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Abstract

Continual Test-Time Adaptation (CTTA) is proposed to
migrate a source pre-trained model to continually chang-
ing target distributions, addressing real-world dynamism.
Existing CTTA methods mainly rely on entropy minimiza-
tion or teacher-student pseudo-labeling schemes for knowl-
edge extraction in unlabeled target domains. However, dy-
namic data distributions cause miscalibrated predictions
and noisy pseudo-labels in existing self-supervised learning
methods, hindering the effective mitigation of error accu-
mulation and catastrophic forgetting problems during the
continual adaptation process. To tackle these issues, we
propose a continual self-supervised method, Adaptive Dis-
tribution Masked Autoencoders (ADMA), which enhances
the extraction of target domain knowledge while mitigat-
ing the accumulation of distribution shifts. Specifically, we
propose a Distribution-aware Masking (DaM) mechanism
to adaptively sample masked positions, followed by estab-
lishing consistency constraints between the masked target
samples and the original target samples. Additionally, for
masked tokens, we utilize an efficient decoder to reconstruct
a hand-crafted feature descriptor (e.g., Histograms of Ori-
ented Gradients), leveraging its invariant properties to boost
task-relevant representations. Through conducting extensive
experiments on four widely recognized benchmarks, our pro-
posed method attains state-of-the-art performance in both
classification and segmentation CTTA tasks.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated impres-
sive performance across various computer vision tasks, in-
cluding image-level classification [9, 18, 32], dense predic-
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Figure 1. In continually changing environments, existing meth-
ods [46, 48] primarily focus on applying entropy minimization to
update the normalization layer. However, these approaches are
susceptible to miscalibrated predictions, resulting in uncontrollable
error accumulation. Alternative mainstream approaches [11, 50]
involve the teacher-student scheme for generating pseudo labels,
but noisy pseudo labels limit the model’s ability for continuous
generalization. In this paper, we propose a novel approach to
continual self-supervised learning known as Adaptive Distribution
Masked Autoencoders (ADMA). ADMA introduces the mask re-
construction mechanism to enhance the extraction of target domain
knowledge while mitigating the domain shift accumulation.

tion [42, 53, 62], and multi-model task [29, 56, 57], when
the test data distribution closely aligns with the training
data. However, this assumption is frequently challenged
in real-world scenarios due to dynamic environments, with
deployed models exhibiting insufficient generalization capa-
bilities and performance degradation [21, 45]. Therefore, the
problem of continual test-time adaptation (CTTA) has been
introduced [50], aiming to adapt a source pre-trained model
to continually changing target distributions. Due to privacy
and practical considerations, during the continual adapta-
tion process, access to source domain data is not permitted,
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and each target data can only be accessed once. While the
CTTA showcases promising potential applications, it also
increases the difficulty of transfer learning, which introduces
catastrophic forgetting and error accumulation problems.

Existing methods primarily focus on applying entropy
minimization to update batch normalization layer [16, 35,
48] or a fraction of model parameters [46], which already
leads to a performance improvement in target domains.
Nonetheless, due to the continually changing environments,
this self-training approach is susceptible to miscalibrated
predictions, resulting in uncontrollable error accumulation.
On the other hand, an alternative mainstream approach in-
volves the teacher-student scheme for generating pseudo-
labels in target domains. However, the traditional mean
teacher method [47] yields noisy pseudo labels in dynamic
environments, leading to the accumulation of distribution
shifts. While [8, 31, 50] utilize the test-time augmentation
method to enhance the accuracy of pseudo labels, it limits
efficiency during the CTTA process.

In this paper, as shown in Figure 1, we introduce a novel
approach to continual self-supervised learning called Adap-
tive Distribution Masked Autoencoders (ADMA). Classical
masked autoencoders (MAE) [20] have the potential for
various extensions and are becoming dominant in vision
representation learning. The selection of reconstruction tar-
get and masked positions is particularly crucial during the
pretraining process. Nonetheless, reconstructing low-level
RGB signals in MAE is considered primitive and redundant,
falling short of unlocking the potential of MAE in the con-
text of downstream vision tasks [15, 22]. To create more
effective reconstruction, several methods [2, 22, 51, 52] have
explored the utilization of off-the-shelf vision foundation
models [25, 37] as high-level supervisory signals and de-
signed task-specific mask selection strategies. Different
from previous MAE methods, we make the first attempt
to introduce reconstruction techniques to address the con-
tinual adaptation problem. This innovation enhances the
extraction of target domain knowledge while reducing the
accumulation of distribution shifts.

