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Abstract

The recent progress in Large Language Models (LLM)
has spurred various advancements in image-language con-
versation agents, while how to build a proficient video-
based dialogue system is still under exploration. Consid-
ering the extensive scale of LLM and visual backbone, min-
imal GPU memory is left for facilitating effective temporal
modeling, which is crucial for comprehending and provid-
ing feedback on videos. To this end, we propose Branch-
ing Temporal Adapter (BT-Adapter), a novel method for ex-
tending image-language pretrained models into the video
domain. Specifically, BT-Adapter serves as a plug-and-
use temporal modeling branch alongside the pretrained vi-
sual encoder, which is tuned while keeping the backbone
frozen. Just pretrained once, BT-Adapter can be seamlessly
integrated into all image conversation models using this
version of CLIP, enabling video conversations without the
need for video instructions. Besides, we develop a unique
asymmetric token masking strategy inside the branch with
tailor-made training tasks for BT-Adapter, facilitating faster
convergence and better results. Thanks to BT-Adapter, we
are able to empower existing multimodal dialogue models
with strong video understanding capabilities without incur-
ring excessive GPU costs. Without bells and whistles, BT-
Adapter achieves (1) state-of-the-art zero-shot results on
various video tasks using thousands of fewer GPU hours.
(2) better performance than current video chatbots without
any video instruction tuning. (3) state-of-the-art results of
video chatting using video instruction tuning, outperform-
ing previous SOTAs by a large margin. The code has been
available at https://github.com/farewellthree/BT-Adapter.

1. Introduction

Since the past year, Large Language Model (LLM) chatbots
[25, 34, 37, 45] have emerged as one of the most remark-
able advancements within the AI community. Excitingly,
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the LLM-driven AI assistants have showcased impressive
abilities in comprehension, reasoning, and engaging in con-
versations. The success of text-only dialogue systems has
also sparked the development of image-language conversa-
tion agents [7, 9, 19, 50]. These agents combine pretrained
image models with LLMs, followed by instruction tuning,
to create a fusion of visual and textual understanding for
enhanced conversation capabilities.

In comparison to images, videos offer a more compre-
hensive representation of how humans perceive and inter-
pret the world. Nevertheless, constructing a video-centric
dialogue system is a more complex endeavor compared to
the image-based one. Firstly, a typically multimodal agent,
comprising LLM, a pretrained image encoder (usually CLIP
[29]), and additional learnable modules, is already demand-
ing in terms of GPU memory. The incorporation of video
dialogue introduces even higher costs, as multiple frames
need to be fed as inputs. Secondly, a pretrained encoder as
potent and knowledge-enriched as CLIP is currently lack-
ing in the realm of videos, leading to inferior visual un-
derstanding. Lastly, gathering video-text instruction data of
comparable scale, quality, and diversity to images poses a
significant challenge. Rather than building the video agent
from scratch, an alternative and promising strategy involves
adapting existing pretrained image-centric dialogue models
to the video domain [16, 22, 23, 47], which can leverage the
abundant knowledge embedded within image models.

Expanding pretrained image models to the video domain
is an extensively explored area. The crux of the matter lies
in enhancing the capability of 2D models to model tempo-
ral dynamics [3, 5, 35]. However, implementing effective
temporal modeling within image dialogue models presents
notable challenges, primarily due to the trade-off between
efficiency and effectiveness in CLIP-based temporal mod-
eling techniques. Methods with strong temporal model-
ing capabilities, e.g., joint-ST modeling [3, 17, 38, 40] and
interpolate-style modeling [24, 26], often necessitate fine-
tuning of the entire visual encoder, thereby exacerbating
the already significant GPU memory consumption of video
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Figure 1. The performance overview of our BT-Adapter. On the left, we report zero-shot Recall@1 on MSRVTT [39] vs. pretraining GPU
hours. On the right, we provide a quantitative comparison of video conversations among existing video dialogue agents.

conversation models. Moreover, full-finetuning would lead
to the loss of knowledge encapsulated in pretrained mod-
els, resulting in reduced performance for image-based con-
versations In contrast, methods that focus on parameter-
efficient temporal modeling aim to keep the image encoder
frozen and introduce only a few trainable parameters, which
are embraced by most video dialogue models. However,
these approaches are typically limited temporal modeling
and struggle to capture crucial spatiotemporal features.

