observed in training envi-
ronment. Using zero-shot methods, such as SAM [22] com-
bined with CLIP [33], can considerably expand the known
categories, but they are still within a limited set. It is im-
practical to retrain the model every time a new object cate-
gory emerges due to the extensive resources required.

To address the above problems, our motivation is to iden-
tify all scene changes in the room and restore them, regard-
less of any category. Previous methods use semantic labels
for SCM because these labels provide a high-level represen-
tation of objects and make SCM straightforward. However,
the scene changes can be represented in numerous ways,
ranging from pixel to point cloud, and up to label combined
with positional information. As shown in Fig. 1, there is an
inherent trade-off: while simpler representations minimize
information loss during conversion and enhance the sensi-
tivity of SCD, they simultaneously complicate the process
of SCM.

Point cloud can serve as an appropriate representation of
scene change, as it captures rich geometric, positional, and
scale information of objects and remains robust against var-
ied observation angles and obstructions from other objects.
Leveraging point cloud facilitates efficient SCD and also
provides richer appearance information for SCM. However,
due to the inherent unordered nature and rotational invari-
ance of point cloud, it is difficult to match the point cloud
directly. We need to extract high-dimensional appearance
features from point cloud for SCM.

Based on these observations, we propose a category ag-
nostic model for visual rearrangement task called CAVR,
to the best of our knowledge, this is the first attempt for
visual rearrangement without category inferring. By utiliz-
ing point cloud as the scene change representation, CAVR
can recover the scene configuration to its goal state without
any category concepts. In CAVR, we introduce a closer-
aligned-retrace exploration policy to help agent conduct ex-
ploration effectively for SCD. Meanwhile, we maintain a
diff-cloud, which consists of two components, one for the
point cloud moved and another for the point cloud protrud-
ing in the shuffled scene configuration, compared to the goal
configuration. The diff-cloud precisely captures the varia-
tions occurring throughout the scene. After exploration, we
utilize the pre-trained appearance feature extractor to embed
the diff-cloud and then match the scene changes across var-
ious locations based on the similarity of appearance feature,
resulting in a series of rearrangement goals. Then we use a
planning-based policy to restore them to their goal states in
succession.

We conduct experiments on AI2THOR Rearrangement

Challenge based on the RoomR dataset[45] and shows im-
provements on both the success rate and the portion of suc-
cessfully fixed objects. To cater to more practical demands,
we introduce a multi-room multi-instance rearrangement
dataset MrMiR based on ProcTHOR simulator[12]. The
experimental results on MrMiR dataset fully demonstrate
the effectiveness of our method in the complex multi-room
environment.

2. Related Works
Rearrangement The general rearrangement problem [2]
aims to transform the environment from an initial state to
a goal state through interaction. We focus on an instanti-
ation of the rearrangement problem[45], in which the goal
state is specified by immersing the agent in the goal envi-
ronment and allowing the agent to explore autonomously.
Prior works can be classified into two categories, end-to-
end reinforcement learning and modular methods. The end-
to-end methods [18, 45] perform poorly mainly due to the
large action space and complex stages in the task. Compara-
tively, the modular methods [38, 41] have shown surprising
progress in improving the success rate. In detail, Mass[41]
proposes a semantic policy with a voxel-based semantic
map to find and match the changed objects. TIDEE[38] uti-
lizes the spatial relationships between objects to determine
the changed objects. Motivated by prior works, we also pro-
pose a modular method, while our model can perform the
task without any category information.

Visual exploration Visual exploration refers to the pro-
cess in which an agent collects information about the 3D en-
vironment through motion and perception [14, 29, 30, 35].
For visual exploration, efficiency is of utmost significance,
involving how to access a broader range of regions [3, 6, 17,
39], observe more objects [16] and obtain a larger volume
of environmental information relevant to downstream tasks
(such as navigation) [25, 43, 44, 46–49] within a certain
budget.

