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Abstract

Domain generalization (DG) based Face Anti-Spoofing
(FAS) aims to improve the model’s performance on unseen
domains. Existing methods either rely on domain labels
to align domain-invariant feature spaces, or disentangle
generalizable features from the whole sample, which in-
evitably lead to the distortion of semantic feature structures
and achieve limited generalization. In this work, we make
use of large-scale VLMs like CLIP and leverage the tex-
tual feature to dynamically adjust the classifier’s weights
for exploring generalizable visual features. Specifically,
we propose a novel Class Free Prompt Learning (CFPL)
paradigm for DG FAS, which utilizes two lightweight trans-
formers, namely Content Q-Former (CQF) and Style Q-
Former (SQF), to learn the different semantic prompts con-
ditioned on content and style features by using a set of
learnable query vectors, respectively. Thus, the general-
izable prompt can be learned by two improvements: (1)
A Prompt-Text Matched (PTM) supervision is introduced
to ensure CQF learns visual representation that is most
informative of the content description. (2) A Diversified
Style Prompt (DSP) technology is proposed to diversify the
learning of style prompts by mixing feature statistics be-
tween instance-specific styles. Finally, the learned text fea-
tures modulate visual features to generalization through the
designed Prompt Modulation (PM). Extensive experiments
show that the CFPL is effective and outperforms the state-
of-the-art methods on several cross-domain datasets.

1. Introduction

Face Anti-Spoofing (FAS) is an important step in protect-
ing the security of face recognition systems from print-
attack [58], replay-attack [4] and mask-attack [6, 20]. De-
spite the existing presentation attack detection (PAD) meth-
ods [7, 19, 21, 30, 32, 52, 55] obtain remarkable per-
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Figure 1. Comparison with existing DG FAS methods. (a) the pre-
vious methods either rely on a projector to align domain-invariant
feature spaces with adversarial training, or disentangle generaliz-
able features from the whole sample with a decoupler, which in-
evitably leads to the distortion of semantic structures and achieves
limited generalization. (b) Our CFPL framework is built on CLIP
to learn generalized visual features by using the text features as
weights of the classifier.

formance in intra-dataset experiments where training and
testing data are from the same domain, their performance
severely degraded in cross-dataset experiments due to large
distribution discrepancies among different domains. Do-
main Generalization (DG) based FAS aims to mitigate the
impact of distribution discrepancy by accessing multiple
domains. As shown in Fig. 1 (a) (left), a typical strat-
egy [12, 40, 41, 50] is rely on domain labels to learn
a domain-invariant feature space by adversarial training,
which is also generalized to unseen domains. While it is
difficult to seek a compact and generalized feature space for
all domains. Even, there is no guarantee that such a feature
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space exists among multiple domains due to large distribu-
tion discrepancies. Considering the manually labeled do-
main labels are arbitrary and subjective, which cannot truly
reflect the diversity of samples in a domain, as shown in
Fig. 1 (a) (right), another strategy [3, 27, 63] is based on
the instance to disentangle or generate generalized features
from liveness-irrelevant features by disentangled represen-
tation learning.Based on the above analysis, these meth-
ods either rely on domain labels to align domain-invariant
feature spaces, or disentangle generalizable features from
instance-specific and liveness-irrelevant features, which in-
evitably leads to the distortion of semantic feature structures
and achieve limited generalization.

Rethinking the reason for the poor generalization of FAS
can be attributed to the liveness-irrelevant features interfer-
ing with the classifier’s recognition of spoofing clues. If
the weight of the classifier can be dynamically adjusted
based on sample instances, such as, to weaken the inter-
ference factors and strengthen the generalized features, it
will effectively improve its generalization. Inspired by large
vision-language models like CLIP [39], which jointly trains
an image encoder and a text encoder to predict the cor-
rect of pairings (image, text), As shown in Fig. 1 (b), we
generate corrective text features by a high-capacity text en-
coder, which allows open-set visual concepts and broader
semantic spaces compared to discrete domain labels. How
to learn generalizable prompts for text encoder to adaptively
adjust the classifier's weights? Unlike general DG task,
which have domain information such as ‘This image be-
longs to Cartoon/Sketch/Art Painting/Photo*, a FAS dataset
is regarded as a domain, usually named with the publish-
ing agency, such as MSU [51], CASIA [58], Idiap [4], or
OULU [1], without providing any valuable domain seman-
tic information to assist generalizable prompt learning.