To tackle the problems in the aforementioned methods,
we proposed Branching Temporal Adapter (BT-Adapter), a
novel framework to migrate image-text pretrained models
to the video domain. As the name implies, BT-Adapter in-
corporates a branching spatial-temporal module for tempo-
ral modeling. Alongside the pretrained image model, BT-
Adapter inherits the parameter efficiency advantage from
conventional adapters [11] while concurrently achieving ef-
fective temporal modeling. Notably, unlike the plug-style
adapter, BT-Adapter does not disrupt the forward progres-
sion of the pretrained models, thereby safeguarding the in-
tegrity of the pretrained multimodal knowledge. After be-
ing pretrained with any version of CLIP, BT-Adapter can
be seamlessly integrated with all image conversation mod-
els using this version of CLIP to activate video conversa-
tion, without necessitating video instructions, e.g., openai-
CLIP for LLaVa, Eva-CLIP for MiniGPT4 and Instruction-
BLIP. Additionally, we have devised a unique asymmetric
masking mechanism that exclusively implements tube to-
ken masking within the BT-Adapter. Building upon this,
we formulate two custom training objectives for the BT-
Adapter: Masked Branching Token Alignment (MBTA) and
Masked Branching Cross-modal Alignment (MBCA). This
approach not only reduces computational demands and ac-
celerates convergence but also yields improved outcomes.

To validate the effectiveness and efficiency of our BT-
Adapter, we provide a detailed analysis of various tempo-

ral modeling strategies for video conversation in Sec. 3.2.
Furthermore, in Sec. 4, we carry out extensive qualitative
and quantitative experiments on BT-Adapter, encompassing
both traditional video tasks and video conversations. As de-
picted in Fig. 1(left), a series of designs ensures that BT-
Adapter is highly resource-efficient: our post-pretraining
demands just 8 V100(32G) GPUs in a mere 3 hours, lead-
ing to a reduction in carbon emissions by more than 10240×
and 2687× compared to CoCa [43] and InternVideo [38]
respectively. Building upon this, we still achieve state-of-
the-art results in zero-shot video-text retrieval. Regarding
video conversation, as shown in Fig. 1(right), we clearly
demonstrate that fine-tuned BT-Adapter surpasses the previ-
ous state-of-the-art by a significant margin across all bench-
marks, and BT-Adapter without instruction tuning has bet-
ter average performance than fine-tuned SOTAs.

Finally, Our contributions can be summarized as (1)
Comprehensive studies on potential temporal modeling
methods for video dialogue systems. (2) Branching Tempo-
ral Adapter (BT-Adapter) with tail-made masking and train-
ing strategies. (3) State-of-the-art results in conventional
video tasks and video conversations.

2. Related Work
Temporal Modeling on Image-Language Pretrained
Models. With the wide application of pretrained image-
language models [29, 43], how to extend these pretrained
multimodal models into the video domain has emerged as a
novel yet critical research topic. Existing temporal model-
ing methods can be broadly categorized into several types.
The most straightforward and commonly used one is joint-
spatial-temporal modeling [3, 17, 38, 40]. By inputting
all video tokens into the image encoder, this approach
can effectively model temporal dependencies without other
techniques. However, joint-ST modeling necessitates fine-
tuning the entire encoder, resulting in significant compu-
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tational costs and the degradation of pretrained knowledge.
Another representative type is the interpolate-style temporal
modeling, including separated-ST modeling [3, 46], mes-
sage token [24], and ST-Adapter [26]. Inserting temporal
modules between the pretrained spatial layers, interpolate-
style modeling shares similar cons and pros with joint-ST
modeling. Specifically, ST-Adapter is also known as the
parameter-efficient temporal module, where the distinctions
with our methods are detailed in Sec. 9 in the Appendix.
Different from the former two types, concatenate-style tem-
poral modeling [8, 21] attaches temporal modules follow-
ing the pretrained encoder, which allows for the freezing of
the backbone and the preservation of knowledge. Neverthe-
less, this style offers limited temporal modeling, as it hardly
captures crucial low-level spatial-temporal features. In Sec.
3.2, we will experimentally compare the different temporal
modeling methods for video dialogue.

