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Cat on chair peering over top of table at glass of 
beverage.

SD SD + PF SD SD + PF SD SD + PF

A couch, table, chairs and a tv are featured in a 
den with blue carpeting.

A dining room table with a bottle of wine and wine 
glasses and a pot of carrots

A bathroom with a white toilet sitting next to a 
bathroom sink.

Two donuts, banana, cup and a book on the table.

A man sitting on a bed with a dog while holding 
a cell phone.

Figure 1. Sample images generated by Stable Diffusion v2.1 with and without our particle filtering algorithm (PF). The left two columns
illustrate the missing object errors, and the right column illustrates the unnatural distortions. Missing objects are highlighted in red.

Abstract

Despite diffusion models’ superior capabilities in mod-

eling complex distributions, there are still non-trivial dis-

tributional discrepancies between generated and ground-

truth images, which has resulted in several notable prob-

lems in image generation, including missing object errors

in text-to-image generation and low image quality. Exist-

ing methods that attempt to address these problems mostly

do not tend to address the fundamental cause behind these

problems, which is the distributional discrepancies, and

hence achieve sub-optimal results. In this paper, we pro-

pose a particle filtering framework that can effectively ad-

dress both problems by explicitly reducing the distributional

discrepancies. Specifically, our method relies on a set of ex-

ternal guidance, including a small set of real images and

a pre-trained object detector, to gauge the distribution gap,

and then design the resampling weight accordingly to cor-

rect the gap. Experiments show that our methods can ef-

fectively correct missing object errors and improve image

quality in various image generation tasks. Notably, our

method outperforms the existing strongest baseline by 5% in

object occurrence and 1.0 in FID on MS-COCO. Our code

is available at https://github.com/UCSB-NLP-

Chang/diffusion_resampling.git.

1. Introduction
Diffusion models have achieved impressive success in gen-
erating high-quality images in various image-generation ap-
plications [2, 5, 13, 19, 22, 24, 28, 30, 39, 42–44, 46, 47,
49, 50, 53–56, 60, 65, 66]. Such success can be ascribed to
diffusion models’ superior capability in modeling complex
data distributions and thus low distributional discrepancies
between the real and generated images. However, the dif-
fusion generation process still introduces distributional dis-
crepancies in modeling data distributions, due to the limited
representation power of the denoising network, the errors
introduced in discretizing and numerically solving the con-
tinuous ODE or SDE denoising trajectories [31, 64], etc.

Such distributional discrepancies have led to several no-
table problems in image generation. For example, in text-to-
image generation, diffusion models suffer from the missing

object errors, i.e., objects that are mentioned in the input
text are sometimes not generated [17, 41, 61]. As shown in
Figure 1 top-left, given the input description ‘Cat on chair

peering over top of table at glass of beverage’, the sta-
ble diffusion model [47], a powerful text-to-image model,
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sometimes fails to generate the glass of beverage.
Another well-known problem in diffusion-based image

generation is the low image quality, such as artifacts and
unnatural distortions. In Figure 1 bottom-right, given the
input description ‘A man sitting on a bed with a dog while

holding a cell phone’, a sample image generated by stable
diffusion contains a person with a missing left lower leg.

Since the fundamental cause behind these problems is
the distribution gap between the generated and real images,
an effective remedy to these problems should be to close the
distribution gap. However, the existing research attempts to
address these problems either do not aim to close the gap,
or are not effective in doing so. For example, to address
the missing object errors, some previous works designed
cross-attention mechanism that controls how each token in
the caption should be attended so that no object is ignored
[3, 17, 34, 61], but they do not aim to reduce the distribu-
tional gap, so their effects on generating complete objects
are limited [29], and their over-emphasis on improving ob-
ject occurrence could lead to quality degradation. To ad-
dress the low image quality issue, Kim et al. [31] introduces
a discriminator to rectify the score function in the diffusion
generation process, which is still subject to errors due to
numerically solving the ODE/SDE denoising trajectories.

In this paper, we aim to develop a sampling-based frame-
work that can effectively address both issues above by ex-
plicitly reducing the distributional discrepancies. We first
present some findings of our initial exploration, which
shows that sampling-based methods turn out to be a more
effective way of modifying the output distribution of gen-
erated images and achieving desired generation properties
than the more complicated baselines. Based on these find-
ings, we design a particle-filtering framework [10, 15] that
allows us to approximately sample from the ground-truth
distribution. Specifically, our method relies on a set of ex-
ternal guidance, including a small set of real images and
a pre-trained object detector, to gauge the distribution gap,
and then design the resampling weight accordingly.