In this work, without relying on domain semantics,
the generalizable prompts can be based on image content
and style learned by reducing their correlation [50, 63].
Based on this determination, inspired by BLIP-2 [14]
and TGPT [44], we design two lightweight transform-
ers, namely Content Q-Former (CQF) and Style Q-Former
(SQF), to learn the expected prompts conditioned on con-
tent and style features by using a set of learnable query
vectors, respectively. To further ensure CQF can learn
to extract the visual representation that is most informa-
tive of the content description, we introduce a Prompt-Text
Matched (PTM) supervision to optimize the learning of
content prompts, where each sample’s content description
is generated by template description. Due to the inability
to accurately describe style information in text, instead, we
propose a Diversified Style Prompt (DSP) technology to di-
versify style prompts by mixing feature statistics between
instance-specific styles. Finally, the generalized visual fea-
tures are learned through the designed Prompt Modulation

(PM) function, which uses visual features as modulation
factors. To sum up, the main contributions of this paper are
summarized as follows:

* Instead of directly manipulating visual features, it is the
first work to explore DG FAS via textual prompt learning,
namely CFPL, which allows a broader semantic space to
adjust the visual features to generalization.

* In order to release the requirement for categories in the
text description, our CFPL first learns the prompts condi-
tioned on content and style features with two lightweight
transformers, namely Content Q-Former (CQF) and Style
Q-Former (SQF). Then, the Prompts are further opti-
mized through two improvements: (1) A Prompt-Text
Matched (PTM) aims to ensure CQF learns semantic vi-
sual representation; (2) A Diversified Style Prompt (DSP)
technology to diversify the learning of style prompts. Fi-
nally, the learned prompts modulate visual features to
generalization through the designed Prompt Modulation
(PM) function.

* Extensive cross-domain experiments show that the pro-
posed CFPL is effective and outperforms the state-of-the-
art (SOTA) methods by an undeniable margin.

2. Related Work
2.1. Face Anti-Spoofing

Methods on Intra-datasets. The essence of FAS is a
defensive measure for face recognition systems and has
been studied for over a decade. Some CNN-based meth-
ods [10, 29, 31, 32, 45] design a unified framework of fea-
ture extraction and classification in an end-to-end manner.
Intuitively, the live faces in any scene have consistent face-
like geometry. Inspired by this, some works [30, 41, 49, 53]
leverage the physical-based depth information instead of
binary classification loss as supervision, which are more
faithful attack clues in any domain. With the popularity
of high-quality 2d attacks, i.e., OULU-NPU [1], SiW [30],
CelebA-Spoof [57] and high-fidelity mask attacks, i.e.,
MARsV2 [26], WMCA [9, 37], HiFiMask [18, 20] and
SuHiFiMask [5, 6] with more realistic in terms of color, tex-
ture, and geometry structure, it is very challenging to mine
spoofing traces from the visible spectrum alone. Methods
based on multimodal fusion [8, 9, 16, 17, 56] have proven
to be effective in alleviating the above problems. The moti-
vation for these methods is that indistinguishable fake faces
may exhibit quite different properties under the other spec-
trum. In order to alleviate the limitation of consistency
between testing and training modalities, flexible modality
based methods [15, 22, 54] aims to improve the perfor-
mance on any single modality by leveraging available mul-
timodal data. However, above methods are not specially
designed to solve the domain generalization.

Domain Generalization Methods. Domain Adaptation
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(DA) [33, 36, 46] aims to minimize the distribution discrep-
ancy between the source and target domain by leveraging
the unlabeled target data. However, the target data is diffi-
cult to collect, or even unknown during training. Domain
Generalization (DG) can conquer this by taking the advan-
tage of multiple source domains without seeing any target
data. MADDG [40], SSDG [12], DR-MD-Net [47] aim
to learn a generalized feature space via adversarial train-
ing. SSAN [50] reduces the model’s overfitting of style by
randomly assembling the content and style of the samples.
RFM [41], MT-FAS [38], D?AM [3], and SDA [48] aim
to find the generalized feature directions via meta-learning
strategies. In addition to aligning a domain-invariant feature
space, SA-FAS [43] encourages domain separability while
aligning the live-to-spoof transition to be the same for all
domains. Considering the domain information lies in the
style features, ANRL [27] and SSAN [50] use IN strategy
to separate complete representation into content and style
features according to image statistics. DRDG [28] itera-
tively reweights the relative importance between samples
to further improve the generalization. The latest emerg-
ing strategy is to improve the generalization with the help
of domain-specific information. CIFAS [34] adopts causal
intervention with backdoor adjustment to mitigate domain
bias for learning generalizable features. AMEL [62] ex-
ploits the domain-specific feature as a complement to com-
mon domain-invariant features to further improve the gen-
eralization. IADG [63] learns generalizable visual features
by weakening the features’ sensitivity to instance-specific
styles. In addition to supervised training, Liu et al. [35] pro-
pose the first unsupervised DG framework for FAS, which
could exploit large amounts unlabeled data to learn gener-
alizable features.