In contrast to the preceding types, BT-Adapter adopts
a branching temporal modeling structure. Thanks to the
design, we circumvent the issues above, enabling profi-
cient temporal modeling, efficient parameter fine-tuning,
and multimodal affinity simultaneously. Most similar to
our methods, STAN [20] also introduced branch-style tem-
poral modeling. Nonetheless, there are three key distinc-
tions between our work and STAN: (1) Our emphasis is on
zero-shot image-to-video transfer and video conversations,
areas that have never been explored by STAN. (2) Our per-
formance is notably superior when the backbone is frozen,
which is attributed to our unique design like temporal CLS
token, zero-initialized temporal projection, and temporal se-
lection. (3) We have introduced the novel training strategy
and objectives tailored for the branching temporal structure.

Video Conversation. Recent advancements in multimodal
learning have been predominantly propelled by the fusion of
visual models with LLM. Yuan et al. [44] initially demon-
strated the potential of combining visual models with LLM.
Blip-2 [15] further proposed Q-former that maps visual to-
kens into the text embedding space. Subsequently, several
methods presented visual instruction tuning [7, 19, 50] for
image-LLM to enable visual conversation. Most closely re-
lated to our topic, there have been several developments in
the field of video-centric dialogue models over the past few
months [16, 22, 23, 47]. Generally, these models consist of
the visual encoder, LLM, and temporal module, tuned with
video instruction data to realize video conversation. How-
ever, in pursuit of efficient training, the temporal modules
utilized by these models, such as temporal position em-
bedding [47] and temporal pooling [22, 23], often exhibit
limited temporal modeling capabilities. In contrast, our ap-
proach maintains parameter-efficient training while simul-
taneously delivering effective temporal modeling. Thanks
to the benchmark raised by Maaz et al. [23], we can quan-
titatively illustrate the superiority of our methods in Sec. 4.

Moreover, we introduce a novel setting of zero-shot conver-
sation by integrating pretrained temporal modules with im-
age dialogue models, demonstrating the feasibility of video
conversation without any video instruction tuning.

3. Methodology
In this section, we elaborate on how to efficiently enhance
pretrained image-language models (e.g.,, CLIP [29] and
LLaVA [19]) with temporal modeling capabilities while
preserving the pretrained knowledge. The main framework
is depicted in Fig. 2 . We will introduce the model architec-
tures of BT-Adapter in Sec. 3.1, the exploration of temporal
modeling in video dialogue models in Sec. 3.2, and the
training strategy and objectives in Sec. 3.3.

3.1. Branching Temporal Adapter

As the pioneer of contrastive image-text pretraining, CLIP
[29] has founded widespread application in various do-
mains. Meanwhile, fundamental image dialogue models
like BLIP-2 [15] and LLaVA [19] all employ CLIP as vi-
sual encoder. Hence, without losing the generalizability, we
focus on the adaption of CLIP.
Model Architecture. To enable video input, within CLIP,
we treat each frame as an individual image. Given a
video with T frames, we divide each frame into N non-
overlapping patches, represented as V = {Vi}Ti=1 and
Vi = {vi,j}Nj=0, where vi,0 denotes the [CLS] token. Then,
tokens in each frame are added with spatial position and fed
independently into the lth CLIP layers:

V
′(l−1)
i = S attn(LN(V

(l−1)
i )) + V

(l−1)
i ,

V
(l)
i = FFN(LN(V

′(l−1)
i )) + V

′(l−1)
i ,

(1)

where S attn, LN and FFN denote spatial attention, layer
normalization and feed-forward network.

In contrast to the plug-style adapter that consists of mul-
tiple independent modules, BT-Adapter is a continuous net-
work operating as a branch alongside the main backbone.
Inside BT-Adapter, we adopt divided space-time attention
[3]. Given all video tokens, we first gather patch tokens in
the same position across different frames, obtaining V̂ =
{V̂j}Nj=1 and V̂j = {v̂i,j}Ti=1. Then, tokens in each position
are fed individually into the lth temporal layers:

V̂
′(l−1)
j = Wt · T attn(LN(V̂

(l−1)
j )) + V̂

(l−1)
j , (2)

where T attn is the self-attention operated on the T dimen-
sion. Wt is an additional zero-initialized linear projection,
which keeps the training stable during the adaption. Then,
the position-wise tokens are reshaped into frame-wise to-
kens {V̂ ′

i}Ti=1, and fed into the spatial layer, following the
same procedure as CLIP layer in Eq. 1.
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Figure 2. The overview of our model. The left side shows the model architecture and the data flow during pretraining. The right side
depicts the pipeline of video conversation.