To improve the efficiency of exploration, several meth-
ods have employed ideas like curiosity [5, 7, 30, 31], cov-
erage [6, 11] and reconstruction [21, 34]. Most related to
ours is the coverage-based works, which try to maximize
the area seen in the environment [6, 11]. In our exploration
policy, both the area explored and the observation distance
are considered simultaneously to accurately observe more
details of the scene.

Scene Change Detection Scene change detection (SCD)
refers to the task of identifying and localizing changes of a
scene captured at different times[9, 26, 27, 36, 37, 40, 42].
Depending on the types of scene representation, methods
are classified into two categories, respectively, 2D domain
and 3D domain[37]. The first one devises specific neural
networks to process the image pair taken at different times
and generate a pixel-level prediction, namely, each pixel is
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classified into a category of change[1, 4, 9, 10, 19, 36, 37,
42]. Some studies focus on the scene change detection in
3D domain. They aim to reconstruct a time-varying 3D
model from images taken from multiple viewpoints at dif-
ferent times and represent the temporal scene changes over
several decades[26, 27, 40]. In our task, we not only focus
on identifying changes in the 3D environment, but also em-
phasize the importance of matching changes across various
locations, which is crucial for enabling the agent to accu-
rately recover the scene configuration.

3. Method
Given the intrinsic complexity of visual rearrangement task,
in this section, we present a modular approach to tackle the
task, decomposing it into manageable subtasks including vi-
sual exploration, scene change detection and scene change
matching. Our pipline is illustrated in Fig. 2. We start this
section by giving the definition of visual rearrangement task
in Sec. 3.1. Then we describe the three modules separately.
The visual exploration module (Sec. 3.2) requires the agent
to explore the environment efficiently and comprehensively
while retaining memory of the environment. Subsequently,
the scene change detection module (Sec. 3.3) utilizes the
agent’s memory of the goal environment and compares it
with the current environment to identify all scene changes.
Then to recover the goal configuration, the scene change
matching module (Sec. 3.4) is proposed to correlate these
changes across different areas within the scene and infer the
rearrangement goals.

3.1. Visual Rearrangement Task

According to the commonly accepted norms in the
community[2], the rearrangement task is defined in a gen-
eral form, where an agent is initialized in a starting state s0

and required to transform the environment from s0 to the
goal state s∗ ∈ S∗ with the possible actions a ∈ A. The en-
vironment state space is denoted as the Cartesian product of
the pose spaces of all rigid parts: S = (R3×SO3)×(R3×
SO3) . . .× (R3 × SO3), where R3 and SO3 represent the
3D locations and rotations space. Follow the Partially Ob-
servable Markov Decision Processes (POMDP), the agent
typically has no access to any state space and must operate
purely based on the sensory observations o ∈ O and the
given goal specification g = ϕ(s0, S∗) . Based on different
goal specification forms (GeometricGoal, ImageGoal, Lan-
guageGoal, ExperienceGoal, et al.), the general rearrange-
ment task has various levels of difficulty.

We consider an instance of rearrangement task proposed
by Weihs et al.[45], which adopts the ExperienceGoal as the
goal specification g and is defined as a two-stage task, in-
cluding the walkthrough and unshuffle stages. During the
walkthrough stage, the agent is immersed in a room of goal
state s∗ and allowed to explore autonomously. Sequentially,

the walkthrough environment is shuffled and some objects’
states are changed, denoted as the unshuffle stage, where
the agent officially starts the rearrangement task and reor-
ganizes the shuffled scene configuration back.

3.2. Visual Exploration

Under the two-stage rearrangement task, the initial explo-
ration of the target environment is critical for the subse-
quent stages, since the agent is expected to acquire more
object information in the fewest number of steps. Previous
works adopt coverage-based exploration [38] or a search
policy based on the expert distribution of objects [41]. How-
ever, there are usually many small-sized objects distributed
across the scene, which can be easily overlooked or ob-
scured by large entities when observed from a distance.
Therefore, we propose a closer-aligned-retrace exploration
policy, aiming to observe more objects at a closer distance
to improve the observation accuracy and completeness.