2.2. Vision-Language Models (VLMs).

The vision-language models have undergone a leapfrog de-
velopment since CLIP [39] was proposed. This approach
has stimulated thinking and innovation in many fields,
such as object detection, image generation [25], and im-
age forgery detection [23, 24]. In terms of text models,
GPT-3 already has strong language processing capabilities.
By combining it with visual basic models to build, and
adding some necessary link parameters, the trained vision-
language model achieves a combined understanding of im-
ages and text. For example, BLIP [14] has made signifi-
cant progress in multimodality by freezing the constructed
image encoder and text encoder during training to train an
additional small query transformer. Similarly, LLaVa and
minigpt-4 reduce the cost of model training by simply lin-
early mapping image features to the word embedding space.
On the basis of deep exploration of VLM by researchers, we
want to further extend VLM in FAS.

3. CFPL: Class Free Prompt Learning
3.1. Semanticized Prompts Generation

Visual Content and Style features. Considering the chal-
lenge of DG FAS is the interference of liveness-irrelevant
signals on spoofing cues, we need to model these two types
of information with different prompts and alleviate this in-
terference by reducing their correlation. Based on previous
research [50, 63], the liveness-irrelevant signals lie more in
the instance-specific styles while spoofing clues is an im-
age attribute hidden in the content. Based on this determi-
nation, we design Content Q-Former (CQF) and Style Q-
Former (SQF) to generate content and style prompts condi-
tioned corresponding visual features, respectively. Inspired
by Adaptive instance regularization (AdaIN) [11], given a
sample, we first calculate the mean and standard deviation
at [-th layer, i.e., ,u(vl) and O’(’Ul); Then, we concatenate
them to obtain the style statistics v}, of this layer; Finally,
the style feature v is obtained by averaging style statistics
from all layers for this sample. We calculate the content fea-
ture v, of the sample from the output of the image encoder
by normalizing. The details are as follows:

>, v
vy = 2% ol = [u(o!) [|o(o)] v, € R,
(1)
o(v")
where L is the total layers of the image encoder. [- || -] rep-

resents concatenating features along embedding dimension.

CQF and SQF. As shown in Fig. 2, CQF and SQF share
a similar backbone, which consists of alternating layers
of multiheaded self-attention (MSAZ), multiheaded cross-
attention (MCA) and MLP blocks. Firstly, we create N learn-
able query embeddings Q = {ql, q’, - ,qN} € RVxd
as input to the backbone, where each query has a dimension
of d = 512 (same dimension with multi-modal embedding
space); Then, the queries interact with each other through
MSA block, and interact with image features v € R?
through MCA block; Finally, we obtain the prompt P =
{p',p? ...,p"N} € R¥*? after the queries pass through
MLP block. This process can be expressed as:

Q' =Q +MsA(LN(Q)), Q" € RV
Q" = Q' +McA(LN(Q'), LN(v)), Q" e RV*?  (2)
P =Q" +MLP(1LN(Q")), P € RN*

where Layernorm (LN) is applied before every block, and
residual connections after every block. The MLP contains
two layers with a GELU non-linearity. Based on this training
mechanism, CQF and SQF can bridge the gap between vi-
sual and language modalities by interacting prompt queries
with corresponding image features, and output the content
prompt P, and style prompt P, respectively.
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Figure 2. Our CFPL is built on CLIP [39] consists of image encoder ) and text encoder 7, and adaptes to FAS tasks via prompt learning
with four contributions: (1) CQF and SQF. CFPL introduces two lightweight transformers, namely Content Q-Former (CQF) and Style
Q-Former (SQF) to learn the different semantic prompts conditioned on content and style features from the image encoder by using a set of
learnable query vectors, respectively; (2) Prompt-Text Matched (PTM) surpervision. The fixed template description of each sample is used
as a supervise to ensure CQF learns semantic visual representation; (3) A Diversified Style Prompt (DSP). The style from each layer of the
image encoder is diversified through mixing feature statistics; (4) Prompt Modulation (PM). The generalized visual feature is adjusted by
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the modulation factor, which is generated by the text feature through the designed modulation function.