We evaluate our approach on text-to-image generation,
unconditional and class-conditioned generation. On exist-
ing text prompt benchmarks [35, 61], our approach outper-
forms all the competitive specialized text-to-image methods
in improving faithfulness to input text and image quality, as
illustrated in Figure 1. Notably, our method outperforms the
existing strongest baseline by 5% in object occurrence and
1.0 in FID on MS-COCO. On ImageNet-64, our method
achieves a state-of-the-art FID of 1.02 for class-conditioned
generation, outperforming the strong baseline that uses dis-
criminator guidance [31].

2. Related Works
Faithful Text-to-image Generation. Recent studies
highlight faithfulness as a key challenge in text-to-image

diffusion models [7–9, 17, 18, 33, 36, 40, 41, 61], includ-
ing missing objects, mistakenly bound attributes, wrong
locations, etc. To address this challenge, existing work
modifies the generation process to separately focus on each
aspect in the caption and later combine the outputs of each
part [16, 37, 58]. For example, Wu et al. [61] and Feng
et al. [17] modify the cross-attention between image and
text to separately attend to each noun phrase in the text,
and combine attention outputs. Several works leverage
layout information to increase objects’ attention weights
in specified image regions [3, 34, 61]. Karthik et al. [29]
also employs the sample selection idea, but their selection
is only performed at the final step, and does not aim to
approach the true distribution, whereas our method reduces
the distributional gap at each denoising step. Moreover, our
method can extend beyond text-to-image generation.
Particles in Diffusion Generation. Particle filtering has
been applied in diffusion generation to obtain samples from
a target distribution [14, 57, 59]. However, these works fo-
cus on re-purposing an unconditional diffusion model as a
conditional model, rather than reducing the gap with the
ground-truth distribution. Corso et al. [11] proposes parti-
cle guidance to increase the diversity among generated sam-
ples. Their method modifies the score function with a joint-
particles potential, which is orthogonal to our work.
Diffusion Generation with Discriminator. Discrimina-
tors have been used to improve diffusion generation. Xiao
et al. [62] uses a GAN to approximate multimodal distribu-
tions in the denoising process to reduce the number of de-
noising steps. Kang et al. [26] trains diffusion models with
the additional objective of fooling a discriminator to im-
prove image quality when the number of denoising steps is
small. Kim et al. [31] leverages a discriminator to generate
samples closer to ground-truth distribution. However, their
discriminator is used to modify the model score, whereas
ours is used to resample images, which is less affected by
the discretization errors of the sampling algorithm.

3. Methodology
3.1. Background and Notation
Throughout this section, we use upper-case letters, X, to
denote random vectors, and lower-case letters, x, to denote
deterministic vectors. We use the colon notation, X1:T , to
denote a set of variables ranging from X1 to XT .

In this work, we will primarily focus on text-to-image
diffusion models, which, given an input text description de-
noted as C, generate images that satisfy the text descrip-
tion via a denoising process that generates a sequence of
noisy images from XT down to X0, where X0 represents
the clean image, and Xt represents the image corrupted
with Gaussian noise. The noise is larger with a greater t,
and with sufficiently large T , XT approaches pure Gaussian
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noise. The denoising process can be formulated as follows:

q(X0:T |C) = q(XT )
T�1Y

t=0

q(Xt|Xt+1,C), (1)

where q(XT ) follows the pure Gaussian distribution. Differ-
ent denoising algorithms would induce different transitional
probabilities q(Xt|Xt+1,C). Since our work does not rely
on specific choices of denoising algorithms, we will leave
q(Xt|Xt+1,C) abstract throughout this section.

In the following, we will use p(Xt|C) to denote the
ground-truth distribution, i.e., real images corrupted with
Gaussian noise, and q(Xt|C) as the distribution produced
by the actual denoising network. Due to the learning ca-
pacity of the denoising network and approximation errors,
q(Xt|C) can differ from p(Xt|C).