Backbone-Branch Interaction. Unlike traditional
adapters, which are added to every pretrained layer, our
branching adapter has significantly fewer layers compared
to the main backbone. Assuming we have K layers in the
branch, BT-Adapter takes the output of the last K+1 CLIP
layers as input, each layer on both sides corresponding
pairwise. To construct the input of the first BT-Adapter
layer from the kth CLIP layer, we first develop a new learn-
able video [CLS] token v̂

(0)
0,0 to represent the entire video.

Then, we concatenate v̂
(0)
0,0 with V (k) and update the patch

embeddings with frozen spatial positional embeddings and
learnable temporal positional embeddings:

v̂
(0)
i,j = v

(k)
i,j + Pt

i + Ps
j , (3)

where P s is the spatial position embedding shared with
CLIP while P t is the temporal position embedding. For
any other layer of BT-Adapter, we construct its input V̂ (l)

from the previous branching layer and the CLIP layer at the
same level with weight selecting as follows:

v̂
(l)
i,j = Sigmoid(Wb)·v̂(l−1)

i,j +(1−Sigmoid(Wb))·v(k+l−1)
i,j ,

(4)
where Wb is the learnable selective weight with zero ini-
tialization. At the final stage, the output of the branch and
CLIP are combined for the out-of-the-box representation:

v = Wv proj(LN(Sigmoid(Wb) · v̂(−1)
0,0

+(1− Sigmoid(Wb)) ·
1

T

T∑
i=1

v−1
i,0 )),

(5)

where Wv proj is the frozen weight in CLIP projecting the
visual embedding into joint visual-text feature space. With
CLIP kept frozen, the backbone encodes low-level spatial
patterns and high-level aligned features, while the branch

focuses on modeling temporal dependencies. In this way,
we leverage strong temporal modeling capacities while pre-
serving the pretrained knowledge intact.

3.2. Temporal Modeling for Video Conversation

In this section, we conduct an empirical study to explore
potential temporal modeling strategies for video dialogue
models, demonstrating the advantages of our approach. We
argue that an ideal temporal modeling approach for video-
LLM models should meet several criteria: it should be
parameter-efficient (P-E), as image dialogue models are al-
ready quite large; it should be multimodal-friendly (M-F),
preserving as much multimodal alignment knowledge as
possible; and it should be temporal-sensitive (T-S), deliver-
ing strong performance in time-sensitive scenarios. To mea-
sure the “multimodal-friendly” and “temporal-sensitive”,
we employ the “Correctness of Information” and “Tempo-
ral Understanding” metrics from the VideoChatGPT bench-
mark [23] respectively. “parameter-efficient” is simply de-
cided by whether the CLIP can be frozen. Next, we will ex-
plain how we implement various temporal modeling meth-
ods for video conversation.
Spatial-Temporal Pooling. Following Maaz et al. [23],
we do not integrate any module in CLIP and encode each
frame independently. Then, all patch tokens V ∈ RT×N

are pooled along the time (T ) and spatial (N ) dimensions,
resulting in a total of T+N tokens. These tokens are subse-
quently input into the LLM, which has much fewer tokens
compared to joint or separate temporal modeling.
Joint-ST modeling. Following Xue et al. [40], we incor-
porate spatiotemporal positional embeddings to 2D patches
and feed all T ∗N video tokens into CLIP and LLM simul-
taneously. In this way, tokens in any position or frame can
attend to each other, providing a straightforward yet effec-
tive method for modeling temporal dependencies. To make
training feasible, we utilize the FSDP [48] to facilitate pa-
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Table 1. The finetuning results of different temporal modeling on
video conversation. * means CLIP is frozen.

