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Figure 1. Samples of our Long-Untrimmed Audio-Visual Segmentation dataset. Different from previous AVS datasets, LU-AVS is crafted
to explore the challenges inherent in the AVS task for long-untrimmed videos. It features detailed start- and end-sounding positions in the
temporal dimension, along with comprehensive mask and bounding box annotations in the spatial dimension. The examples show that our
dataset contains numerous audible segments in each video, characterized by diverse durations and varying start and end-sounding positions.
Additionally, within a single video, the same objects may have notable shifts spatially and undergo deformation.

Abstract

Existing audio-visual segmentation datasets typically fo-
cus on short-trimmed videos with only one pixel-map an-
notation for a per-second video clip. In contrast, for
untrimmed videos, the sound duration, start- and end-
sounding time positions, and visual deformation of audi-
ble objects vary significantly. Therefore, we observed that
current AVS models trained on trimmed videos might strug-
gle to segment sounding objects in long videos. To inves-
tigate the feasibility of grounding audible objects in videos
along both temporal and spatial dimensions, we introduce
the Long-Untrimmed Audio-Visual Segmentation dataset
(LU-AVS), which includes precise frame-level annotations
of sounding emission times and provides exhaustive mask
annotations for all frames. Considering that pixel-level an-
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notations are difficult to achieve in some complex scenes, we
also provide the bounding boxes to indicate the sounding re-
gions. Specifically, LU-AVS contains 10M mask annotations
across 6.6K videos, and 1IM bounding box annotations
across 7K videos. Compared with the existing datasets, LU-
AVS videos are on average 4~8 times longer, with the silent
duration being 3~ 15 times greater. Furthermore, we try our
best to adapt some baseline models that were originally de-
signed for audio-visual-relevant tasks to examine the chal-
lenges of our newly curated LU-AVS. Through comprehen-
sive evaluation, we demonstrate the challenges of LU-AVS
compared to the ones containing trimmed videos. There-
fore, LU-AVS provides an ideal yet challenging platform for
evaluating audio-visual segmentation and localization on
untrimmed long videos. The dataset is publicly available
at: https://yenanliu.github.io/LU-AVS/.
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1. Introduction

Audio-visual segmentation (AVS) is an emerging field that
segments objects in images according to the sounds from
the given audio. Existing AVS datasets, such as [60, 61],
commonly slice raw videos into short clips with 5 or 10-
second duration. Moreover, in these short-trimmed videos,
the target-sounding object is often the isolated or salient one
that occurs at the start of the video clip and continues sound-
ing throughout the whole video. As a result, the sound prop-
erties of audio are often given less emphasis, and methods
developed based on these trimmed videos can be degraded
into salient object segmentation, still achieving reasonable
performance. However, in untrimmed videos, the start and
end sounding frames of an audible object are uncertain, and
the sounding duration of the target objects varies signifi-
cantly among different videos. Therefore, it is necessary to
investigate the AVS task on long-untrimmed videos.

To this end, we propose a large-scale Long-Untrimmed
Audio-Visual Segmentation (LU-AVS) dataset. Our LU-
AVS dataset comprises 6.6K untrimmed videos covering 78
categories, and 10M pixel-level annotation masks are pro-
vided to indicate the audible objects. Noticeably, in the an-
notation process, we found not all sounding regions can be
clearly identified with masks. For example, videos in the
sailing category are often shot from a first-person perspec-
tive, posing a challenge for mask-based sound region label-
ing. Consequently, we extend our dataset with bounding
box annotations, extending them to both previously mask-
marked categories and those challenging to annotate with
masks. The extended LU-AVS dataset contains about 7.2K
untrimmed videos and more than 88 categories.

To construct a high-quality audio-visual untrimmed
dataset, we first select long untrimmed videos that contain
objects that emit clear sound. Thus, our newly collected
videos are much longer compared to the video clips in the
existing AVS datasets [60, 61]. After collecting enough
videos, it is observed that the audible objects have various
starting and ending timestamps, possess diverse sounding
durations, and appear in different spatial positions. Further-
more, a single video may feature several objects producing
sounds concurrently or in an asynchronous manner. Next,
we annotate the collected videos in a semi-automatic fash-
ion with the help of a vision foundation model [25] and a
tracking method [9]. Unlike existing datasets that label the
first frame per second, the LU-AVS dataset provides pixel-
level annotations for each audible object across all frames.
In this way, sounding objects with large visual deformation
will have more supervision within one second. Moreover,
we ask human annotators to label sounding objects that are
hard to mask with bounding boxes.