3.2. Problem Formulation
The general goal of this paper is to reduce the gap between
q(Xt|C) and p(Xt|C), with the help of some external guid-
ance, in order to address the following two prominent diffu-
sion generation errors.
• Missing Object Errors: The generated images some-

times miss the objects mentioned in the text input. For-
mally, we introduce two bag-of-object variables. One is
the object mention variable, denoted as OC , whose i-th
element, OCi, equals one if object i is mentioned in the
input text C and zero otherwise. The other is the object

occurrence variable, denoted as OX , whose i-th element,
OXi, equals one if object i occurs in the image X0 and
zero otherwise. Then the missing object errors refer to
the case where OCi = 1 but OXi = 0.

• Low Image Quality: The generated images can some-
times suffer from unnatural distortion and texture. The
low image quality problem can be ascribed as the general
distribution gap between p(X0) and q(X0).

We consider the following two types of external guidance
to correct the generation errors.
• An object detector which can predict the probability that

a certain object appears in the image, i.e. p̂(OXi = 1|X0),
which provides useful information in correcting the miss-
ing object errors.

• A small set of real images, D, either with or without text
captions, which is useful in gauging the distribution gap.

In the following, we will develop different methods under
different availability of external guidance.

3.3. Initial Exploration: A Naive Approach
As an initial exploration, we first focus on the subproblem
that uses the object detector to correct the missing object
errors. We will start with a naive sample selection approach,
consisting of two steps. First, we use the diffusion model to
generate K samples,

S
K

k=1{x
(k)
0 }. Second, we simply select

the image with the best object occurrence probability of the
objects that are mentioned in the text, i.e.,

max
x
(k)
0

Y

i:OCi=1

p̂(OXi = 1|X0 = x
(k)
0 ). (2)

We dub the approach as OBJECTSELECT, whose implemen-
tation details are elaborated in Appendix C.

We run OBJECTSELECT on two benchmark datasets
(GPT-Synthetic [61] and MS-COCO [35]) with com-
plex text descriptions, together with four baselines that also
use object detectors or other object occurrence feedback to
improve the object occurrence of the generated images. The
object occurrence ratios of all the methods are shown in
Figure 4. As can be observed, OBJECTSELECT can signif-
icantly outperform the other baselines, some of which are
much more complicated. More details of this experiment
can be found in Section 4.1.

Admittedly, despite the effectiveness of OBJECTSE-
LECT, this algorithm comes with obvious limitations. First,
it only addresses the object occurrence issue and does not
aim to approach the ground-truth conditional distribution
p(X0|C), so the selected images may compromise in qual-
ity. Second, the success of this approach relies on gener-
ating a sufficiently large number of samples to be able to
find a few with good object occurrence, so the sample ef-
ficiency is low. However, this experiment does provide us
with an important insight: Performing sampling on multiple
generation paths of diffusion models turns out to be a direct
and effective way of modifying the generation distribution
of diffusion models. Similar observations are also made in
previous works [29, 45, 51]. If OBJECTSELECT can already
do so well, can we design an even more effective sampling-
based algorithm that overcomes its limitations and can si-
multaneously correct for the missing object errors and im-
prove image quality?

3.4. A Particle Filtering Framework
Particle filtering has long been an effective Monte-Carlo
sampling framework for approximately generating random
samples from a target distribution [10, 15], and has been
successfully applied to diffusion models [57, 59]. Inspired
by this, we will explore how to incorporate the external
guidance into the particle filtering framework, to achieve
a target distribution of p(X0|C).

Our particle filtering framework obtains samples of X0:T

in reverse order. It first generates K samples of XT , denoted
as {x(k)

T
}, conditional on which K samples of XT�1 are

derived. This process continues until K samples of X0 are
obtained. Specifically, samples of Xt, {x(k)

t }, are derived
from samples of Xt+1, {x(k)

t+1}, via the following two steps.
Step 1: Proposal. For each sample x

(k)
t+1, propose a sam-

ple of Xt based on a proposal distribution r(Xt|Xt+1 =

x
(k)
t+1,C). This sample is denoted as x̃

(k)
t .
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(a) Generic particle filtering framework.
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(b) Particle filtering framework with the Restart sampler.

Figure 2. Illustration of our particle filtering framework.