3.2. Generalized Prompt Optimization

Text Supervision in Content Prompt.

Due to the lack of semantics for CLIP in the FAS cate-
gories, it is not suitable to align queries and text represen-
tations with the concept of maximizing their mutual infor-
mation. Instead, we guide the CQF to understand the FAS’s
categories at a higher level with a binary classification task,
where the model is asked to predict whether a prompt-text
pair is matched (PTM).

Given a min-batch with B samples, we first generate a
text description containing category attribute for each sam-
ple, such as “a photo of a (CLASS) face.”, where “CLASS”
is “live” for real face and “fake” for spoof face, respec-
tively; After that, the text descriptions T' are transformed
into text supervisions § € REX77%4 through Tokenizer
and Embed layers, sequentially; Then, we construct posi-
tive and negative feature pairs of prompt-text for prediction
by CQF. Specifically, we concatenate content prompt P, €
RB*Nxd and text supervision S according to the embed-
ding dimension, and obtain the positive feature pairs R, €
RE*Nx2d  We adopt the hard negative mining strategy
from ALBEF [13] to create informative negative pairs. Such
as for each prompt, one negative text is selected with the
contrastive similarity distribution, where texts that are more
similar to the prompt have a higher chance of being sam-
pled. A similar strategy for one hard negative prompt for
each text. Therefore, we can obtain negative feature pairs
RPTompt ¢ REXNX2d gpg Rlet ¢ REXNX2d by mining
prompt and text, respectively; After that, we concatenate all
positive and negative feature pairs R,,, RZ"""", and RL*"
to obtain the joint features R € R3BXN*2d according to

the batch dimension. This process can be expressed as:

S = Embed(Tokenizer(T)), S € RBXT7xd
S = Means&Expand(S), § € REXNxd,

R, = [P||S], R, € RV
R=[R,||RE™ | Rflext]o R e R3BxNx2d

3)

where the number of word tokens in text supervisions is
aligned with the number of queries in the content prompt
by averaging (Mean) and expanding (Expand) NN times.
[-|| -]y, represents concatenating features along dim di-
mension. Finally, the optimization of text supervision is
achieved by predicting the matched and unmatched proba-
bilities for the joint features R:

3B
Lot = Y H(Y!™ Mean(FCP™(Ry)))  (4)
=1

where we feed each query embedding into a two-class lin-
ear classifier to obtain a logit, and average (Mean) the log-
its across all queries as the output matching score. #(.,.)
is the cross-entropy loss, FCP!™ is a fully-connected layer
followed by softmax, and y**™ € {0, 1} is a 2-dimensional
one-hot vector representing the ground-truth label.

Diversified Style Prompt. Due to the indescribability of
the sample style, we are unable to complete this task us-
ing text supervision. Implicitly, we borrow a strategy from
MixStyle [59] that mixes style feature statistics between in-
stances to achieve diversification of style prompts.
Specifically, given the visual style stastics [(v), o(v)]
of a min-batch, we first obtain reference statistics p(0) and
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OCI-M OMI—C OCM—1 ICM—0O avg.
Method TPR@ TPR@ TPR@ TPR@
HTER| AUC FPR=1% HTER AUC FPR=1% HTER AUC FPR=1% HTER AUC FPR=1% HTER
MADDG [40] 17.69  88.06 - 2450 84.51 22.19  84.99 - 27.98  80.02 - 23.09
DR-MD-Net [47] 17.02  90.10 - 19.68 87.43 20.87 86.72 - 25.02 81.47 - 20.64
RFMeta [41] 13.89 9398 - 20.27 88.16 17.30  90.48 - 1645 91.16 - 16.97
NAS-FAS [52] 19.53  88.63 - 16.54  90.18 1451 93.84 - 13.80 93.43 - 16.09
D2AM [3] 12.70  95.66 - 2098 85.58 1543  91.22 - 15.27  90.87 - 16.09
SDA [48] 1540  91.80 - 2450 84.40 15.60 90.10 - 23.10 84.30 - 19.65
DRDG [28] 12.43 9581 - 19.05 88.79 15.56  91.79 - 15.63  91.75 - 15.66
ANRL [27] 10.83  96.75 - 17.83  89.26 16.03  91.04 - 15.67 91.90 - 15.09
SSDG-R [12] 7.38 97.17 - 1044 95.94 11.71  96.59 - 15.61 91.54 - 11.28
SSAN-R [50] 6.67 98.75 - 10.00  96.67 8.88  96.79 - 13.72  93.63 - 9.81
PatchNet [45] 7.10 98.46 - 11.33  94.58 1340 95.67 - 11.82  95.07 - 10.91
SA-FAS [43] 5.95 96.55 - 878  95.37 6.58 9754 - 10.00  96.23 - 7.82
IADG [63] 5.41 98.19 - 870  96.44 10.62  94.50 - 886 97.14 - 8.39
CFPL(Ours) 3.09 99.45 94.28 2.56 99.10 66.33 543 9841 85.29 333 99.05 90.06 3.60
ViTAF*-5-shot [10] 2.92 99.62 91.66 1.40  99.92 98.57 1.64  99.64 91.53 539  98.67 76.05 2.83
FLIP-MCL* [42] 4.95 98.11 74.67 0.54 99.98 100.00 425  99.07 84.62 231 99.63 92.28 3.01
CFPL*(Ours) 1.43 99.28 98.57 256  99.10 66.33 543  98.41 85.29 250  99.42 94.72 2.98