Model P-E M-F T-S Correctness of Temporal
Information Understanding

Baseline* 2.38 1.93
ST Pooling* ✓ ✓ 2.40 1.98
Joint-ST ✓ 1.92 2.11
Separate-ST ✓ 2.10 2.13
Separate-ST* ✓ 2.29 2.01
BT-Adapter* ✓ ✓ ✓ 2.55 2.26

rameter and gradient sharing between GPUs.
Separate-ST modeling. Unlike joint-ST modeling,
separate-ST modeling retains and leverages CLIP’s spatial
layer. All T ∗ N patch tokens are fed in LLM. Following
Zeng et al. [46], we insert temporal attention before each
CLIP layer and add temporal position embeddings to the
input. Regarding the backbone, separate-ST modeling of-
fers flexibility, allowing us to experiment with both frozen
and unfrozen CLIP layers.
Branch Temporal Adapter. We directly equip CLIP-L/14
with BT-Adapter in Sec. 3.1 to achieve video encoder. In
LLaVA, LLM takes the output from the second-to-last layer
of the visual encoder as its input. Hence, we also take the
second-to-last output from both CLIP and BT-Adapter and
combine them with learnable balance weight. Finally, com-
bined patch tokens V ∈ RT×N are pooled along the time
(T ) dimension, resulting in only N tokens for inputting into
LLM, which is the least among all methods.
Results. We replace CLIP-L/14 in LLaVA with the imple-
mented video encoders and then proceed with video instruc-
tion tuning. In all methods, we keep LLM frozen while
opening the linear projection between the visual encoder
and LLM. No pretraining on video-text datasets is included
for fair comparison. Results are presented in Table 1. It
can be observed that methods with a frozen CLIP tend to be
parameter-efficient but perform poorly in terms of temporal
modeling. On the other hand, methods with good tempo-
ral understanding suffer from high computation costs and
knowledge loss. In contrast, our BT-Adapter achieves a
balance by being parameter-efficient, multimodal-friendly,
and temporal-sensitive simultaneously. The results reveal
that BT-Adapter has a clear advantage over other temporal
modeling methods for video conversation.

3.3. Pretraining with Asymmetric Masking

As proved by previous studies [38, 40], CLIP-based video
encoder can harvest stronger performance on downstream
video tasks after being post-pretrained on large-scale video-
text data. Hence, we also involved our BT-Adapter with
video-text pretraining. However, the expensive computa-
tion cost has always been a bottleneck when scaling up the
training. Inspired by the recent success of masked modeling
in visual-language pretraining [18, 33], we develop a unique
asymmetric masking strategy for BT-Adapter. Specifically,
we maintain tokens in the frozen CLIP unchanged while

applying a tubular mask to the tokens in BT-Adapter. This
mask randomly masks a certain percentage (ρ%) of patch
tokens in the same position across different frames. This
approach allows us to maximize the retention of pretrain-
ing knowledge from CLIP while reducing spatial-temporal
redundancy. Thanks to the asymmetric mask, we can main-
tain a high mask ratio (ρ ≥ 70) without compromising
performance, leading to a reduction of at least half of the
computational budget. As a result, with the assistance of
frozen backbone and token masking, we can accomplish the
costy video-text pretraining in just a few hours. Further-
more, based on asymmetric masking, we have devised two
tailor-made training objectives for the branching temporal
structure, in addition to the Video-Text Contrastive.
Video-Text Contrastive (VTC). VTC is the most widely-
used basic objective for cross-modal alignment. Given the
global video feature v in Eq. 5 and global text feature t, we
formulate LV TC as:

Lnce(x, y) = − 1

B

B∑
m=1

log
exp(τxm · yn)∑B
n=1 exp(τxm · yn)

,

LV TC = Lnce(v, t) + Lnce(t, v),

(6)

where B is the batch size and m,n is the index in a batch
and τ is the temperature scale.
Masked Branching Token Alignment (MBTA). Masked
video modeling has been proven beneficial for spatial-
temporal representation learning [33], but pixel reconstruc-
tion in Tong et al. [33] is computationally expensive. In
our approach, we have a frozen CLIP and the masked BT-
Adapter, where the unmasked CLIP is naturally a teacher
for the masked branch. Hence, we can conduct the to-
ken alignment in an end-to-end pretraining without extra
forward propagation. Specifically, we compute the mean
squared error (MSE) between the unmasked tokens in BT-
Adapter and the corresponding tokens in CLIP in the last
layer, formulating LMBTA as:

LMBTA =
1

(1− ρ)NT

T∑
i=1

N∑
j=1

(Wv proj · v−1
i,j

−W′
v proj · v̂−1

i,j )
2, (i, j) /∈ M,

(7)

where M is the set of masked tokens, and W′
v proj is a

freshly initialized linear projection distinct from Wv proj.
Utilizing MBTA, we can constrain the masked branch to
reconstruct and align the semantic information present in
CLIP, leading to better multimodal results.
Masked Branching Cross-Modal Alignment (MBCA). In
our model, the backbone and the branch handle different
aspects: CLIP encodes static spatial features, while BT-
Adapter captures dynamic information. Therefore, we addi-
tionally align the branching patch tokens with the text em-
bedding to align the temporal-sensitive information, which
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Table 2. The results of video conversation on video-based generative performance benchmarking. FT and ZS mean with and without video
instruction tuning respectively.