Step 2: Resampling. Given all the sample pairsS
K

k=1{(x
(k)
t+1, x̃

(k)
t )}, resample from this set K times (with

replacement) with a probability proportional to a weight
function, w(x(k)

t+1, x̃
(k)
t |C), and then only keep the latter in

each sample pair. The resulting samples become {x(k)
t }.

Therefore, the key to the design of a particle fil-
tering algorithm involves designing 1) the proposal dis-
tribution r(Xt|Xt+1,C), and 2) the resampling weight
w(Xt+1,Xt|C). Consistent with the design principles in
Wu et al. [59], we adopt the following design:

r(Xt|Xt+1,C) = q(Xt|Xt+1,C),

w(Xt+1,Xt|C) =
�t(Xt|C)

�t+1(Xt+1|C)
.

(3)

The first line essentially means that the proposal step be-
comes the denoising step of the diffusion model. Denote
the distribution that {x(k)

t } follows as v(Xt|C). Then it can
be easily shown that, if we follow the design in Eq. (3),

v(Xt|C) = q(Xt|C)�t(Xt|C). (4)

The proof is provided in Appendix A. In other words,
�t(Xt|C) can be interpreted as a correction term that mod-
ifies the distribution of Xt. If we could set

�t(Xt|C) =
p(Xt|C)
q(Xt|C)

, (5)

then we can ideally achieve v(Xt|C) = p(Xt|C), 8t, which
means the final generated image will follow the real image
distributions. Figure 2a illustrates the overall process.

Now the question is how to compute the conditional like-
lihood ratio in Eq. (5). Sections 3.5 and 3.6 introduce two
methods with different requirements on external guidance.

3.5. A Discriminator-Based Approach
Our first method, shown in Figure 3a, only utilizes a small
set of real images with captions as the external guidance. It
involves training a discriminator that discriminates between
real and generated examples. Specifically, given a text de-
scription C, real samples of Xt are obtained by corrupting
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(a) Discriminator-based approach.
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(b) Hybrid approach.

Figure 3. Calculation of the correction term �t(Xt|C).

real images that correspond to C with Gaussian noise; fake
samples of Xt are obtained by first generating images using
the diffusion model with C as the text condition, and then
corrupting the generated images with Gaussian noise.

Given the real and fake samples, we train a conditional

discriminator d(Xt|C; t) by minimizing the canonical dis-
crimination loss

L = EC,t

⇥
EXt⇠p(Xt|C)[� log d(Xt|C; t)]

+EXt⇠q(Xt|C)[� log(1� d(Xt|C; t))]
⇤
.

(6)

It has been shown [20] that the minimizer of (6), denoted as
d⇤(Xt|C; t), can be used to compute the conditional likeli-
hood ratio as:

p(Xt|C)
q(Xt|C)

⇡ d⇤(Xt|C; t)
1� d⇤(Xt|C; t)

. (7)

Theoretically, the discriminator-based approach can correct
any distributional discrepancies between real and generated
images. However, due to the limitation in representation
power and optimization schemes, the discriminator may fail
to capture certain errors, such as the missing object errors.
Next, we will introduce an alternative approach with a more
fine-grained correction of different error types.

3.6. A Hybrid Approach
The hybrid approach (in Figure 3b) uses both the object de-
tector and real image set as the external guidance to address
the missing object errors and poor image quality respec-
tively. Formally, according to the Bayes rule, we decom-
pose the conditional likelihood ratio in Eq. (5) as follows:

p(Xt|C)
q(Xt|C)

¨
=

p(Xt|C,OC)
q(Xt|C,OC)

=
q(C,OC)
p(C,OC)

· p(Xt)
q(Xt)

· p(OC |Xt)
q(OC |Xt)

· p(C|OC ,Xt)
q(C|OC ,Xt)

.