Specifically, we propose a Distribution-aware Masking
(DaM) mechanism to distinguish image patches that are tar-
get domain-specific from the less significant background
patches. The objective is to enhance the quality of the
target domain representation, preventing error accumula-
tion and enhancing the efficiency of continuous adaptation.
DaM dynamically selects masked positions based on token-
wise uncertainty estimation and places learnable masks on
token embeddings with substantial domain shifts. Subse-
quently, it establishes consistency constraints between the
network outputs generated from the masked target samples
and those from the original target samples. Furthermore,
for the masked tokens, we employ an efficient decoder to
reconstruct hand-crafted feature descriptors, such as His-

tograms of Oriented Gradients (HOG). In contrast to pixel
colors and high-level feature reconstruction, HOG excels
at capturing local shapes and appearances, exhibiting par-
tial invariance to geometric and distribution changes [6, 51].
Consequently, we harness its invariant properties to acquire
task-relevant representations in target domains, mitigating
the impact of domain shifts during continual adaptation and
preventing catastrophic forgetting problems. In summary,
our contributions are as follows:
• We make the first attempt to introduce reconstruction tech-

niques to address the CTTA problem. Our approach, Adap-
tive Distribution Masked Autoencoders (ADMA), is a
novel method for continual self-supervised learning that
enhances the extraction of target domain knowledge while
mitigating the accumulation of distribution shift.

• In ADMA, we propose a Distribution-aware Masking
(DaM) mechanism to adaptively place learnable masks
on token embeddings with significant distribution shifts,
promoting the quality of target domain representation and
improving continual adaptation efficiency.

• For masked tokens, we utilize an efficient decoder to re-
construct histograms of oriented gradients, leveraging its
invariant properties to boost task-relevant representations
and prevent the catastrophic forgetting problem.

• Our proposed approach surpasses previous state-of-the-
art methods, as demonstrated in experiments across four
benchmark datasets, covering both classification and seg-
mentation CTTA. Notably, our method attains a promising
87.4% accuracy in CIFAR10-to-CIFAR10C and 61.8%
mIoU in Cityscapes-to-ACDC scenarios.

2. Related Work
2.1. Continual Test-Time Adaptation

Test-time adaptation (TTA), also known as source-free do-
main adaptation [4, 27, 55, 60], is the process of adapting a
source model to a target domain distribution without relying
on any source domain data. Recent works have delved into
techniques such as self-training and entropy regularization
to fine-tune the source model [5, 30]. Tent [49] achieves
this by updating the training parameters in batch normaliza-
tion layers through entropy minimization. This approach has
served as inspiration for subsequent research efforts in recent
works [36, 59], which continue to investigate the robustness
of normalization layers.And [13] first attempts to reconstruct
RGB images in the TTA task. Continual Test-Time Adap-
tation (CTTA) denotes a scenario where the target domain
is dynamically changing, introducing additional challenges
for conventional TTA methods. The initial approach is pre-
sented in [50], which employs a teacher-student framework
to integrate bi-average pseudo labels and stochastic weight
reset. Drawing from the insight that mean teacher predictions
are often more robust than standard models [47], a series
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Figure 2. The framework of Adaptive Distribution Masked Autoencoders (ADMA). (a) We initiate the process by feeding the original
target image into the model to generate features of the complete image. Simultaneously, this step facilitates the estimation of token-wise
uncertainty, reflecting the token-wise distribution shift of each target sample, a process detailed in Sec. 3.2. Guided by the uncertainty values,
we adaptively mask P% of the image tokens characterized by significant domain shifts, subsequently reintroducing the masked image into
the model. In the classification task, the encoder’s output embeddings are then fed into the classification heads, constructing a consistency
loss (Eq. 2) between the two predictions. (b) For the masked tokens, we feed the masked token features into the linear decoder to compute
the reconstruction loss (Eq. 3). We choose Histograms of Oriented Gradients (HOG) as the reconstruction target due to their invariant
properties. Both losses are jointly optimized to address the CTTA problem.

of mainstream methods [8, 12, 31] continue this approach
to self-supervised learning in CTTA. Concurrently, existing
methods also focus on applying entropy minimization to
update normalization layers [16, 48] or a fraction of model
parameters [34, 46]. However, due to continually changing
environments, these self-training approaches are suscepti-
ble to miscalibrated predictions and noisy pseudo-labels,
resulting in uncontrollable error accumulation.