Table 1. The results (%) of Protocol 1 on MSU-MFSD (M), CASIA-FASD (C), ReplayAttack (I), and OULU-NPU (O) datasets. Note that
the * indicates the corresponding method using CelebA-Spoof [57] as the supplementary source dataset and ‘5-shot’ represents 5 images

from the target datasets participating in the training phase.

o (0) by shuffling the order of batch dimension for ;(v) and
o(v), respectively; Then, we generate mixture of feature
statistics ,ni and By, through a weighted approach:

Ymiz = Ao(v) + (1 — N)o (D),

B = M) + (1~ (o) ©
where A is an instance-specific, random weight sampled
from the beta distribution, A ~ Beta(a, «). « is set to 0.1
according to the suggestion in [59]. Finally, the mixture of
style statistics [Bmix, Ymiz] are used to calculate style fea-
tures according to Eq. 1.

3.3. Prompt Modulation on Visual Features

Class Free Prompt Modulation. Due to the content and
style prompts are generated based on sample instances, they
are more suitable as a set of fine-tuning factors (class free)
for adaptively recalibrating channel-wise visual feature re-
sponses, compared to using them as classifier’s weights
(with class) to predict visual feature. In this work, we use
prompts to distinguish between generalized features and
liveness-irrelevant signals by explicitly modeling interde-
pendencies between channels.

Concretely, we first input content prompt P, and style
prompt Py into the text encoder to produce text features,
t. € RB*d and t, € RE*?, respectively; After that,
we concatenate these two types of text features along the
embedding dimension to obtain modulation features t €
RE*24 with rich visual concepts; Then, we employ a gat-
ing mechanism g, with a sigmoid activation J to map mod-
ulation features to the weighting factors w € RZ*9, This

process can be expressed as:

w

5(ge(ta W)) = 6(W20relu(wlt))v

~ -1 -2 ~d] =~ .
D= [v 0 ,...,v},vczwc-tf7

; (©)
Lots = ZH(yflS,FCCZS(ﬁi)),ﬁ c RBxd
=1

where 01y is the ReLU function, W; € R#*2d and W, €
RYX ¥ are trainable parameters for two fully connected (FC)
layers in g, function. r is a reduction ratio, with a value of
16 in this work. Finally, the adapted visual features v €
RE*4 are obtained by weighting the channel-wise feature
v° with the scalar w®, and append a fully-connected (FC®*)
layer followed by softmax to predict a two-class (i.e., live or
fake) probability. y'* € {0, 1} is the label for live or spoof
face.

Model Training and Inference. In the training stage, pa-
rameters from two designed Q-Formers, i.e., CQF and SQF,
two fully connected layers for classifiers, i.e., FCP*™ and
FCes one gate function, i.e., g., and image encoder V are
updated and the text encoder 7 is fixed. The full training
objective of CFPL is:

£total = Ecls + Lptm (7)

In the inference stage, our CQF and SQF will adaptively
generate the semanticized prompt as input to the text en-
coder based on each sample instance. Finally, the text en-
coder generates continuous and widely adjustable modula-
tion factors for weighting visual features to generalization.