The core idea of the proposed policy is to build an obser-
vation distance map mo ∈ RH×W , where each grid denotes
the minimum distance at which the current coordinate point
is observed by the agent. Through the optimization of mo,
the agent can be guided to observe objects closer.

In exploration, at each timestep, the agent obtains visual
observation RGBD and updates its own pose. Following
previous work [8, 28, 41], we also build a 2D obstacle map
mt ∈ RH×W with the proposed observation distance map
mo. At the beginning of the exploration, due to the limited
range of movement, the observation distance map mo pre-
dominantly consists of high distance values. Therefore, the
visual exploration policy π can be represented by optimiz-
ing a function f of mo and a distance thresh ϵd.

π(a) = f(mo, ϵd)

The goal of optimization is to minimize the observation dis-
tance map (i.e., min(mo) ≤ ϵd)). We employ an analytical
approach to obtain the solution. Specifically, based on the
current observation distance map mo, we select a waypoint
as the next exploration goal and apply the route planning
Dijkstra algorithm [13] to generate a path on the obstacle
map mt. As to the waypoint selection, we prioritize se-
lecting those with higher distance values on the distance
map, aiming to observe objects closer. To better compare
the shuffled and goal state of the scene for rearrangement
goals inference, in the unshuffle stage, the agent tries its
best to replicate the trajectory of the walkthrough stage.

3.3. Scene Change Detection

Detecting changes within the scene is a critical capability
for an agent to perform rearrangement tasks. We maintain
a diff-cloud to represent the scene changes. As shown in
Fig. 2 (b), the diff-cloud consists of two parts. The red and
blue points respectively represent the moved and protruding
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Figure 2. Pipline of our CAVR model. (a) The gradient color transitioning from blue to red in the observation distance map represents the
distances ranging from 0m to 5m. We adopt a closer-aligned-retrace exploration policy to observe more details by optimizing a function
of the distance map. (b) Scene change detection is performed by comparing the point clouds corresponding to the goal configuration and
the shuffled configuration of the scene, recording the moved part (blue points) and the protruding part (red points) to construct the diff-
cloud. (c) We extract the entity-layer information from the two parts of the diff-cloud and match these entities depending on the similarity
of category agnostic appearance feature. (d) After the matching process, we obtain a series of rearrangement goals with their goal states
(indicated by the dashed bounding boxes) and shuffled states (indicated by the solid bounding boxes) .

point clouds in the shuffled configuration, compared to the
goal configuration. Next, we explain how to construct the
diff-cloud using visual inputs from the two stages.

During the walkthrough stage, at each pose pw of the
agent, we employ the depth information Dpw to generate an
egocentric point cloud cegopw . Each point in cegopw is associated
with a pixel in depth Dpw . Then we convert cegopw from the
agent’s coordinate system to global coordinate system, re-
sulting in a geocentric point cloud cgeopw . For the observed
RGB image Ipw , we adopt the pre-trained resnet18 model
[20] provided by the official PyTorch to extract a visual fea-
ture map fpw .

During the unshuffle stage, we use the same method to
generate the geocentric point cloud cgeopu and the feature map
fpu for each pose pu. If pu aligns with a previous pose
pw in the walkthrough stage, we compare the two corre-
sponding point clouds, cgeopw and cgeopu . A considerable shift
between two point coordinates associated with the same
pixel indicates the changes have occurred in this location.
Specifically, the increase in distance from the agent sug-
gests removal of some objects, while the decrease signifies
objects addition. Based on the distance variations, these

points are allocated to the moved part and the protruding
part of the diff-cloud, respectively. Moreover, for the area
implying scene changes, we extract the corresponding vi-
sual feature from the feature map and assign it to each point
in that region. Each point in the diff-cloud is represented as
{x, y, z, v}, where x, y, z is the 3D coordinate in the global
coordinate system and v is the visual feature.