Considering objects may produce sounds at any time
in videos and span an indeterminate number of frames,
this imposes significant challenges to localizing objects at

both spatial and temporal dimensions. With the proposed
dataset, we benchmark the existing audio-visual segmenta-
tion (AVS) method and conduct a comprehensive compari-
son by adapting several state-of-the-art methods that were
proposed for relevant tasks to the trimmed audio-visual
segmentation task. We notice that segmenting the audi-
ble object requires audio-visual correlation on each indi-
vidual frame while identifying the start and the end sound-
ing frame demands the temporal context across the whole
video. Moreover, the experimental results demonstrate that
LU-AVS presents more challenges than existing datasets,
resulting in the current AVS methods being less effective in
handling untrimmed videos.

Overall, our work provides a foundation for developing
more advanced audio-visual segmentation methods that re-
quire full exploration of the audio-visual correlation for au-
dible object segmentation at a spatial and temporal level
in untrimmed videos. In particular, we propose a large-
scale untrimmed audio-visual segmentation dataset, LU-
AVS. Based on LU-AVS, we develop and conduct com-
prehensive evaluations of the state-of-the-art audio-visual
segmentation methods and the temporal sentence ground-
ing methods, providing a reference for future works. We
also develop a simple baseline approach, which points to
potential solutions to some of the challenges and future re-
search directions.

2. Related Work

Audio-Visual Segmentation. Audio-visual segmentation
aims to localize audible objects by a pixel-level map for a
given audio-visual pair. This task requires both audio and
visual understanding and is one of the most fundamental
yet challenging tasks in computer vision. Audio-visual seg-
mentation was first introduced by Zhou et al. [60], and they
also released the first AVS dataset AVSBench-Object. In
the AVSBench-Object dataset, videos are trimmed to be five
seconds in length, and each second contains only one frame
of binary mask annotation. It should be noted that the masks
provided by AVSBench-Object do not distinguish the cate-
gories of sounding objects. Later on, an extended semantic
dataset AVSBench-Semantic dataset has been proposed in
[61]. The labeled semantic maps indicate the audible object
categories and each video is trimmed to a longer duration of
10 seconds.

Built upon these datasets, many works aim to improve
the segmentation quality by enhancing the audio-visual in-
teractions [17, 22, 31, 35, 36]. For instance, Huang et
al. [22] devise a set of object queries that are conditioned
on audio information and then associate each query with
sounding objects. Li et al. [27] propose a decoupled audio-
visual transformer that combines audio and visual features
from the temporal and spatial dimensions. In addition to im-
proving the segmentation mask quality, several works em-
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Table 1. Statistics of publicly-available AVS datasets. Compared to the existing AVS datasets, the newly curated LU-AVS possesses a
greater number of mask annotations and a broader range of categories. Additionally, it incorporates two forms of spatial annotations. For
video samples where the pixel-level annotations are hard to obtain (denoted as ‘Hard’), we provide the bounding box annotations. In
contrast, ‘Normal’ samples are labeled with bounding boxes and mask annotations. More importantly, the average durations of videos
and their audible segments in LU-AVS are both higher than those in other AVS datasets. This demonstrates that LU-AVS facilitates the
exploration of challenges posed by untrimmed videos in the AVS task.