2.2. Masked Image Modeling

Mask-reconstruction-based self-supervised learning has
been successful in reducing the reliance on extensive labeled
datasets in both Natural Language Processing (NLP) and
Computer Vision (CV). The concept was first introduced by
BERT [7] in NLP, where a portion of the input word tokens
is randomly masked, and the model learns to reconstruct the
vocabularies of these masked tokens. In the field of com-
puter vision (CV), similar techniques have been applied in
various works [3, 20, 54]. These methods involve randomly
masking a significant percentage of input image patches.
Specifically, BEiT [3] was the first to explore Masked Image
Modeling (MIM) in vision transformers by reconstructing
the vision dictionary derived from DALL-E [40, 41]. MAE
[20] scaled up MIM to larger models and demonstrated that
a simple pixel reconstruction loss can enhance the visual
representations of pre-trained models. However, relying
solely on low-level RGB signals in MAE is considered rudi-
mentary and limited in unlocking the full potential of MAE
in downstream vision tasks. Subsequently, approaches like

MaskFeat [51], data2vec [2], MVP [52], and MILAN [22]
have uncovered various high-level signals [17, 61], including
pre-trained DINO features [37], hand-crafted features [6],
momentum features [19], and multi-modality features [39].
Utilizing these high-level signals has been proven to be more
effective in extracting contextual information.

3. Method
3.1. Overview

Preliminary. In Continual Test-Time Adaptation (CTTA),
we first pre-train the model q(y|x) using the source domain
data DS = (YS , XS). Subsequently, we adapt q(y|x) to dy-
namic target domains, denoted as DT1 , DT2 , ..., DTn , where
DTi

= (XTi
)
n
i=1 and n represents the number of continual

target datasets. The entire process is restricted from access-
ing source data and can only utilize each target sample once.
Our goal is to continually adapt the pre-trained model to
these target domains while mitigating issues such as error
accumulation and catastrophic forgetting.

Adaptive Distribution Masked Autoencoders Prevalent
CTTA approaches primarily focus on applying entropy mini-
mization to update the batch normalization layer [16, 35, 48]
or a fraction of model parameters [46]. However, due to
the dynamic environments, this self-training approach is
susceptible to miscalibrated predictions, resulting in uncon-
trollable error accumulation. On the other hand, alternative
mainstream approaches utilize the teacher-student pseudo-
labeling in continual target domains. Nevertheless, the con-
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ventional mean teacher method [47] increases computational
cost and produces noisy pseudo labels in dynamic environ-
ments, leading to the accumulation of distribution shifts.
While methods such as [8, 31, 50] utilize Test-time augmen-
tation methods to enhance the accuracy of pseudo labels,
they may limit efficiency during the CTTA process. Differ-
ent from prior continual self-supervised approaches, we lead
the way in incorporating a masked autoencoder (MAE) to
tackle the CTTA problem, abandoning the impact of mis-
calibrated predictions and the cumbersome teacher-student
model. Our key insight lies in adopting the reconstruction
scheme to effectively extract target domain knowledge while
mitigating the accumulation of domain shift. The overall
framework is illustrated in Figure 2. Specifically, We pro-
pose a Distribution-aware Masking (DaM) mechanism, de-
tailed in Sec. 3.2, which adaptively places learnable masks
on token embeddings with substantial distribution shifts. By
establishing consistency constraints between the masked in-
put and the original input, DaM significantly enhances the
understanding of target domain knowledge and mitigates the
challenge of error accumulation. For masked tokens, we
adopt a linear decoder to reconstruct Histograms of Oriented
Gradients, leveraging its invariant properties to acquire task-
relevant representations while averting the introduction of
target domain shifts, as elaborated in Sec. 3.3. This recon-
struction method serves as a preventive measure, avoiding
catastrophic forgetting in continual adaptation. We provide
the intuitive explanation and justification in Sec. 5.

3.2. Distribution-aware Masking

To establish masked image reconstruction as a meaningful
pretext task, previous studies have commonly applied an ag-
gressive masking approach by randomly masking a substan-
tial portion of input image patches [20, 51]. This strategy,
however, introduces a potential drawback: the remaining
visible patches may predominantly comprise background
information, potentially lacking the crucial cues essential for
reconstructing foreground details [22]. In our framework,
the precise selection of masked positions is crucial due to sig-
nificant distribution shifts in each target sample, impacting
the representational capacity of visible patches. Furthermore,
in the CTTA task, unlike traditional MAE pre-training, each
sample is encountered only once, demanding high efficiency
in the reconstruction process.