Method Temporal Correctness of Detail Contextual Consistency Mean ScoreUnderstanding Information Orientation Understanding

VideoLLaMA [47] 1.82 1.96 2.18 2.16 1.79 1.98
LLaMA-Adapter [9] 1.98 2.03 2.32 2.30 2.15 2.16
VideoChat [16] 1.94 2.23 2.50 2.53 2.24 2.29
VideoChatGPT [23] 1.98 2.40 2.52 2.62 2.37 2.38
BT-Adapter-LLaVA (ZS) 2.13 2.16 2.46 2.89 2.20 2.46
BT-Adapter-LLaVA (FT) 2.34 2.68 2.69 3.27 2.46 2.69

Table 3. The results of video conversation zero-shot question-answering.
FT and ZS mean with and without instruction tuning respectively.

Method MSVD-QA MSRVTT-QA ActivityNet-QA
Acc Score Acc Score Acc Score

VideoLLaMA 51.6 2.5 29.6 1.8 12.4 1.1
LLaMA-Adapter 54.9 3.1 43.8 2.7 34.2 2.7
VideoChat 56.3 2.8 45.0 2.5 26.5 2.2
VideoChatGPT 64.9 3.3 49.3 2.8 35.2 2.7
Ours (ZS) 67.0 3.6 51.2 2.9 46.1 3.2
Ours (FT) 67.5 3.7 57.0 3.2 45.7 3.2

Table 4. The results of zero-shot video conversation on
different image-centric dialogue models.

Method Temporal Correctness
LLaVA-Vicuna 1.78 2.06
+BT-Adapter 2.13 2.16
MiniGPT4-Vicuna 1.88 2.48
+BT-Adapter 2.56 2.71
InstructBLIP-Vicuna 2.03 2.90
+BT-Adapter 2.38 2.93

is formulated as:

v̂ =
1

(1− ρ)NT

T∑
i=1

N∑
j=1

Wv proj · v̂−1
i,j ,

LMBCA = Lnce(v̂, t) + Lnce(t, v̂), (i, j) /∈ M.

(8)

Different from LV TC , we utilize the patch tokens for the
alignment. This choice is made because the information
is highly centralized in the CLS token for CLIP, whereas
downstream applications like multimodal conversation or
generation typically rely on the patch tokens as input.

4. Experiments
4.1. Experiment Settings

Tasks and Datasets. We have evaluated our BT-Adapter on
two main aspects: traditional video tasks and video-centric
dialogue. To begin with, we pretrained the BT-Adapter on
WebVid-2M [2]. For traditional video tasks, we consider
zero-shot text-to-video retrieval and video recognition, cov-
ering seven benchmarks: (a)MSR-VTT [39]. (b)DiDeMo
[1]. (c)LSMDC [30]. (d)ActivityNet [4]. (e)Kinetic-400
[5]. (f)HMDB-51 [13]. (g)UCF-101 [31]. We used Re-
call@K (R@K) for text-to-video retrieval and Top-K Accu-
racy (A@K) for video recognition as the evaluation metrics.

For video dialogue, we conducted evaluations for the
zero-shot video conversation (without instruction tun-
ing) and instruction-tuned video conversation. The
VideoChatGPT-100K [23] is employed for supervised in-
struction tuning. To assess the quality of the responses
quantitatively, we employ the VideoChatGPT benchmark,