226



CS—»W SW—C CW—S avg.
Method TPR@ TPR@ TPR@
HTER| AUC FPR=1% HTER AUC FPR=1% HTER AUC FPR=1% HTER
ViT* [10] 7.98 97.97 73.61 11.13 9546 47.59 13.35 94.13 49.97 10.82
ViTAF*-5-shot [10] 291 99.71 92.65 6.00  98.55 78.56 11.60  95.03 60.12 6.83
FLIP-MCL* [42] 4.46 99.16 83.86 9.66  96.69 59.00 11.71  95.21 57.98 8.61
CFPL*(Ours) 4.40 99.11 85.23 8.13  96.70 62.41 8.50  97.00 55.66 7.01
ViT [10] 21.04  89.12 30.09 17.12  89.05 22.71 17.16  90.25 30.23 18.44
CLIP-V [39] 20.00 87.72 16.44 17.67  89.67 20.70 832 97.23 57.28 15.33
CLIP [39] 17.05  89.37 8.17 1522 91.99 17.08 934  96.62 60.75 13.87
CoOp [61] 9.52 90.49 10.68 18.30  87.47 11.50 11.37 9546 40.40 13.06
CFPL (Ours) 9.04 96.48 25.84 14.83 90.36 8.33 877  96.83 53.34 10.88

Table 2. The results (%) of Protocol 2 on CASIA-SUREF (S), CASIA-SURF CeFA (C), and WMCA (W) datasets. Note that the * indicates
the corresponding method using CelebA-Spoof [57] as the supplementary source dataset and ‘5-shot’ represents 5 images from the target

datasets participating in the training phase.

4. Experimental Setup

Datasets, Protocols and Evaluation Metrics. Following
the prior work [10], two Protocols are used to evaluate the
generalization in this work. For Protocol 1, we use four
widely-used benchmark datasets, MSU-MFSD (M) [51],
CASIA-FASD (C) [58], Idiap Replay-Attack (I) [4], and
OULU-NPU (O) [1]. For Protocol 2, we use RGB samples
in CASIA-SUREF (S) [56], CASIA-SURF CeFA (C) [16],
and WMCA (W) [9] datasets, which contain more subjects,
diverse attack types, and rich collection environments. In
each Protocol, we treat each dataset as a domain and apply
the leave-one-out testing for generalization evaluation. We
adopt three metrics to evaluate the performance of a model:
(1) HTER. It computes the average of the FRR and the FAR.
(2) AUC. It evaluates the theoretical performance of the
model. (3) TPR at a fixed False Positive Rate (FPR=1%). It
can be used to select a suitable trade-off threshold according
to a given real application.

Implementation Details. We set the length of style and
content queries to 16, where each query has a dimension of
512; The depth of the CQF and SQF is set to 1. Style prompt
diversification is activated in the training phase with a prob-
ability of 0.5 and does not participate in the test phase; All
models are trained with a batch size of 12, an Adam opti-
mizer with a weight decay of 0.05. The minimum learn-
ing rate at the second stage is 1le — 6. We resize images to
224 x 224, augmented with random resized cropping and
horizontal flipping, and train all models with 500 epochs.

4.1. Cross-domain Results

For Protocol 1, we report the results of recent SOTA
methods on Tab. 1, such as SA-FAS [43] encourages do-
main separability while aligning the live-to-spoof transi-
tion; TADG [63] learns the generalizable feature by weak-
ening the features’ sensitivity to instance-specific styles;

FLIP-MCL* [42] improves the visual representations with
the help of natural language, and ViTAF*-5-shot [10] tack-
les a real-world anti-spoofing when 5 images are available
from target datasets. From Tab. 1, without using CelebA-
Spoof [57], it can be seen that our method achieves the best
performance for all metrics on four test datasets. Specifi-
cally, on the HTER metric (similar conclusions on AUC),
CFPL outperforms IADG [63] for all target domains with
lower values: M (3.09% vs., 5.41%), C (2.56% vs., 8.70%),
I(5.43% vs., 10.62%) and O (3.33% vs., 8.86%). Finally,
an average HTER of 3.60% is achieved, significantly better
than the previous best result of 7.82%. After introducing
the CelebA-Spoof [57] dataset as the supplementary train-
ing data, CFPL* outperforms FLIP-MCL* [42] in terms of
the average metric of HTER, such as 2.98% vs., 3.01%. It
indicates that our algorithm aligns images with text repre-
sentation by class-free prompt learning is superior to an en-
semble of class descriptions. In addition, CFPL* is slightly
inferior to the ViTAF*-5-shot [10] on the average of HTER,
such as 2.98% vs., 2.83%, which uses 5 additional samples
from target domain in training data, greatly alleviating the
overfitting on the domain-specific distribution.