To this end, as shown in Figure 2 (a), we introduce
a Distribution-aware Masking (DaM) strategy, enabling a
thoughtful selection of tokens to mask in dynamic envi-
ronments. The key concept involves choosing tokens with
substantial domain shifts for masking, ensuring that the pre-
served visible tokens exhibit relatively fewer domain shifts
while providing reliable semantic knowledge through the
model encoder. To quantify token-wise distribution shifts,
we draw inspiration from [38, 43] and introduce a method for

token-wise uncertainty estimation. Specifically, we employ
the MC Dropout [10], enabling multiple forward propaga-
tions to obtain m (e.g., m = 10) sets of features for each
token. Subsequently, we calculate the uncertainty value U(x)
for a given token xj , as formulated below:

U(xj) =

(
1

m

m∑
i=1

∥fi(xj)− µ∥2
) 1

2

(1)

Where fi(xj) is the feature value of the token xj in the
ith forward propagation, and µ is the average value of the
token feature over m forward propagations. To calculate
the feature value within a token, we utilize average pooling,
reducing the token’s dimension from 1× 768 to 1× 1. Note
that we only apply MC Dropout to the linear layer within
the FFN layer in the first Transformer block. We conduct m
forward propagations in the local FFN layer, calculating the
uncertainty value does not significantly increase computa-
tional cost. In this manner, we obtain the uncertainty value
for each token. After sorting, we select the top P% (e.g.,
50%) of tokens with the highest uncertainty for masking.

We input the masked image into the model, leveraging
the remaining contextual clues to reconstruct the class label.
Subsequently, we establish consistency constraints between
the network outputs (ŷ(c), y(c)) generated from the masked
target samples and those from the original target samples.
The formulation of the consistency loss is as follows:

Lcon(x) = − 1

C

C∑
c

y(c) log ŷ(c) (2)

Where ŷ is the output from the masked image, C means
the number of categories. Through DaM and consistency
constraints, we can mask a substantial amount of distribution
shift, learning the target domain contextual knowledge while
avoiding domain shift accumulation.

3.3. Reconstruction Target Feature

The reconstruction target plays an important role in masked
image modeling, exerting a direct influence on the learning
of feature representations. Previous MAE methods typically
opt for either low-level RGB information [20] or high-level
semantic information [15, 22] as the reconstruction target.
However, in the CTTA tasks, reconstructing the RGB signal
of the target domain introduces inherent domain shifts in
the reconstruction process. Similarly, when reconstructing
the semantic features of the target domain, such as features
from CLIP [39], the absence of any operation to domain
transfer during the feature extraction process means that
this approach still fails to alleviate the domain shift. These
statements are demonstrated in Sec. 4.4. Therefore, in
the face of continual distribution shifts, the choice of the
reconstruction target gains greater importance.
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domain distributions (ImageNet-C [21]).

Inspired by [51] in model pretraining, we introduce His-
tograms of Oriented Gradients (HOG) reconstruction in
CTTA tasks, showcasing notable benefits in the continual
adaptation process. HOG is a feature descriptor that delin-
eates the distribution of gradient orientations or edge direc-
tions within a localized subregion [6]. Using HOG as the
reconstruction target in CTTA offers two advantages: 1) its
inherent ability to capture local shapes and appearances en-
sures invariance to geometric changes, and 2) the absorption
of brightness through image gradients and local contrast nor-
malization provides invariance to varying environments and
weather conditions. As illustrated in Figure 3, the visual-
ization of HOG under various target domain distributions
presents similar feature representations, clearly indicating
their invariant properties.

To obtain HOG features, we employ a two-channel con-
volution that generates gradients along the x and y axes,
followed by histogramming and normalization. Following
[51], we configure the orientation bins to be 9, spatial cell
size to be 8 × 8, and channels to be 3. Consequently, the
HOG feature FHOG ∈ R3×9×H/8×W/8, where H and W
represent the height and width of the input image. After ob-
taining the HOG features, we employ a linear layer to project
learnable masked tokens to the same dimension as FHOG,
minimizing the L2 distance between the HOG prediction
PHOG and HOG label FHOG of the masked token positions.
The reconstruction loss is formulated as:

Lrec = ∥PHOG − FHOG∥22 (3)

Through HOG reconstruction, we harness its invariant prop-
erties to extract task-relevant knowledge in the CTTA prob-
lem. This enables the model to concentrate more on the
task at hand and mitigates the impact of domain shift, conse-
quently reducing the risk of catastrophic forgetting.