Annotation . .
Dataset Real-Data Type Data Amount Category Zir::tl; (t)'r(il) Amount DAvrg;t.\;f??) Pro (S)::;tl (%) A];g'rasti)gﬂé?t
Normal Hard ! Mask BBox Uraton s portt ¢ uration {s
AVSBench-Object [60] v Video 5,356 0 23 X 26,458 X 5 1.2 4,94
AVSBench-Semantic [61] v Video 11,356 0 70 X 82,335 X 7.64 5.1 7.25
VPO-SS [52] X Image+Audio 12,202 0 21 X 12,202 X 10 0 10
VPO-MS [52] X Image+Audio 9,817 0 21 X 13,496 X 10 0 10
LU-AVS (Ours) v Video 6,627 630 88 v 10,350,009 10,981,586 41.97 1545 16.03

phasize the importance of audio in this task. As suggested
by Yuan et al. [52], Mao et al. [36] and Chen et al. [31], ex-
isting AVS datasets have a serious bias caused by the limited
and less diverse data, rendering an audio-visual segmenta-
tion model to be a saliency segmentation model. To mitigate
this problem, Chen et al. [31] postposition the audio-visual
interaction process and leverage potential sounding objects
to guide the audio classification. Mao et al. [36] emphasize
the modality-specific representation by using latent space
factorization to find the decouple space and the shared space
of each modality. Yuan et al. [52] create a synthetic dataset
by collecting images from the COCO dataset and audio files
from the VGGSound dataset.

To fundamentally solve the data bias problem introduced
by the existing AVS datasets, our work curates a large
untrimmed audio-visual segmentation dataset. The diverse
start and end-sounding timestamps of target objects, along
with various audio durations, make our data more challeng-
ing and more closely resemble real-life scenarios.

Spatio-Temporal Video Grounding. Spatio-temporal
video grounding (STVG) aims to detect the temporal
boundaries and the spatial object tube at the same time, ac-
cording to the given sentence [12, 26,29, 41,42,45,47, 53—
58]. It was first introduced by Gao et al. [13] and Anne et
al. [1], and has drawn significant attention recently.

A standard paradigm requires a pre-defined object pro-
posal generator [32, 33, 44, 46, 48, 51, 58]. Some works
design one-stage approaches but take more computing re-
sources to process long videos [11, 21, 24, 30, 34, 47, 49,
50]. Zhang et al. [58] first generate object tubes based on a
spatial-temporal region graph module, and then incorporate
the textual clues into the graph for reasoning. Su et al. [41]
devise a cross-modal feature learning module and lever-
age the cross-modal feature to generate bounding boxes for
a target object and predict its starting and ending frames,
thus producing a target object tube. Yang et al. [47] pro-
pose a transformer-based framework that models spatial-
temporal interactions in its encoder and jointly performs

spatial-temporal localization in its decoder. Jin et al. [23]
introduce a spatio-temporal consistency-aware framework,
explicitly constricting the grounding regions and associat-
ing them across the whole frames.

Although AVS and STVG tasks both involve determin-
ing the spatial and temporal positioning of a target object
in a video based on a given prompt, such as text and au-
dio [18, 28, 60, 61], there are still significant differences
between the two tasks. For the STVG task, the sentence
prompt provides clarity and precision, allowing for spe-
cific instructions, while audio may be more ambiguous and
subject to interpretation. This requires the segmentation
model to possess a sophisticated understanding of audio-
visual associations [39, 43]. Moreover, audio, as part of
the video’s soundtrack, can offer real-time cues for segmen-
tation, aligning closely with the video’s content as it pro-
gresses [2], while a sentence is static and does not change
over time [16].

3. LU-AVS Dataset

In this section, we introduce the newly curated long-
untrimmed dataset LU-AVS by first presenting the video
collection and annotation process in Section 3.1 and Sec-
tion 3.2, respectively. Then we provide the dataset statistics
and analysis in Section 3.3.

3.1. Data Source

We collect videos from the VGGSound dataset [4], a com-
prehensive dataset where the sounds and the visual con-
texts are well aligned. Initially, we select a subset from its
300 categories, prioritizing those frequently encountered in
daily life and spanning various domains. Unlike the original
dataset, which slices videos into 10-second clips, we adopt
the original untrimmed videos using the provided YouTube
URLs. It should be noted that we randomly cut the raw
videos to keep them around one minute since many of them
are over several hours. Afterward, we carry out a more elab-
orate selection process, in which the following criteria need
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Figure 2. Sounding durations of each audible segment class in the LU-AVS dataset sorted by descending order, with colors indicating
audible segment types. The category labels framed with dashed lines only include bounding box annotations, while the other categories

contain mask and bounding box annotations.
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Figure 3. Examples that are hard to annotate with masks. Thus,
we only provide bounding-box annotations to those categories.

to be met:

Exclude low-quality videos in which it is hard to distin-
guish the sounding sources. One can clearly identify and
track audible objects in the videos.