For Protocol 2, we list the results of different methods
on Tab. 2. Without using CelebA-Spoof [57], our CFPL
significantly surpasses several baselines in terms of the
HTER metric when tested on the W and C domains. How-
ever, when tested on the S dataset, CFPL is slightly infe-
rior to the CLIP-V [39] on the HTER (8.77% vs.8.32%),
AUC (96.83% vs.97.23%) and TPR@FPR=1% (53.34%
v5.57.28%) metrics. Due to the obvious spoofing traces on
the CASIA-SUREF dataset [56], relying solely on visual fea-
tures is relatively generalizable. Similar to the conclusion
of Protocol 1, CFPL* outperforms baseline ViT* [10] and
FLIP-MCL* [42] when introducing the CelebA-Spoof [57]
dataset into training data. For example, our CFPL* achieves
the optimal mean on the HTER (7.01%) metric.
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. TPR(%)
Bascline  PTM DSP PM | HTER(%)) | AUC(%) | o rpri1o
CoOp [61] - - - 8.78 94.77 43.71
v - - - 8.11 96.09 51.59
v v - - 7.50 96.39 54.78
v v v - 7.08 96.79 57.61
v v <oV 6.72 97.09 60.35

Table 3. Ablation of each component, where each result is the
average on all sub-protocols.

4.2. Ablation Study

Effectiveness of each component. In order to evaluate the
contribution of each component in our framework, such as
Text Supervision (abbreviated as ‘PTM’), Diversification of
Style Prompt (abbreviated as ‘DSP’), and Prompt Modula-
tion (abbreviated as ‘PM’), we conduct ablation studies on
Protocol 1 and 2 by gradually introducing one of them into
the Baseline (abbreviated as ‘B’), where the Baseline is ob-
tained by removing all contributions from the CFPL. And
report the average results on all sub-protocols in Tab. 3.

Specifically, instead of modeling a prompt’s context
words with free learnable vectors in CoOp [61], our ‘Base-
line’ introduces two lightweight transformers CQF and SQF
to learn the expected prompts conditioned on content and
style features from the image encoder, achieving signif-
icant generalization benefits of -0.67% (HTER), +1.32%
(AUC) and +7.88% (TPR@FPR=1%), respectively. Af-
ter introducing the text supervision in the content prompt,
the results of the three metrics are optimized to 7.50%
(HTER), 96.39% (AUC), and 54.78% (TPR@FPR=1%),
respectively. It indicates that promoting the content prompt
carries sufficient category attributes that can be converted
into generalization benefits. Further diversification of style
statistics in style prompts can further expand performance
benefits, i.e., -0.42% (HTER), +0.4% (AUC), and +2.83%
(TPR@FPR=1%). Instead of using the designed gate func-
tion g,, we calculate the modulation factor w by calculat-
ing the mean of content and style features, such as w =
(te +ts) /2,w € RE*L From the Tab. 3, it can be seen
that if removing the designed gate function, the generaliza-
tion significantly decreased from 6.72% (HTER), 97.09%
(AUC) and 60.35% (TPR@FPR=1%) to 7.08% (HTER),
96.79% (AUC) and 57.61% (TPR @FPR=1%).

Furthermore, in Fig. 3, we detailed the result of each
method on three metrics across all sub-protocols, where the
red line represents the Baseline, and the blue line represents
our CFPL. From Fig. 3, it can be clearly seen that the blue
line shrinks with the smallest area in the polar coordinate
system of the HTER, while is distributed with the largest
area for the AUC and TPR@FPR=1%. The opposite con-
clusion applies to the Baseline of red lines. Almost all meth-
ods have an undeniable advantage over Baseline.

Method | HTER(%)) | AUC(%) | TPR(%)@FPR=1%
CoCoOp [60] | 6.80 97.27 60.41
CQF ‘ 5.12 98.65 73.67
SQF 4.84 98.75 87.08
CFPL | 333 99.05 90.06

Table 4. Ablation of the structures for CQF and SQF on ICM—0.