3.4. Optimization Objective

In the ongoing adaptation process, we update the model
by incorporating the total loss formulated as Eq. 4, where
λ = 0.5 serves as a balancing factor for the loss values.

Lall = Lcon + λ× Lrec (4)

4. Experiments
In Sec. 4.1, we present experiments and implementation
details. Sec. 4.2 and Sec. 4.3 provide a comparative analysis
of our approach against previous methods in classification
and semantic segmentation CTTA tasks. Furthermore, we
conduct a comprehensive ablation study in Sec. 4.4. Due
to page constraints, additional quantitative and qualitative
analyses are available in Appendices A and B, respectively.

4.1. Experiments Details

Datasets. Our method undergoes evaluation on three classi-
fication CTTA benchmarks, which encompass CIFAR10-to-
CIFAR10C, CIFAR100-to-CIFAR100C [26], and ImageNet-
to-ImageNet-C [21]. In the segmentation CTTA, following
the definition by [50, 58], we conduct assessments on the
Cityscapes-to-ACDC, using the Cityscapes [58] as the source
domain and the ACDC [45] as the target domain.

Task setting. Following the task setting outlined in
[31, 50], in the classification CTTA tasks, we utilize a se-
quential adaptation process. The pre-trained source model
adapts to each of the fifteen target domains characterized by
the largest corruption severity (level 5). Online prediction re-
sults are immediately assessed after processing the input. For
the segmentation CTTA task, we use the ACDC [45] dataset
to represent the target domain, which includes images cap-
tured under four distinct unobserved visual conditions: Fog,
Night, Rain, and Snow. To simulate continuous environmen-
tal changes resembling real-world scenarios, we cyclically
iterate through the same sequence of target domains (Fog →
Night → Rain → Snow) multiple times.

Implementation Details. In our CTTA experiments, to
ensure consistency and fair comparisons, we follow the im-
plementation details as proposed in the prior CTTA works
[31, 50]. For the classification CTTA tasks, we employ the
ViT-base [9] as our backbone model. We resize the input im-
ages to 384×384 for CIFAR10C, CIFAR100C benchmark,
and 224×224 resolution for ImageNet-C benchmark. In the
case of segmentation CTTA task, we employ the Segformer-
B5 [53] pre-trained on the Cityscapes dataset as our source
model. We down-sample the original input images resolu-
tion from 1920×1080 to 960×540. We use Adam [24] with
(β1, β2) = (0.9, 0.999) as the optimizer. Different learning
rates are assigned for different CTTA tasks and backbone
models, such as we use 1e-5 for ViT on CIFAR10C and
CIFAR100C, 1e-3 for ViT on ImageNetC, and 3e-4 for Seg-
former on ACDC. In the masking process, following the
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Source [9] ICLR2021 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 0.0
Pseudo-label [28] ICML2013 59.8 52.5 37.2 19.8 35.2 21.8 17.6 11.6 12.3 20.7 5.0 41.7 21.5 25.2 22.1 26.9 +1.3

TENT-continual [49] ICLR2021 57.7 56.3 29.4 16.2 35.3 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5 23.5 +4.7
CoTTA [50] CVPR2022 58.7 51.3 33.0 20.1 34.8 20 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.6

VDP [12] AAAI2023 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4.0 27.5 18.4 22.5 19.9 24.1 +4.1
ViDA [31] ICLR2024 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.5

Ours Proposed 30.6 18.9 11.5 10.4 22.5 13.9 9.8 6.6 6.5 8.8 4.0 8.5 12.7 9.2 14.4 12.6 +15.6

Table 1. Classification error rate(%) for CIFAR10-to-CIAFAR10C online CTTA task. Mean(%) denotes the average error rate across 15
target domains. Gain(%) represents the percentage of improvement in model accuracy compared with the source method.
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Source [9] ICLR2021 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Pseudo-label [28] ICML2013 53.8 48.9 25.4 23.0 58.7 27.3 19.6 20.6 23.4 31.3 11.8 28.4 39.6 52.3 33.9 33.2 +2.2