To provide mask annotations, we also need to distinguish
objects that can be explicitly masked. Examples of hard
examples that cannot be masked are shown in Figure 3.
These criteria enable high-quality annotations for sounding
regions and ensure the annotated objects can be tracked in
videos. Finally, we select 7,257 videos of high quality to
create a benchmark that is diverse and representative of a
wide range of real-world scenarios.

3.2. Data Annotation

Considering not all sounding regions can be identified with
masks, such as the ‘fireworks banging’ in Figure 3, we use
two annotation forms to describe the audible objects, i.e. the
mask and the bounding box. Specifically, there are 6,627

videos annotated with masks, spanning 78 categories, and
7,257 videos annotated with bounding boxes, distributed
across 88 categories “. We annotate the selected videos in
two distinct steps. The first step involves identifying the
category of each sounding object in a video, as well as de-
termining the start and end frames of each audible segment.
The second step entails annotating the audible object by
bounding boxes and masks within each audio-visual tube.
In the following section, we will introduce the process of
spatial and temporal annotations.

e Audible Tube Annotation. We develop an annotation
tool and invite five annotators to specify the start/emergence
and end/vanishing frames of the audible objects in videos.
In this step, the start and end frames are determined based
on whether the visual and sound appear simultaneously and
whether one factor disappears respectively. After that, we
will filter out invalid annotations and integrate valid ones.
Specifically, if one audible tube of one object has overlap-
pings with other distinct objects more than three times and
the temporal Intersection over Union (tloU) value” between
each other exceeds 0.8, we consider they are the valid audi-
ble tube annotations and correspond to the same sounding
object. We take the mean of their start and end frames and
employ the mode of the category annotations within a tube
to determine the category labels.

e Mask Annotation. Based on the temporal annotations,
we trim the long videos into audible tubes to facilitate the
mask annotations. Manually annotating masks in videos
is extremely expensive. Therefore, based on the large off-
the-shelf visual foundation model SAM [25] and the object
tracking method XMem [9], we develop a semi-automatic
annotation tool to simplify the labeling procedure. Specifi-
cally, with SAM, our annotators only need to click positive
and negative points within the sounding regions to generate

*The number of categories annotated by bounding boxes is more than
the number of categories annotated by masks in Figure 2.

The calculation formula is as follows: tIoU =
Intersection of the two audible tube frame spans
Union of the two audible tube frame spans
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the mask for the target object. To ensure mask quality, we
leverage the median filter to smooth the generated masks.
Additionally, annotators can also use polygons to annotate
some complicated samples.

After obtaining the first labeled frame, the tracking
method can automatically generate the masks of the audible
object in the remaining frames. However, in many cases, the
target objects are obscured or deformed, and the tracking
method may fail to track and segment the object. To guar-
antee the annotation quality of all frames in an audible tube,
annotators must re-label frames with low-quality masks un-
til the audible object is precisely delineated throughout the
entire audible tube. More details about our developed an-
notator are in supplementary materials.
¢ Bounding Box Annotation. In addition to the mask an-
notations, we also provide bounding boxes with Fuxi Youl-
ing Crowdsourcing® to identify the sounding regions. Com-
mencing from the initial frame, we extract every subsequent
frame at a one-second interval within a video. Each frame is
annotated by three annotators, and the final annotation is de-
termined by averaging the values of these bounding boxes.
Additionally, we employ the mean shift tracking [10] and
kernelized correlation filter [19] tracking methods for both
forward and backward tracking of the target object within
the 1-second frame intervals, thereby obtaining bounding
boxes for the target object in the intermediate frames. After
that, we manually check the annotation quality, and anno-
tators re-label the frames that are difficult to obtain high-
quality bounding boxes by the tracking methods.