which consists of five metrics for video-based generative
performance benchmarking and six metrics for zero-shot
question-answer evaluation. Additional details and settings
of each dataset can be found in Sec. 6 in the Appendix.
Implementation Details. We employ openai-CLIP-L/14
and EVA-CLIP-G [32] as the video backbone. For all down-
stream tasks, we use openai-CLIP-L/14. We adopt 4 layers
of BT-Adapter in default. During pretraining, the masking
ratio ρ is set as 70%. The temperature scale τ is fixed as
0.01 for contrastive loss. The weight of the three losses is
1 : 1 : 1. It takes 3 hours to train one epoch on WebVid
on 8 V100-32G GPUs. For video conversation, we imple-
ment the instruction tuning based on BT-Adapter-LLaVA-
7B. Unless specifically noted, we use BT-Adapter-LLaVa
in all video dialogue tasks. InstructBLIP and MiniGPT4
are also included for zero-shot evaluation. All conversation
models are based on Vicuna1.0-7B [49]. During instruc-
tion tuning, we update the linear projection and BT-Adapter,
while keeping the rest architecture frozen. It takes 3 hours
to train three epochs on 8 A100 40GB GPUs. More training
details are listed in Appendix.

4.2. Quantitative evaluation

Video Dialogue. Thanks to the benchmarks introduced by
Maaz et al. [23], we can quantitatively compare the perfor-
mance of various video conversation models. The results
are presented in Table 2 and Table 3, where we compare
BT-Adapter with all existing video-centric dialogue mod-
els, including VideoLLaMA [47], LLaMA-Adapter [9],
VideoChat [16], and VideoChatGPT [23]. It is observed
that our zero-shot model, even without any instruction tun-
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Table 5. The zero-shot results of text-to-video retrieval on MSR-VTT, DiDemo, LSMDC, and ActivityNet.

Method Pretraining MSR-VTT DiDeMo LSMDC ActivityNet
Scale R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Non-CLIP models
Frozen [2] 5M 24.7 46.9 57.2 21.1 46.0 56.2 - - - - - -
Clover [12] 5M 26.4 49.5 60.0 29.5 55.2 66.3 17.4 29.2 38.2 - - -
OmniVL [36] 14M 34.6 58.4 66.6 33.3 58.7 68.5 - - - - - -
HiTeA [42] 5M 29.9 54.2 62.9 36.1 60.1 70.3 15.5 31.1 39.8 - - -
Singularity [14] 17M 34.0 56.7 66.7 37.1 61.7 69.9 - - - 30.6 55.6 66.9
VideoCoCa [41] 100M 34.3 57.8 67.0 - - - - - - 34.5 63.2 76.6
CLIP-L/14
CLIP [29] - 35.4 58.8 68.1 30.3 54.9 65.4 17.0 31.8 40.3 28.8 57.6 71.8
ImageBind [10] - 36.8 61.8 70.0 - - - - - - - - -
InternVideo [38] 12.8M 40.7 - - 31.5 - - 17.6 - - 30.7 - -
TVTSv2 [46] 8.5M 38.2 62.4 73.2 34.6 61.9 71.5 17.3 32.5 41.4 - - -
UMT-L [17] 5M 33.3 58.1 66.7 34.0 60.4 68.7 20.0 37.2 43.7 31.9 60.2 72.0
BT-Adapter 2M 40.9 64.7 73.5 35.6 61.9 72.6 19.5 35.9 45.0 37.0 66.7 78.9

Table 6. Ablation study on the structures of BT-Adapter. We report the results
on zero-shot R@1 of MSRVTT and DiDemo and zero-shot video conversation.

Model MSRVTT DiDemo Temporal
CLIP (baseline) 35.4 30.3 1.78
+4 layer separate-ST 35.7 31.0 1.81
+branch modeling 37.4 32.9 1.97
+backbone-branch interaction 38.5 33.9 2.06

Table 7. Ablation study on the training objectives.
We report the zero-shot R@1 of retrieval.

MBTA MBCA MSRVTT DiDemo
38.5 33.9

✓ 39.3 34.3
✓ 40.1 34.9

✓ ✓ 40.9 35.6

ing, outperforms methods that require instruction tuning
on average. When fine-tuned using video instruction data,
the superiority of our approach becomes even more pro-
nounced. These results underscore the effectiveness of
the BT-Adapter as a superior method for temporal mod-
eling in video conversation models compared to existing
approaches. Notably, our BT-Adapter exhibits a signifi-
cantly larger performance margin over other methods on
ActivityNet in both Table 3 and 5, highlighting its partic-
ular strength in handling long video sequences. Moreover,
we have integrated the BT-Adapter with various pretrained
image conversation models. As illustrated in Table 4, pre-
trained BT-Adapter yields consistent advancement on all
image-language chatbots without extra instruction tuning,
underscoring the broad applicability of our method.