TENT-continual [49] ICLR2021 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3 32.1 +3.3
CoTTA [50] CVPR2022 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6

VDP [12] AAAI2023 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0 +3.4
ViDA [31] ICLR2024 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1

Ours Proposed 48.6 30.7 18.5 21.3 38.4 22.2 17.5 19.3 18.0 24.8 13.1 27.8 31.4 35.5 29.5 26.4 +9.0

Table 2. Classification error rate(%) for CIFAR100-to-CIAFAR100C online CTTA task.

approach in MIC [23], we use [MASK] tokens initialized
with all zeros to replace 50% of tokens that are embedded
as patches. These [MASK] tokens are shared learnable em-
beddings that indicate masked patches. The reconstruction
decoder is a randomly initialized linear layer used to project
the output tokens associated with masked patches to HOG
features. The parameters of mask tokens and projection
layer are optimized in parallel with other parameters. To
achieve better results, we inject ViDA, as proposed by previ-
ous SOTA work [31], into the model and utilize our proposed
self-supervised method to update.

4.2. Classification CTTA Tasks

CIFAR10-to-CIFAR10C & CIFAR100-to-CIFAR100C.
The source model is trained through supervised learning on
the CIFAR10 or CIFAR100 dataset. During testing, we ap-
ply CTTA to the CIFAR10C or CIFAR100C dataset, which
contains fifteen corruption types continuously fed into the
model in a specific order. In the CIFAR10-to-CIFAR10C
scenario, as shown in Table 1, the average classification
error of the source model reaches 28.2% when directly test-
ing on CIFAR10C. However, our method significantly re-
duces the error to 12.6%. Compared to other continual
self-supervised methods, our approach outperforms them
by 10.9% and 12.0% compared to the previous entropy
minimization method (TENT [49]) and the teacher-student
method (CoTTA [50]), demonstrating significant potential in
addressing the CTTA problem. To be mentioned, our Adap-
tive Distribution Masked Autoencoders (ADMA) demon-
strate outstanding performance across 12 out of the 15 cor-
ruption types, validating the robustness of our method in

Target Method Source Tent CoTTA VDP Ours

ImageNet-C
Mean↓ 55.8 51.0 54.8 50.0 42.5
Gain 0.0 +4.8 +1.0 +5.8 +13.3

Table 3. Average error rate (%) for the ImageNet-to-ImageNet-C
CTTA. The fine-grained performances are shown in Appendix A.

the continual adaptation process. Note that, for TENT, we
implement entropy minimization to update the Layer Nor-
malization layers in the transformer instead of BN.

We expand our evaluation to the CIFAR100-to-
CIFAR100C scenario, as depicted in Table 2, encompassing
a more extensive range of categories within each domain.
Our approach outperforms the previous entropy minimiza-
tion and teacher-student pseudo-labeling methods by 5.7%
and 8.4%, respectively, exhibiting a consistent trend with the
aforementioned CTTA experiments. Therefore, the results
validate the universality of our method, unaffected by the
number of categories, and it can efficiently mitigate error
accumulation and catastrophic forgetting problems.

ImageNet-to-ImageNet-C. In order to comprehensively
evaluate the effectiveness of our method, we conduct ex-
periments on the ImageNet-to-ImageNet-C scenario. The
source model is pre-trained on the ImageNet. As indicated
in Table 3, due to the large number of categories in the
ImageNet-C, previous entropy minimization (TENT [49])
and the teacher-student approach (CoTTA [50]) only achieve
error rates of 51.0% and 54.8%, respectively. In contrast, our
proposed method achieves the best performance, showcasing
a significant reduction in classification error rates to 42.5%.
This outcome further demonstrates the effectiveness of our
method, enhancing the feature representation of the target
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Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 2 3 Mean↑ GainMethod REF Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑

Source [53] ICLR2021 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 /
TENT [48] ICLR2021 69.0 40.2 60.1 57.3 56.7 68.3 39.0 60.1 56.3 55.9 67.5 37.8 59.6 55.0 55.0 55.7 -1.0
CoTTA [50] CVPR2022 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 58.6 +1.9
SVDP [58] AAAI2024 72.1 44.0 65.2 63.0 61.1 72.2 44.5 65.9 63.5 61.5 72.1 44.2 65.6 63.6 61.4 61.3 +4.6

Ours Proposed 71.9 44.6 67.4 63.2 61.8 71.7 44.9 66.5 63.1 61.6 72.3 45.4 67.1 63.1 62.0 61.8 +5.1

Table 4. Performance comparison for Cityscape-to-ACDC CTTA. We sequentially repeat the same sequence of target domains three
times. Mean(%) is the average score of mIoU. Gain(%) represents the improvement of mIoU compared with the source method.