3.4. Scene Change Matching

After exploration of the walkthrough stage and the unshuf-
fle stage, we acquire the comprehensive diff-cloud that en-
compasses changes in all areas of the scene. Note that in
the visual rearrangement task settings, objects cannot dis-
appear into thin air, they are simply moved from one place
to another. Therefore, to recover the scene configuration,
we need to match changes across various locations in the
scene. Since the diff-cloud contains only some points in
space, we first extract the entity-layer information from it
and then perform matching operations on the entity-level.

We apply the density-based clustering algorithm DB-
SCAN [15] separately to the two parts of the diff-cloud,
resulting in two sets of entities, a moved entity set
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Ωm = {ωm
1 , ωm

2 , . . . , ωm
k } and an protruding entity set

Ωp = {ωp
1 , ω

p
2 , . . . , ω

p
l }. Each entity in these two sets

is a collection of some points in the diff-cloud: ω =
{(x1, y1, z1, v1), (x2, y2, z2, v2), . . . , (xn, yn, zn, vn)}.

As shown in Fig. 2 (c), the scene change matching pro-
cess can be regarded as the weighted bipartite graph match-
ing between Ωm and Ωp. We construct a bipartite graph
G = (Ωm ∪ Ωp, E), where Ωm ∪ Ωp is the node set and
E represents the all fully connected edge set. Every edge
e ∈ E has one end node in Ωm and the other end node in
Ωp . The function ϕ assigns a positive weight value to each
edge. A matching M is a subset of E such that each node
in Ωm ∪ Ωp appears in at most one edge in M . Our goal is
to find the maximum matching:

M∗ = argmax
M

∑
e∈M

ϕ(e),

where e = e(ωm
i , ωp

j ) represents the edge matching node
ωm
i and ωp

j .
The role of the weight function ϕ(e) is to determine the

possibility that ωm
i and ωp

j belong to the same instance.
Based on this, we design the weight function to calculate
the similarity in appearance of these two nodes. The ap-
pearance of each entity ω is considered from two aspects:
geometric feature geo and visual feature vis. For vis, we
use the average of the visual features of all the points in
this entity. In terms of geo, we train a geometric feature ex-
tractor, which builds upon PointNet++[32] and embeds the
raw point cloud data. The weight function ϕ is specifically
defined as

ϕ(e(ωm
i , ωp

j )) = Cosim(geomi , geopj )+Cosim(vismi , vispj ),

where Cosim refers to the cosine similarity.
Then the Kuhn-Munkres algorithm [24] is

adopted to solve this maximum matching problem.
Once entities are matched, we acquire entity pairs
{(ωm

1 , ωp
j1
), (ωm

2 , ωp
j2
), . . . , (ωm

t , ωp
jt
)} as rearrangement

goals. Each entity pair (ωm
i , ωp

ji
) represents the two

different states of the same instance, where ωm
i denotes the

goal state and ωp
ji

denotes the current state of the instance.
Subsequently, for the inferred rearrangement goals, we
transport them to their goal states in succession, during
which, we leverage the 2D obstacle map and Dijkstra al-
gorithm [13] to conduct obstacle avoidance and navigation
path planning.

4. Experiments
Rearrangement task remains a practical challenge for em-
bodied agents that assist humans in real life, whose goal
is to bring a given physical environment into the goal state
with a goal specification [2].each pixel is classified into a
category of change[36].

Table 1. Comparison on RoomR dataset

Method Suc (%) ↑ FS (%) ↑ E ↓ Mis ↓
TIDEE 11.7 28.9 0.715 0.734
MaSS 4.7 16.5 1.016 1.018
Our 14.2 33.1 0.714 0.707

“Suc”: Success; “FS”: Fixed Strict; “E”: Energy Remain;
“Mis”: Misplaced.