HTER(%)/ | Length
Depth | x8 x16 x32 x64
x 1 347 333 333 3.30
x4 345 342 345 345
x8 356 3.56 3.47 347
x12 341 333 333 333

Table 5. Ablation of the length for Queries and the depth for Q-
former on ICM—O. The optimal value for each row/column is
represented in bold/italics.

Effect of the Structures of CQF and SQF. In Tab. 4,
we list the results of CoCoOp [60], CFPL removing
SQF (abbreviated as ‘CQF’), CFPL removing CQF (ab-
breviated as ‘SQF’), and CFPL on the ICM—O experi-
ment. From Tab. 4, we can see that a simple two-layer
bottleneck structure cannot effectively alleviate the FAS
task with significant domain differences, such as achiev-
ing results of 6.80%, 97.27%, and 60.41% on metrics
HTER, AUC, and TPR@FPR=1%. When replacing Meta-
Net with CQF and SQF, we obtain performance ben-
efits of -1.68% (HTER), +1.38% (AUC), and +13.26%
(TPR@FPR=1%) and -1.96% (HTER), +1.48% (AUC) and
+26.67% (TPR@FPR=1%), respectively. Finally, by col-
laborating with CQF and SQF, our CFPL achieves the
best results, such as 3.33% (HTER), 99.05% (AUC), and
90.06% (TPR@FPR=1%). Furthermore, our CFPL further
improves their performance through collaborative CQF and
SQF, indicating that the CQF and SQF not only bring sig-
nificant benefits but also have a positive collaborative effect.

The Length of Queries and the Depth of Q-Former.
The number of learnable queries and the depth of CQF and
SQF can also affect the performance. We search for the
optimal value on the ICM—O experiment for the length
of queries and the depth of Q-Former from two sets of
changing values, such as [8, 16, 32, 64] for the former, and
[1,4,8,12] for the latter, respectively.

From Tab. 5, the following two conclusions can be
drawn: (1) The length of the queries is set to around 16,
achieving optimal performance. By observing at different
depth settings, the number of learnable queries increases ex-
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Figure 3. The results of each method on three metrics across all sub-protocols, where the red line represents the Baseline, and the blue line
represents our CFPL. For the HTER metric, the smaller area enclosed by lines, the better performance of the corresponding methods. The

opposite conclusion applies to metrics AUC and TPR@FPR=1%.

ponentially, the performance benefits of the model are sub-
tle, and there is even a trend toward degradation. Specifi-
cally, at a length of 16, models at different depths achieve
decent performance, with values of 3.33%, 3.42%, 3.56%,
and 3.33% for HTER. (2) The depth of Q-Former has a neg-
ligible impact on the performance. In detail, under each
length setting, the performance of models with different
depths fluctuates around a certain value of HTER. For ex-
ample, when the length is set to 8, the HTER is 3.45%,
while when the length is 16, 32, and 64, the HTER is 3.33%.
Based on the experimental results, we suggest setting the
number of queries to 16 and the depth of the Q-Former to 1.

4.3. Visualization and Analysis

With attention-model explainability tool [2], we visually
validate the superiority of the proposed CFPL from the vi-
sual attention maps, compared to the Baseline, which is ob-
tained by removing all contributions from the CFPL. The
results on all protocols are shown in Fig. 4, where the maps
of the Baseline correspond to misclassified samples, while
our CFPL correctly classifies these samples.

Specifically, for the OCM—I experiment on Protocol 1,
the Baseline classifies live face errors due to focusing more
on the background. Our CFPL correctly classifies it by cor-
recting the focus area to the boundary between face and
background. For the playback attack, the Baseline does not
pay attention to spoofing clues, such as the reflection spot
on the electronic screen, and the feature map area illumi-
nated by our method. Similar conclusions can be drawn on
other sub-protocols.

5. Conclusion

In this work, we target DG FAS via textual prompt learning
for the first time, and present a cross-domain FAS frame-
work CFPL, which utilizes two lightweight transformers,

Input Baselme CFPL

Input Baseline CFPL

Figure 4. Using visualization tool [2], the attention maps on all
sub-protocols from Protocol 1, where the Baseline caused classifi-
cation errors due to its failure to detect spoofing regions, and our
CFPL correctly classifies these samples by correcting the region
of interest.

CQF and SQF, to learn the different semantic prompts con-
ditioned on content and style features. Finally, we introduce
text supervision, diverse style prompt, and prompt modula-
tion to promote the generalization.
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