Random DaM HOG Mean↓ Gain
Ex0 - - - 28.2 /
Ex1 ✓ - - 17.1 +11.1
Ex2 - ✓ - 14.4 +13.8
Ex3 ✓ - ✓ 15.8 +12.4
Ex4 - ✓ ✓ 12.6 +15.6

Table 5. Average error rate(%) for CIFAR10-to-CIFAR10C online
CTTA task. Random, DaM, and HOG represent the random mask-
ing strategy, our proposed Distribution-aware Masking mechanism,
and our introduced HOG reconstruction, respectively.

domain without succumbing to domain shift accumulation.

4.3. Semantic Segmentation CTTA Task

Cityscapes-to-ACDC. We validate the effectiveness of our
approach in the more challenging segmentation CTTA task
by adapting the pre-trained Segformer model from the
Cityscapes dataset to the ACDC [45] dataset, as depicted in
Table 4. To ensure the reliability of the model’s pixel-level
outputs, we adopt the update strategy from previous works
[31, 50], such as utilizing multi-scale augmentation. Our
proposed method exhibits a notable improvement, achieving
a 5.1% increase in mIoU over the source model, thereby con-
firming its efficacy in dense prediction CTTA tasks. More-
over, our method outperforms the previous entropy minimiza-
tion method (TENT [49]) and the teacher-student method
(CoTTA [50]) by 6.1% and 3.2%, respectively. It is worth
highlighting the stability of our method in comparison to
others. While TENT [49] reduces 1.7% performance from
the first to the third round of experiments, CoTTA [50] main-
tains consistent results between these rounds. In contrast,
our method demonstrates a 0.2% increase in mIoU during
the third round. This observation underscores the effective-
ness of our approach in extracting target domain knowledge
through efficient mask modeling. Additionally, our recon-
struction scheme ensures task-relevant feature representation,
mitigating catastrophic forgetting.

4.4. Ablation Study

Effectiveness of each component. We initially conduct a
series of ablation experiments on CIFAR10-to-CIFAR10C
to assess the contributions of different components in our
approach. As shown in Table 5, the first set of experiments

Target RGB CLIP Mean-Teacher HOG
Error rate 49.2 48.5 48.1 43.6

Target SIFT Sobel Laplacian ORB
Error rate 50.4 48.2 48.7 50.0

Table 6. Average error rate(%) for ImageNet-to-ImageNet-C. RGB,
CLIP, Mean-Teacher, SIFT [33], ORB, edge detectors(Sobel and
Laplacian), and HOG are different reconstruction target.

(Ex1) involve randomly masking a portion of patches from
the input image and establishing consistency constraints be-
tween the model outputs generated from the masked target
samples and those from the original target samples. This
directly led to an 11.1% reduction in the error rate compared
to the source method (Ex0), indicating that the masking
strategy enhances target domain knowledge extraction in
CTTA. In the second set of experiments (Ex2), we replace
the random masking strategy with our proposed Distribution-
aware Masking (DaM) mechanism. Ex2 further reduced the
error rate by 2.7%, validating that DaM helps the model
more efficiently understand the target domain distribution.
In the subsequent experiments (Ex3 and Ex4), we introduced
the Histogram of Oriented Gradients (HOG) reconstruction
scheme. For Ex4, HOG reconstruction contributed to a 1.8%
accuracy improvement than Ex2. When integrating HOG
reconstruction into our proposed DaM, a final classification
error rate of 12.6% is achieved, leading to an overall per-
formance improvement of 15.6%. These results confirm
that leveraging HOG reconstruction during the continual
adaptation process assists the model in learning task-relevant
knowledge under the presence of domain shifts.