(8)
Equality ¨ is due to the fact that the information in OC ,
by definition, comes entirely from C. The right-hand side
of Eq. (8) consists of four terms. The first term is about
the prior distribution of text conditions, which should equal
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one because the text prior is not impacted by the denoising
process. The second term addresses the general distribu-
tional discrepancies in images, which accounts for the low

image quality issue. The third term accounts for the missing
object errors. The fourth term accounts for any other incon-
sistencies between the image and text, such as inconsistent
object characteristics, mispositioned objects, etc. Since our
current focus is on correcting missing object errors and im-
proving image quality, we will focus on estimating the sec-
ond and third terms, which we will refer to as the uncondi-

tional likelihood ratio and object mention ratio respectively.
Estimating the unconditional likelihood ratio. The un-
conditional likelihood ratio can be estimated the same way
as in Section 3.5, except that the discriminator should be re-
placed with an unconditional one without C, hence denoted
as d(Xt; t). Accordingly, we can replace the discrimina-
tor in Eq. (7) with d⇤(Xt; t) to compute the unconditional
likelihood ratio. As a result, this hybrid approach does not
require that the image set comes with captions.
Estimating the object mention ratio. Assuming con-
ditional independence of different dimensions of OC , the
object mention ratio can be further factorized as follows:

p(OC |Xt)
q(OC |Xt)

=

Q
i
p(OCi|Xt)Q

i
q(OCi|Xt)

=

Q
i:OCi=1 p(OCi = 1|Xt)Q
i:OCi=1 q(OCi = 1|Xt)

·
Q

i:OCi=0 p(OCi = 0|Xt)Q
i:OCi=0 q(OCi = 0|Xt)

.

(9)
Essentially, Eq. (9) divides the objects into two groups, ones
that are mentioned in the caption, and ones that are not. So
the first term corrects for the missing object errors and the
second term corrects for the false generation (i.e., generat-
ing objects that are not mentioned in the caption). Since the
main concern of diffusion generation is the former, we will
focus on computing the first term.

The numerator, p(OCi = 1|Xt), measures, pretending
that the noisy image Xt were corrupted from a real image
and that the real image had a caption, what is the probability
that the caption would mention object i. Since the caption
almost always reflects what is in the image, this probability
can be easily approximated by running the object detector
on the predicted clean image from Xt. Formally, denote
f(Xt) as the one-step prediction of the clean image by the
diffusion model, then

p(OCi = 1|Xt) ⇡ p̂(OXi = 1|f(Xt)). (10)

A more rigorous derivation is provided in Appendix B.
The denominator, q(OCi = 1|Xt), measures, pretending

that the noisy image Xt were generated by the (imperfect)
diffusion model conditional on an input description C, what
is the probability that the input text had mentioned object
i. Unlike the numerator, if an object i does not appear in
the image, there is still a non-zero chance that the caption

had mentioned the object i, considering the diffusion model
may miss the object. As formally derived in Appendix B,
this probability can be approximated as

q(OCi = 1|Xt) ⇡ p̂(OXi = 1|f(Xt))

+ p̂(OXi = 0|f(Xt))
(1� it)⇡it

(1� it)⇡it + 1� ⇡it

,

(11)
where ⇡it is a hyper-parameter between 0 and 1; and

it =
EXt,C⇠q(Xt,C)[ (ÔXit = 1 ^OCi = 1)]

EC⇠q(C)[ (OCi = 1)]
(12)

denotes the percentage of occurrence of object i in the im-
age predicted from Xt when the text description mentions
object i. ÔXit denotes the (estimated) occurrence of object
i in the clean image predicted from Xt, i.e. f(Xt), which is
computed by passing f(Xt) to the object detector and then
see whether the output exceeds the threshold 0.5. (·) de-
notes the indicator function.

To compute it, we would need to run an initial gener-
ation round, where we feed a set of text descriptions to the
diffusion model (without particle filtering) and generate a
set of images. The numerator of Eq. (12) is computed by
counting how many text-image pairs mention object i in the
text and the corresponding ÔXit equals one; the denomi-
nator is computed by counting how many text descriptions
mention object i. Although the initial generation round in-
troduces extra computation, it only needs to perform once.
Summary. Our hybrid approach computes �t(Xt|C) as

�t(Xt|C) =
p(Xt)
q(Xt)

·
Q

i:OCi=1 p(OCi = 1|Xt)Q
i:OCi=1 q(OCi = 1|Xt)

, (13)

where the first term is computed by training an uncondi-
tional discriminator (similar to Eq. (7)), and the second term
is computed from Eqs. (10) and (11) using the object detec-
tor. Algs. 1 and 2 in Appendix describe the particle filtering
algorithm and the calculation of �t(Xt|C) respectively.