3.3. Dataset Analysis and Statistics

e Overview of LU-AVS Dataset. In Table 1, we present a
statistical analysis of the newly proposed LU-AVS dataset,
using four previous audio-visual segmentation datasets as
reference, including AVSBench-Object [60], AVSBench-
Semantic [61], VPO-SS [52], and VPO-MS [52]. As shown
in Table 1, LU-AVS contains 7.2K videos spanning 88 cate-
gories with 10M annotated masks and 11M bounding boxes.
Compared to AVSBench-Semantic [61], LU-AVS has more
annotation masks (10,350,009 vs 82,335), longer average
video durations (41.97 vs 7.64), and longer average audible
tube durations (16.03 vs 7.25). In addition, the proportion of
silent-fragment duration to the total video duration is much
higher than that of the other AVS datasets, thus imposing
more challenges to AVS methods.

Figure 2 provides the statistical information on the
sounding duration in each category in the LU-AVS dataset.
Overall, the category distribution of the dataset spans a wide
range of domains, including Animal, Human, Music, Sport,
Tool, Vehicle, and others. In this dataset, the total duration
of videos is 84.6 hours, of which the sounding duration is
73.3 hours. We divide the training, validation, and test sets

*https://fuxi.163.com/solutions/data
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Figure 4. Statistics on the temporal structure of LU-AVS. (a) and
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Figure 5. Statistics on the spatial distribution of sounding objects
in our LU-AVS dataset. (a) and (b) illustrate the size and aspect
ratio distributions of annotated bounding boxes, respectively. (c)
represents the spatial distribution of the centroids of object masks.

in a 3: 1: 1 ratio. Moreover, to mitigate the impact of long
tails, we ensure that each category has at least 50 audible
segments. In the following, we provide a detailed statistical
analysis of LU-AVS to further demonstrate the complexity
and difficulty of the dataset.

e Temporal Characteristics. As suggested in Figure 4
(a) and (b), the length of video durations and audible seg-
ment durations are various. Shorter segments pose greater
challenges in temporal localization, such as locating a 1.4s
‘thunder’ segment in a 37s video. In contrast, longer seg-
ments present more difficulty in spatially segmenting target
audible objects, such as identifying and tracking a rapidly
deforming ‘race car’ in a 45s audible tube. Figure 4 (c)
reveals the start- and end-time distribution of audible seg-
ments is broad. Furthermore, Figure 4 (d) indicates that
over half of the videos have multiple audible segments. This
variety of object emergence and vanishing and the presence
of several audible segments per video highlight the impor-
tance of sound recognition and increase the complexity of
identifying audible objects over time.

o Spatial Characteristics. Figure 5 shows the distribution
of spatial annotations in LU-AVS. As suggested in Figure 5
(a), bounding boxes with aspect ratios of 1:1, 1:2, and 2:1
are the most common, due to the high proportion of peo-
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AVS task on LU-AVS.

ple, music instruments, and tools in the dataset. However,
there are nearly 40% of the bounding boxes have unusual
aspect ratios. This variability can be explained by the de-
formation of objects during motion, such as the significant
skateboard changes during aerial spins. As illustrated in
Figure 5 (b), the size of target objects is widely distributed,
which increases the difficulty of audible object detection.
Additionally, Figure 5 (c) indicates diverse spatial positions
of audible objects across images. This diverse object spa-
tial distribution mitigates the data bias problem and also in-
creases the challenges of tracking objects in videos.

4. Strong Baselines for Benchmarking

To show the necessity and fully explore the challenges of
LU-AVS, we investigate the performance of existing audio-
visual segmentation (AVS) [36, 61], audio-visual localiza-
tion (AVL) [5, 37, 38, 40], audio-visual event localization
(AVE) [4, 8, 15, 43, 59], and spatio-temporal video ground-
ing (STVG) [23, 47] methods on our LU-AVS dataset. In
Figure 6, we illustrate the difference among these tasks.

o Audio-Visual Segmentation Methods. The goal of the
AVS task is to segment audible objects in an image based
on a given audio-visual pair. TPAVI [61] and ECMVAE
[36] are designed based on the existing datasets with the
fixed input format of 10 frames corresponding to 10s audio.
To adapt these methods for untrimmed videos, we modify
the input to one second of audio and five uniformly sampled
frames from the segment, allowing audio-visual interactions
within the per-second segment. Additionally, to obtain the
temporal predictions, we consider the segment between the
first and the last frame where the target object continuously
appears as a predicted segment.