Traditional Video Tasks. The results of zero-shot text-to-
video retrieval are presented in Table 5. Compared to the
previous SOTAs, BT-Adapter achieves competitive perfor-
mance across all datasets, obtaining the best results on most
metrics. For instance, in comparison to UMT and Singu-
larity, although there is a slight lag in terms of R@1 on
DiDeMo and LSMDC respectively, we have surpassed them
by more than 5% on MSRVTT and ActivityNet. Further-
more, we achieve superior results with significantly fewer
pretraining scales and GPU hours than all the mentioned
methods. For example, we use 130× fewer GPU hours than

UMT, 560× fewer than TVTSv2, and 2687× fewer than
InterVideo. The results of zero-shot action recognition are
posted in Table 9 in Appendix.

4.3. Ablation Study

Model Structure. To investigate the components within
the BT-Adapter, we initiated our study by exclusively em-
ploying VTC for pretraining and subsequently evaluating
the zero-shot performance across retrieval tasks and video
conversation, as presented in Table 6. Initially, we ex-
plored the implementation of separate-ST modeling within
the last 4 layers. However, the resulting improvements
were marginal. Subsequently, we transitioned the separate-
ST network into the branch, where we witnessed notable
progress. This shift underscores the efficacy of branching
modeling. In the final step, we studied the interaction mod-
ule, i.e., multi-level selective combination between back-
bone and branch. This addition led to further enhancements
across all benchmark datasets. More fine-grained ablations
on model components can be found in Sec. 10 in appendix.
Training Objectives. We investigated the influence of two
innovative training objectives in Table 7, where all experi-
ments were conducted using BT-Adapter with a mask rate
of 70%. Our observations reveal that both MBTA and
MBCA yield improvements in downstream results, with
MBCA demonstrating more substantial progress. This out-
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Figure 4. Ablation study on the masking rate during pretraining.

The video shows the master performing a variety of Tai Chi movements. The movements are 
demonstrated with precision and grace, showcasing the master's skill and experience in the art.

What are the Tai Chi movements performed by the master?

The master performs several Tai Chi movements, including one where he moves his arms and 
legs in a coordinated manner. He also performs a series of movements where he moves his arms 
and legs in a circular motion.

Figure 5. A qualitative result of video conversation. We present the answers from VideoChatGPT [23] (upper) and our BT-Adapter-LLaVA (down).

come suggests that individually aligning temporal modules
and textual outputs effectively mitigates the limitations in-
herent in pretrained image-text models. Moreover, the com-
bination of both objectives results in further advancements.
Number of Branching Layers and Masking Rate. The
number of branching layers and the masking rate in our
model inherently involve a trade-off between computational
resources and performance. To determine the optimal set-
tings, we conducted ablation experiments. Firstly, in Fig. 3,
we present the results of zero-shot retrieval and conversa-
tion as we vary the number of layers. Notably, we observed
that the performance improvement plateaus at around 4-6
layers. Secondly, in Fig. 4, we provide results for zero-
shot retrieval and the corresponding convergence GPU time
across different masking rates. Our findings indicate that
the results remain stable when the masking rate is set at or
below 70%, while higher masking rates significantly lower
the training time. Therefore, we have chosen to maintain a
masking rate of 70%.

4.4. Qualitative Results

In Fig. 5, we present a qualitative example of video conver-
sation. Unlike the general description from VideoChatGPT,
our model provides an informative and accurate response

to a video-related question, highlighting the effectiveness
of the BT-Adapter in video comprehension. Additional ex-
amples of video dialogues covering various aspects can be
found in the Appendix.

5. Conclusion

This paper presents a novel approach to achieve parameter-
efficient yet effective image-to-video adaptation and video
conversation. Our proposed solution, named Branching
Temporal Adapter (BT-Adapter), is a branching separate-
ST network for temporal modeling. Building upon the BT-
Adapter, we introduce an asymmetric masking technique
along with two novel training objectives. Extensive ex-
periments demonstrate the superiority of our model over
other temporal modeling methods for video conversation.
By seamlessly integrating the BT-Adapter with any pre-
trained image conversation model, we achieve video dia-
logues without necessitating manual video instruction tun-
ing. With significantly lower computation costs, we attain
state-of-the-art results across two zero-shot video tasks and
video conversations.
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