3.7. Generalization to Other Generation Settings
The proposed algorithm can be applied beyond text-to-
image generation to generic conditional and unconditional
generations by setting C to other conditions or an empty set
respectively. In this case, the discriminator-based approach
will be used as the hybrid approach is no longer applicable.

4. Experiments
In this section, we will first demonstrate the effectiveness of
our method on reducing the missing object errors and im-
proving the image quality in text-to-image generation. We
then evaluate our method on standard benchmarks of un-
conditional and class-conditioned generation. Finally, we
will investigate various design choices in our framework.
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4.1. Text-to-Image Generation
Datasets. We use two datasets: (1) GPT-Synthetic
was introduced in Wu et al. [61] to evaluate text-to-image
models’ ability in generating correct objects and their asso-
ciated colors and positions. It contains 500 captions, where
each caption contains 2 to 5 objects in MS-COCO [35], and
objects are associated with random colors and spatial rela-
tions with other objects, e.g., ‘The tie was placed to the right

of the red backpack.’ (2) We also evaluate on the validation
set of MS-COCO. However, we focus on the subset of com-
plex descriptions that contain at least four objects, which
results in 261 captions (details in Appendix C.2).

Baselines. We compare with seven baselines: ∂ SD,
which is the Stable Diffusion model [47] as is; ∑ D-
GUIDANCE [31] that modifies the score function by adding
an additional term r log p(Xt|C)

q(Xt|C) , where we use the hybrid
approach in Section 3.6 to estimate �t(Xt|C) = p(Xt|C)

q(Xt|C) ; ∏
SPATIAL-TEMPORAL [61] and π ATTEND-EXCITE [7] that
modify each denoising step to ensure each object in the cap-
tion is attended (details in Section 2); ∫ OBJECTSELECT in
Section 3.3; ª TIFASELECT and º REWARDSELECT, both
in [29], which are similar to ∫ but use TIFA score [25] and
ImageReward [63] as the selection criteria respectively. For
methods that leverage an object detector, we use DETR [6]
with ResNet-50 backbone [21]. For all sample selection
methods (∫-º and ours), we select the best image based
on each method’s sampling criterion for evaluation. We use
SD v2.1-base for our method and baselines (only ∏ does
not support it, for which we use v1.5). Additional results
using SD v1.5 are in Appendix C.7.

Metrics. We evaluate generated images using both objec-
tive and subjective metrics. For objective evaluation, we use
Object Occurrence to measure the percentage of objects
that occur in generated images over all objects mentioned
in the caption. We calculate the percentage for each caption
and take the average over all captions in the dataset. We
use an object detector (DETR with ResNet-101 backbone)
different from the one used during generation. In addition,
we also calculate Fréchet inception distance (FID) [23] as
a measure for image quality. Similar to Xu et al. [64], we
calculate FID on 5,000 captions in the MS-COCO validation
set that contain at least one object. For subjective evalu-
ation, we recruit annotators on Amazon Mechanical Turk
to compare images generated by our method and baselines.
Annotators are asked to evaluate two aspects: (1) (Object)
Given an image, annotators need to identify all objects in it.
(2) (Quality) Given two images for the same caption, anno-
tators need to select the one that looks more real and natu-
ral. We randomly sample 100 captions1 from each dataset

163 % of captions in MS-COCO dataset contain “person” as an object.
To evaluate on a more uniform distribution of objects, we randomly sample
25 captions that contain person and 75 captions that do not.

Figure 4. FID (#) vs. Object occurrence (") for all methods. Ideal
points should scatter at the bottom right corner. Object occurrence
is measured on GPT-Synthetic (left) and MS-COCO (right),
and FID is measured on MS-COCO. K = 5, 10, 15 images are
generated for sample selection methods, and the sizes of points
indicate the value of K (larger K has larger points). The method
that achieves the best combined performance is highlighted in red.