Table 2. Comparison on our MrMiR dataset

Method Suc (%) ↑ FS (%) ↑ E ↓ Mis ↓
TIDEE 1.0 14.1 0.917 0.924
MaSS 0.6 10.5 1.019 1.026
Our 5.0 28.7 0.7327 0.7134

“Suc”: Success; “FS”: Fixed Strict; “E”: Energy Remain;
“Mis”: Misplaced.

4.1. Experiment Setup

Dataset We evaluate our method on the AI2THOR Re-
arrangement Challenge based on the RoomR dataset[45],
which consists of 80 rooms and 4000 tasks for training,
and 20 rooms with 1000 tasks each for both validation and
test. Each task in RoomR involves 1 to 5 objects with state
changes, characterized by object locations or openness.

In RoomR[45] dataset, the spatial range of object
changes is limited due to the confined area with single-room
scenes and the target objects to be rearranged are mainly
category-wise, i.e., most categories only have one instance.
To cater for the prevalent characteristics of indoor environ-
ments in reality, we build a more practical and challenging
dataset MrMiR for the two-stage rearrangement task on the
ProcTHOR simulator[12], where the change in the state of
an object can involve a broader spatial range, even extend-
ing across different rooms. Besides, there exists multiple in-
stances within the same category that have different appear-
ance. The simulator ProcTHOR[12] respectively provides
10,000 training, 1000 valid and 1000 test apartments. For
our task need, we totally select 6000 apartments in the simu-
lator, splitting 5000 apartments for training, 500 apartments
for validation, and 500 apartments for test. Each apartment
contains multiple instances within the same category that
have different appearance. For each apartment, we ran-
domly generate one rearrangement task. Therefore, our Mr-
MiR dataset totally contains 6000 rearrangement tasks, the
same as RoomR. Fig. 3 illustrates the comparison of scene
area distribution between our MrMiR dataset and RoomR
dataset. It can be seen that our dataset encompasses a di-
verse range of scene area, while RoomR mainly focusing
on small rooms under 100m2.
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To train the geometric feature extractor based on
PointNet++[32], which embeds point cloud, we generate a
dataset using AI2THOR[23]. We collect 77K sample pairs,
of which 70K are used for training and 7K for testing. Each
sample pair is composed of two point clouds, which may
either represent the same instance (the positive pair) or dif-
ferent instances (the negative pair). The distribution of the
positive and negative pairs is balanced, with a 1:1 ratio.
Within each room of AI2THOR, we generate positive sam-
ple pairs by applying different transformation operations to
the point cloud of the same object. We also perform trans-
formation operations on the point clouds of two different
objects to generate negative sample pairs. For the trans-
formation operations, we consider random rotation, adding
random noise, and randomly deleting 20% of the original
point cloud data.

Metrics To evaluate an agent’s performance, we con-
sider several metrics as follows: (1) Success. The success
metric is a binary indicator of each task, which is strictly
defined as whether the whole objects’ states have been re-
stored to their goal states. (2) Fixed Strict. This metric
records the proportion of successfully fixed objects per task.
If there are any newly misplaced objects at the end of a task,
this metric will be set as 0. (3) Misplaced. This metric is
denoted as the number of misplaced objects after the un-
shuffle stage divided by the number of misplaced objects at
the start of the unsuffle stage. (4) Energy Remaining (E).
The above metrics are quite strict, which is not possible to
measure the distance to task completion. The energy is used
to represent the difference between two possible states of an
object, which can be functioned as D : S×S ⇒ [0, 1]. The
larger the energy value, the greater the difference between
the two states, whereas if the two states are approximately
equal, the energy value is 0. Therefore, this metric can be
computed as the sum of all objects’ energy after the unshuf-
fle stage, divided by the sum of all objects’ energy at the
beginning of the unshuffle stage.