Reconstruction target selection. Another set of ablation
experiments aims to assess the impact of the reconstruction
target. This includes the original RGB pixel, high-level CLIP
features, Mean-Teacher features, as well as SIFT, ORB, So-
bel, Laplacian, and HOG features. Since the CIFAR datasets
have an input size of 32 × 32 with limited RGB pixel in-
formation, these ablation experiments are conducted in the
context of the ImageNet-to-ImageNet-C. As shown in Table
6, our introduced HOG reconstruction outperforms other re-
construction targets by a significant margin. Specifically,
compared with classical image pixel reconstruction, our
method achieves a 5.6% improvement, demonstrating that
reconstructing the RGB signal of the target domain intro-

28659



In
te

r-
D

om
ai

n 
D

iv
er

ge
nc

e

T1 – T2 T3 – T4 T5 – T6 T7 – T8 T9 – T10 T12 – T13 T13 – T14

Figure 4. The inter-domain divergency. T1 to T15 represent the 15
target domains in CIFAR-10C, listed in sequential order.

duces inherent domain shifts. In contrast to reconstructing
the CLIP feature, our method outperforms it by 4.9%, while
also significantly reducing computational costs as it does
not require an additional model. The results validate that
features directly extracted by the large-scale model still in-
troduce domain shifts. Lastly, while reconstructing features
of the Mean-Teacher model is slightly better (by 0.4%) than
reconstructing CLIP features, it is still 4.5% lower than our
method. In conclusion, reconstructing HOG and leveraging
its invariant properties can boost task-relevant representa-
tions and avoid domain shift accumulation in CTTA.

5. Discussion and Justification

In this section, we offer an intuitive justification for our
proposed method, seeking to demonstrate its efficiency in
extracting target domain knowledge while avoiding domain-
shift accumulation. Additional details on these justifications
can be found in Appendix C.

Inter-Domain Divergence. To provide clearer evidence
for the intuition of our proposed DaM and HOG recon-
struction mechanism, we calculate the distribution distances
of the feature representations across different target do-
mains. Following prior works [1, 31, 44], we compute
the Jensen–Shannon (JS) divergence between two adjacent
domains to represent the inter-domain divergence. If the
inter-domain divergence is small, it indicates that the fea-
ture representation remains consistent and is less susceptible
to cross-domain shifts [14]. For comparative experiments,
we compute the inter-domain JS divergence of the source
model, using the DaM mechanism and our proposed method
on the CIFAR10-to-CIFAR10C. As illustrated in Figure 4,
when using the DaM mechanism, the inter-domain diver-
gence is smaller than the source model on the vast majority
of adjacent domains. Our method achieves the minimum
inter-domain divergence on all fourteen adjacent domains.
The observed pattern in inter-domain divergence suggests
that DaM excels in extracting target domain knowledge but
may exhibit limitations in robustness during continual adap-

Input Image Original Model Ours (DaM) Ours (DaM & HOG)

Fog Noise

Motion Blur

Figure 5. The CAM visualizations.

tation. Meanwhile, after the HOG reconstruction of masked
tokens, the model attains increased stability in cross-domain
learning, mitigating the impact of domain shift erosion.

Class Activation Mapping (CAM). To directly vali-
date our intuition, we employ CAM visualization on the
ImageNet-C dataset. As shown in Figure 5, when utilizing
only the source model, the attention of the features appears
scattered. This dispersion is a consequence of the domain
shift influence, causing the model to struggle in focusing
on foreground samples. In contrast, with the DaM mech-
anism, there is a noticeable concentration of attention on
foreground samples, indicating that DaM assists the model
in better understanding the target domain knowledge. Our
approach explores the domain-invariant property of HOG
features. Through HOG reconstruction, we further enhance
the model’s task-relevant feature representations, enabling
the output features to disregard background domain shift and
attain higher response values on the foreground samples.

6. Conclusion
In this paper, we pioneer the integration of reconstruc-
tion techniques to tackle the Continual Test-Time Adap-
tation (CTTA) problem. Our contribution, the Adaptive
Distribution Masked Autoencoders (ADMA) method, repre-
sents a novel approach to continual self-supervised learning.
ADMA is designed to enhance the extraction of target do-
main knowledge while mitigating the accumulation of distri-
bution shift, thereby addressing the issues of error accumula-
tion and catastrophic forgetting. The proposed Distribution-
aware Masking (DaM) mechanism plays a pivotal role in
promoting the extraction of target domain knowledge, im-
proving the efficiency of continual adaptation. Simultane-
ously, our introduced HOG reconstruction strategy elevates
the task-relevant representations of the model and acts as a
preventive measure against distribution shift accumulation.
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