for evaluation, and each image is rated by two annotators.
Diffusion samplers. All the methods are evaluated on the
Restart sampler [64]. The only exceptions are SPATIAL-
TEMPORAL and ATTEND-EXICTE, which use the same
samplers as in their papers. The Restart sampler iterates be-
tween three steps: ∂ Denoise from t+N to t using the ODE
trajectory; ∑ Restart by adding the noise back to the level
t+N . ∏ Denoise from t+N to t again, and either go back
to step ∑ or proceed to the next iteration which denoises to
t � N 0. As shown in Figure 2b, our methods are combined
with the Restart sampler by inserting the resampling mod-
ule right before adding noise. We also experimented with
the SDE sampler in EDM [28], but we found Restart sam-
pler generally dominates EDM on both object occurrence
and image quality. We thus only focus on Restart sampler
in the main paper. EDM results are shown in Appendix C.6.
Sampling configurations. To have a fair comparison in
terms of the computation cost, we evaluate all sample se-
lection methods (including ours) under a comparable num-
ber of function evaluations (NFE). Specifically, we gener-
ate each image with a fixed NFE and report performance
when K = 5, 10, 15 images are generated for each caption.
This ensures a fair comparison for methods with the same
value of K. For non-selection methods (SD, D-GUIDANCE,
SPATIAL-TEMPORAL, and ATTEND-EXCITE), we use the
original sampling configuration in their papers and thus
only report a single performance on each dataset. Appendix
C.4 details the computation cost for all methods.
Results. Figure 4 shows object occurrence and FID for all
methods. The performance of sample selection methods is
reported for three different values of K, which are indicated
by the sizes of the points in the figure. A competitive algo-
rithm should achieve a high object occurrence rate (right)
and low FID (bottom), so the more the algorithm lies to the
bottom-right corner, the more competitive the algorithm is.
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GPT-Synthetic MS-COCO

Object Quality vs. Object Quality vs.

Occur (") PF-HYBRID (") Occur (") PF-HYBRID (")

SD [47] 64.48 -6.00 59.87 -3.00
REWARDSELECT [29] 71.97 -3.00 63.25 -3.00
OBJECTSELECT 70.96 -11.00 67.35 -9.00
PF-DISCRIMINATOR 68.87 -8.00 59.98 -2.00
PF-HYBRID 75.79 – 68.13 –

Table 1. Human evaluation on object occurrence and image qual-
ity. ‘Quality’ is the win rate against PF-HYBRID (minus 50). Neg-
ative values indicate the method is worse than PF-HYBRID.

There are two observations from Figure 4. First, the
sampling-based methods (represented by circles) generally
significantly outperform the non-sampling-based ones (rep-
resented by crosses). In particular, although SPACIAL-
TEMPORAL and ATTEND-EXCITE improve object occur-
rence, the improvements are not as large as other sampling-
based methods, and their computational costs (as shown in
Appendix C.4) are also high or on par with the sampling-
based methods. Second, our PF-HYBRID is the only algo-
rithm that simultaneously achieves high object occurrence
and low FID. OBJECT-SELECT achieves a high object oc-
currence, but the worst FID scores. The other proposed
method, PF-DISCRIMINATOR, achieves a very low FID, but
the object occurrence is significantly compromised, which
verifies our claim that conditional discriminators tend to
overlook object occurrence and focus only on image qual-
ity (Section 3.5). Notably, all three methods proposed in
this paper, OBJECT-SELECT, PF-DISCRIMINATOR and -
HYBRID lie at the frontier of the performance trade-off, sig-
nificantly outperforming the existing baselines. Appendix
C.5 further shows the object occurrence for each object cat-
egory, which indicates that our method is particularly bene-
ficial on small objects with fine details.

Table 1 shows the results for subjective evaluations,
where object occurrence is computed the same way as the
objective object occurrence. The quality score is computed
as follows. Since PF-HYBRID is the most competitive al-
gorithm, we perform a pairwise comparison between PF-
HYBRID and each baseline. The baseline gets one point
everytime a subject prefers the baseline over PF-HYBRID.
Each comparison consists of 100 pairs so a score of 50 in-
dicates a tie. We subtract all the scores by 50 so a negative
score in each baseline indicates that PF-HYBRID is better.
As can be observed, PF-HYBRID outperforms all the base-
lines in terms of object occurrence and subjective quality.

Figure 5 visualizes some generated images by our
method and baselines. As can be observed, the plain SD can
generate natural images but tends to miss objects mentioned
in the text. OBJECTSELECT reduces the missing object er-
rors but could lead to unnatural objects in the image (e.g.,

knife and fork). PF-HYBRID generates more complete ob-
jects and also improves image quality. Appendix F presents
more examples including failure cases of our method.