¢ Audio-Visual Localization Methods. The AVL task also
focuses on locating audible objects in the spatial dimension.
However, AVL presents sounding regions by heatmaps. For
comparison, in the test stage, we convert the heatmaps into
bounding boxes as [5]. Thanks to our bounding-box anno-
tations, we can evaluate AVL on our LU-AVS dataset in a
unified manner. Similar to the modification for AVS meth-
ods, we slice the videos into 1-second segments to fit the
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Figure 7. The overview architecture of a strong baseline. It first
learns visual and audio features separately and then establishes
visual and audio associations. It enables us to dissect the impacts
of visual and audio branches explicitly.

AVL methods.

¢ Audio-Visual Event Localization Methods. AVE task
aims at determining the audio-visual temporal segments
when the target object is both audible and visible at the
same time. This task does not focus on segmenting audi-
ble objects on the spatial dimension, they cannot be applied
to segmenting objects in images. These methods are also
developed based on the videos with fixed durations. In this
setting, they usually slice the trimmed video into clips with
a 1s duration and further predict the category label of these
clips. To adopt them into our methods, we slice our videos
into multiple one-second clips. If the sounding duration
of an audible object does not exceed 0.5s, the segment is
masked as silent.

e Spatio-temporal Video Grounding Methods. Given a
query sentence, STVG methods are required to track the tar-
get object in the video both at the spatial (bounding boxes)
and temporal dimensions (start and end time positions).
Unlike the AVS task that may require segmenting multi-
sounding objects in a video, the STVG methods only need
to find and track one target object for each text-video pair.
To explore the performance of STVG methods on LU-AVS,
we modify these text-guided methods to adapt to our task.
To be specific, we replace the text branch of these methods
with the audio encoder VGGish [20]. Different from ex-
tracting the text feature from the whole sentence, we extract
audio features for each 0.96s segment with a sliding window
(stride=0.32s) to temporally interact with the corresponding
visual information.

e A Strong LU-AVS Baseline. The LU-AVS dataset in-
troduces unique challenges in grounding audible objects in
untrimmed videos along the spatial and temporal dimen-
sions. Different from the existing AVS datasets having
videos with fixed durations, the target objects may emit or
stop sounding at random positions and the sounding du-
rations vary in LU-AVS, making it necessary to capture
the audio-visual interactions throughout the entire video.
Moreover, different from the typical spatio-temporal video
grounding task just queries one target object according to
the given sentence, the LU-AVS dataset includes videos
with multiple sounding sources, increasing the difficulty of
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grounding audible objects in videos.

Based on the above observation, we introduce a simple
framework to provide a base reference for long video audi-
ble object grounding in the future. As depicted in Figure 7,
we first employ the visual module to identify the potential-
sounding objects in videos, across T' frames. In detail, we
utilize MaskFormer [7] and DETR [3] to generate the masks
and bounding boxes, respectively. Then we integrate the
potential-sounding object sequence along the time dimen-
sion according to the semantic labels of objects. Note that,
in the visual branch training process, we reclassify object
labels according to visual information. For instance, ‘baby
crying’ and ‘baby laughing’ are categorized as ‘baby’. For
the audio branch, we employ the VGGish as the audio fea-
ture extractor and perform a sound segment classification
task. Specifically, we split the whole audio into multiple
one-second duration segments and further obtain the audio
label of each segment. Based on the visual and audio results
obtained by the two branches, we finally aggregate them ac-
cording to their semantic labels. More implementation de-
tails, experimental settings, and results are provided in the
supplementary materials.