Implementation details The distance threshold ϵd is set
to 1.5m, which is determined through hyper-parameter tun-
ing, as detailed in Sec. 4.4. To ensure a fair comparison, we
limit the maximum step number for both the exploration
and rearrangement stages. In RoomR dataset[45], the ex-
ploration step limit is set to 300 and the navigation step
limit for each object’s rearrangement is set to 50. In our Mr-
MiR dataset, we categorize the apartments by area into five
levels: <10m2, 10 – 60m2, 60 – 150m2, 150 – 300m2,
>300m2. Correspondingly, the the exploration step lim-
its are set to 50, 200, 300, 500 and 800 and the navigation
step limits for each object’s rearrangement are set to 50, 80,
100, 200, 300. When we train the geometric feature extrac-
tor, we use Adam as our optimizer and the hyper-parameters
(lr, β1, β2, ϵ) are set to (0.001, 0.9, 0.999, 1e − 8). The pa-
rameters and models are tuned only on the RoomR dataset

Figure 3. Comparison of scene area distribution between Mr-
MiR and RoomR[45] datasets.

and are directly tested on the MrMiR dataset.

4.2. Comparisons with Related Works

We report the quantitative comparisons on the RoomR
dataset in Table 1 and the MrMiR dataset in Table 2 with
the two state-of-the-art modular methods MaSS[41] and
TIDEE[38].

MaSS [41] employs a Gaussian mixture model to train a
semantic search strategy, aiming to guide the agent towards
regions where the likelihood of object occurrence is higher.
During the exploration process, the 3D voxel semantic map
is constructed, which is then used to match and identify ob-
jects that need to be rearranged.

TIDEE [38] employs a coverage-based exploration pol-
icy to extract the spatial relationships between objects. Af-
ter the exploration of two stages, the relationship changes
are used to identify the rearrangement goals.

Given that the original work of TIDEE is based on
category-level (i.e., only records the category information
of objects, and for multiple instances under the same cate-
gory, only chooses one as the target), it cannot be directly
applicable to our MrMiR dataset. To be fair, we make mod-
ifications to TIDEE by extracting all spatial relationships
between instances when testing on the MrMiR dataset.

As shown in Table 1, our proposed method CAVR out-
performs the related works in all metrics. Specifically, it
improves the success rate by 2.5% and the proportion of
successfully fixed objects by 5.38%. Beyond the primary
improvements, the decrease in energy and misplaced met-
rics suggests that our CAVR method could rearrange the
environment closer to the goal configuration, even without
fully completing the task. As shown in Table 2, the dispar-
ity between the related works and our CAVR method has
further increased, fully demonstrating the superiority of our
method in dealing with more complex and challenging en-
vironment.
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Table 3. Ablation Study

Visual
Exploration

Scene Change
Matching Success (%) ↑ FixedStrict (%) ↑ E ↓ Misplaced ↓

coverage ✓ 13.1 31.0 0.722 0.717
MaSS’s ✓ 8.7 25.8 0.763 0.754

✓ uniform 11.3 24.6 0.818 0.807
✓ visual 14.0 32.6 0.724 0.720
✓ geometric 14.2 32.3 0.723 0.717

✓ ✓ 14.2 33.1 0.714 0.707

“✓” represents utilizing our proposed corresponding modules (closer-aligned-retrace exploration policy and scene change matching
based on similarity of appearance including visual feature and geometric feature introduced in Sec. 3); “E”: Energy Remaining.

Figure 4. Rearrangement performance relative to distance threshold ϵd. The blue lines represent the average metrics across the tasks of
validation set of RoomR[45], with the shaded area representing the 68% confidence interval. Higher values of Success and %FixedStrict
indicate superior performance, whereas lower EnergyRemaining and %Misplaced indicate better results.

4.3. Ablation Study

Considering the complexity of visual rearrangement task,
we conduct ablation studies on RoomR dataset [45] to fur-
ther investigate the importance of different modules within
the overall task. In the ablation studies, we keep the diff-
cloud as the representation of scene changes.