5. Experiments
5.1. Evaluation Metrics

In contrast to earlier research [52, 60, 61] that concentrated
solely on the spatial segmentation of audible objects, the
LU-AVS dataset extends this focus by incorporating de-
tailed temporal annotations, specifically marking the start-
ing and ending positions of sounds in videos. Furthermore,
the dataset’s comprehensive spatial annotations demand a
more rigorous approach to maintain segmentation consis-
tency for audible objects. Consequently, these enhanced
complexities underline the need for developing innovative
evaluation metrics that encompass both spatial and tempo-
ral dimensions. Inspired by the assessment criteria in AVS
[60] and STVG tasks [6, 14], we develop new evaluation
metrics for the LU-AVS task.

Specifically, for the dataset with mask annotations, we
employ m_tloU, m_tF, m_uvloU, and m_vF as evalu-
ation metrics. m_tloU and m_tI' are the average tem-
poral IoU and F-score between the ground-truth audible
segments and the predicted audible segments, respectively.
For m_vIoU and m_vF, we first define S;; as the set of
frames contained in either the predicted or ground-truth seg-
ments and Sz as the set of frames in both predicted and
ground-truth segments. We then calculate vloU by vioU =
@ Yotes, ToU(r,7*), where r* and 7 represent the pre-
dicted and ground-truth regions of frame ¢, respectively.
Similarly, VF is measured by vF = o 37, 5 F(r', 7).
m_vIoU and m_vF are the average vloU and vF of sam-
ples, respectively. For the dataset annotated by bounding

boxes, we utilize m_tIoU and m_vIoU to measure the
model performance.

5.2. Benchmarking Results

o Results Analysis of AVS Methods. We conducted a com-
parative analysis of the efficacy of TPAVI [61] and ECM-
VAE [36] on LU-AVS. As delineated in Table 2 (a), it is evi-
dent that both TPAVI and ECM VAE exhibit suboptimal per-
formance across all evaluated metrics, with none surpassing
the 15% threshold. This suggests that current AVS methods
have significant limitations in processing long-untrimmed
videos. Notably, the disparity between m_tloU and m_vIoU
scores highlights the inherent challenges these methods face
in maintaining consistent audio-visual congruence through-
out the entirety of the video.

e Results Analysis of AVL Methods. As indicated in Ta-
ble 2 (b), there is a notable underperformance of the adapted
AVL methods in terms of both m_tloU and m_vIoU, with all
recorded values falling below 14%. Predominantly, meth-
ods such as those presented in [5, 37], which are tailored
for datasets like [4] featuring trimmed and consistently au-
dible content, fail to account for silent segments. However,
in the context of our dataset, silent intervals constitute a sig-
nificant portion, approximately 12.18% as reported in Table
1. Consequently, models trained on these segments tend to
neglect the accurate localization of audible objects.

o Results Analysis of AVE Methods. As original AVE
methods do not emphasize spatial segmentation of audible
objects, we adapt the evaluation metrics to assess how well
models predict segment labels over time. As illustrated in
Table 2 (¢), AVE methods excel in both m_tloU and m_vIoU
metrics, surpassing 33% across all metrics. By concentrat-
ing on temporal aspects, these methods avoid the complex-
ities of spatial video data processing, such as object move-
ment, deformation, and occlusion. Therefore, compared to
methods in other tasks, they achieve better performance.

o Results Analysis of STVG Methods. For STVG audio-
based methods, all metrics are calculated based on bound-
ing box annotations. As suggested by Table 2 (d), STVG
audio-based methods excel in the m_tloU metric, with all
methods surpassing 15%. However, their performance
drops below 8% in m_vIoU, indicating poor temporal lo-
calization. We attribute this to the weak audio-visual in-
teractions. Specifically, unlike the query sentence interact-
ing with all frames in a video, the audio signal interfaces
with its corresponding frame in time. Furthermore, while
the STVG task focuses on tracking just one target object in
a video, methods developed for LU-AVS require segment-
ing and tracking multiple sounding objects simultaneously
within videos.

e Results Analysis of a Strong Baseline. As shown in
Table 2 (e), our method (mask-based) achieves a signifi-
cant improvement (from 6.03% to 17.32%) over TPAVI on
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Table 2. Benchmarking results on the LU-AVS dataset. For all the evaluation metrics, higher values indicate better performance. Notably,
in AVL methods, the spatial localization results are presented by heatmaps. For comparison, we convert heatmaps to bounding boxes as
[5]. Additionally, AVE methods focus on temporal localization. Here, m_tloU represents the segmentation accuracy within the ground-
truth temporal range, and m_vIoU indicates the segmentation accuracy over the temporal union between the predicted and ground-truth
durations. Besides, we replace the text branch in the STVG methods with an audio branch for spatial-temporal audible object grounding.

Spatial
TaskType Method Mask BBox Temporal m_tloU m_vloU m_tF m_vF
(a) AVS TPAVI [61] v v 14.12 6.03 14.35 6.73
ECMVAE [36] v v 13.01 5.24 13.86 5.37
EZLSL [38] v v 13.01 6.93 - -
LVS [5] v v 11.65 6.03 - -
b) AVL
® SLAVC [37] v v 11.85 6.20 - -
SSPL [40] v v 10.57 5.43 - -
AVEL [43] v 34.28 33.56 36.21 36.07
CPSP [4] v 36.72 35.36 37.28 38.14
(c) AVE JoMoLD [8] v 37.86 36.06 38.95 38.76
CMPAE [15] v 40.67 40.10 42.86 41.87
TubeDETR [47] v v 15.46 6.64 - -
d) STV
(@ STVG STCAT [23] v v 15.76 7.01 - -
Ours (Mask-based) v v 18.76 17.32 17.33 16.25
STAG
© Ours (BBox-based) v v 16.53 15.89 _ _

m_vloU. This implies that the audio signal obtains more em-
phasis in our framework. Moreover, our method also con-
sistently outperforms other AVS methods across all met-
rics. Relative to AVL methods, our method (bounding
box-based) demonstrates superior performance in both the
m_vloU and the m_tloU metrics, surpassing the EZLSL
by 8.96% and 3.52% respectively. This demonstrates our
method is resilient to segments devoid of sound, while AVL.
methods exhibit diminished efficacy in datasets character-
ized by a substantial presence of such silent segments.

Compared with STVG methods, our method (bounding
box-based) attains 15.89% on the metric m_vIoU, which
is 8.88% higher than STCAT. This further illustrates that,
compared to the transformer-based multi-modal interaction
way in STVG methods, our explicit audio-visual correlation
method enables sound to play a more significant guiding
role. Since the AVE task exclusively focuses on temporal
localization while omitting spatial localization, our method,
along with others, scores lower in all metrics compared to
AVE methods. This highlights the importance of achiev-
ing the balance between spatial and temporal localization in
untrimmed videos.

5.3. Challenges Imposed by LU-AVS Dataset

Based on the above experimental results, we summarize the
dataset challenges and adaptability of existing methods as
follows: (1) For long videos in LU-AVS, the sounding du-
ration and the start- and end-sounding time positions are
uncertain. Therefore, both the spatial and temporal local-
ization of audible objects are necessary for LU-AVS. Exist-
ing AVS methods developed based on the trimmed videos

struggle to achieve temporal localization, showing limited
adaptability in long videos. (2) Unlike trimmed videos that
feature audible objects, untrimmed videos contain a high
proportion of silent segments. Hence, the existing AVL
methods trained on LU-AVS tend to overlook the audible
objects. This suggests the requirement for greater emphasis
on audio in model development on LU-AVS. (3) Similar to
STVG, the exhaustive annotations in LU-AVS pose a high
demand for achieving consistent spatial and temporal local-
ization of audible objects, requiring methods to effectively
joint model spatial, temporal, and audio-visual interactions.

6. Conclusion

In this work, we propose the first large-scale long-
untrimmed AVS dataset. Our LU-AVS poses significant
challenges in localizing audible objects at both the spatial
and temporal dimensions in untrimmed videos, thus provid-
ing an ideal benchmark for developing practical AVS meth-
ods. Moreover, our LU-AVS dataset supports various tasks,
like visual-audio localization, visual-audio grounding, and
event localization since it provides diverse and comprehen-
sive annotations. Extensive experiments demonstrate that
there is significant space to improve AVS performance on
long untrimmed videos.
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