Ablation on the visual exploration module We re-
place our closer-aligned-retrace exploration policy with:
a) Coverage-based exploration policy This strategy ran-
domly selects target points from unexplored areas, which
are used in TIDEE [38]. b) MaSS’s semantic policy This
ablation directly adopts the semantic policy proposed in
[41], which trains a network to search the object distribu-
tion.

Ablation on the scene change matching module The
process of scene change matching can be abstracted as a
maximum weight matching problem in bipartite graph. We
substitute the weights of edges with: a) Uniform weights
This ablation set all edge weights to the same value regard-
less of the objects’ appearance, which leads to a random
matching. b) Similarity of visual feature This ablation
only utilize the similarity of visual feature as the weight.
c) Similarity of geometric feature This ablation only use
the similarity of geometric feature as the weight.

The experimental results are presented in Table 3. In the

ablation study on the visual exploration module, the model
with MaSS’s exploration policy perform worst due to the
substantial variation in objects distribution within rooms,
making it challenging to model them effectively with a uni-
form network. The model with coverage-based policy also
underperform as it is likely to overlook minor changes when
the observation distance is considerable. In the ablation
study on the scene change matching module, removing any
part of the appearance feature clearly decreases the perfor-
mance in all metrics, which illustrates the noticeable impact
of our extracted appearance feature on the visual rearrange-
ment task.

4.4. Hyper-parameter Tuning

We conduct experiments on the validation set of
RoomR[45] to determine the distance threshold in the opti-
mization criteria for our closer-aligned-retrace exploration
policy. A very small threshold value means visiting nearly
every grid space on the map, while a large threshold value
ignores the underlying concern of non-ambiguous scene
change detection. The exploration happens in the unshuf-
fle stage as well and our exploration policy leads the agent
to try its best to replicate the previous trajectory. Therefore
the threshold value determines the trade-off between opti-
mality in terms of the agent traversal for exploration and a
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Figure 5. Visualization of optimization process of observation distance map and construction of diff-cloud (a) In the walkthrough
stage, objects begin in the positions indicated by the dashed blue bounding boxes. Observation distance map is positioned at the top right
corner of each image. The color transitioning from blue to red represents the distances ranging from 0m to 5m. (b) In the unshuffle stage,
objects are moved to the locations indicated by the solid red box. (c) The diff-cloud is gradually built up, including the moved part (blue
points) and the protruding part (red points).

non-ambiguous scene change detection.
As shown in the Fig. 4, we set observation distance

thresholds from 1m to 7m and compute the average met-
rics of 1000 tasks. Optimal performance on the validation
set is achieved with a distance threshold at 1.5m, which is
the threshold consistently applied in the other experiments
throughout this paper. In this experiment, error bars are cal-
culated based on a 68% confidence interval.

4.5. Visualization

We visualize and analyze the optimization of the observa-
tion distance map during the walkthrough stage and the con-
struction of the diff-cloud in the unshuffle stage, as shown
in Fig. 5. As the exploration progresses, the distance map
increasingly exhibit hues of blue, which indicates that our
exploration policy enables the agent to observe the scene
details up close. In the unshuffle stage, as the diff-cloud
is gradually built up, we develop a distinct understanding of
the changes occurring throughout the scene. After matching
these changes according to the similarity of their appear-
ance, we can carry out the rearrangement execution proce-
durally.

5. Conclusion

We propose a category agnostic model for visual rearrange-
ment task in this paper. Our method is composed of a closer-
aligned-retrace exploration policy, a scene change detection
module based on point cloud and a scene change matching
module utilizing the similarity of appearance feature, each
specifically designed to recover the scene configuration re-
gardless of any category labels. To validate the proposed
method, we conduct experiments on the RoomR dataset
and a more practical dataset MrMiR collected by us, where
multiple instances distribute across multiple rooms. Exper-
imental results on these two datasets demonstrate that our
method is able to perform the visual rearrangement task ef-
fectively without any category information.
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