4.2. Unconditional & Class-conditioned Generation
Experiment setup. In addition to text-to-image, we eval-
uate two other image generation benchmarks, FFHQ [27]
for unconditional generation and ImageNet-64 [12] for
class-conditioned generation. Here, object occurrence is not
applicable so we will focus on image quality as measured
by FID. We will only implement PF-DISCRIMINATOR be-
cause PF-HYBRID is not applicable (Sectoin 3.7). We use
the pre-trained diffusion models in Karras et al. [28] and
follow Kim et al. [31] to train the discriminator (details in
Appendix D.1). For evaluation, we calculate FID on 50,000
generated images. Additional results using ADM [13] and
VP [55] diffusion models are in Appendix D.5.
Baselines and method variants. We consider three base-
lines: ∂ The original Restart sampler; ∑ D-GUIDANCE us-
ing the discriminator to compute the correct term (follow-
ing [31]); ∏ D-SELECT, which is similar to OBJECTSE-
LECT but uses the likelihood ratio p(X0|C)

q(X0|C) as the selection
criterion (effectively an importance sampling approach to
restore the ground-truth distribution).
Sampling configurations. Similar to Section 4.1, we
evaluate PF and D-SELECT for different values of K with
a fixed NFE per image. For a fair comparison, we increase
denoising steps for the original sampler and D-GUIDANCE
to match the total NFE of the sampling-based methods.
Results. Figure 6 shows FID as a function of overall NFE.
For PF and D-SELECT, K = 2, 4, 6 images are generated.

There are two observations. First, all the methods gen-
erally improve as NFE increases, showing the effective-
ness of increasing samples (for sampling-based methods) or
increasing denoising steps (for non-sampling-based meth-
ods). Second, D-GUIDANCE generally performs compet-
itively, especially at small NFEs, but our method consis-
tently achieves the lowest FID across two datasets at large
NFEs. Moreover, it is worth to note that NFE is not an ad-
equate measure of computation cost in our setting. NFE
only measures the number of evaluations of the denoising
U-Net, ignoring the other compute costs such as the for-
ward and backward passes of the discriminator. Since D-
GUIDANCE evaluates the discriminator at every denoising
step, whereas ours only at a subset of steps with no back-
ward passes, our method incurs 0.66⇥ compute cost per
NFE compared to D-GUIDANCE. As shown in Figure 11
in Appendix D.4, if this factor is considered, our method
outperforms D-GUIDANCE across all compute costs.

4.3. Ablation Study
We now investigate two important aspects of our method in
text-to-image generation setting: the particle filtering algo-
rithm and the resampling weight calculation. For each ab-
lated version, we will evaluate on the object occurrence on
GPT-Synthetic and MS-COCO, and FID on the latter.
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Shaggy dog gets dinner served on a plate.

GPT-Synthetic MS-COCO
Plain SD Object Select PF-Hybrid

The red couch was situated to the left of the blue toilet in the room.

The black cup is placed to the right of the knife, with a brown fork 
in between them.

Plain SD Object Select PF-Hybrid

A steak dinner with a bowl of steamed broccoli, bread and butter, a 
bottle of beer and a bottle of wine.

Figure 5. Visualization of generated samples. Missing objects are highlighted in red. Unnatural objects are highlighted with underline.

Figure 6. FID (average of 3 runs) on ImageNet-64 (left) and
FFHQ (right). Error bars indicate standard deviations.

Object Occurrence (%) " FID #
GPT-Syn MS-COCO

PF-HYBRID 72.96 83.84 24.03
- PF 67.16 80.49 24.18
- Discriminator 75.67 85.79 25.77

PF-DISCRIMINATOR 56.86 70.96 22.91
- PF 57.09 72.13 23.28
Object only 63.15 77.81 25.31

Table 2. Ablation study on the effects of particle filtering algo-
rithm and particle weights design.

First, we investigate the effects of removing particle
filtering. To do that, we compare PF-HYBRID and PF-
DISCRIMINATOR with two approaches that do not involve
particle filtering but only generate K images via the regu-
lar Restart sampler and select the best one with the largest
value of �0(X0|C), calculated the same way as PF-HYBRID
and PF-DISCRIMINATOR respectively. Table 2 shows the
performance of these two methods (rows ‘�PF’). As can
be observed, removing PF hurts the performance of PF-
HYBRID on all metrics, demonstrating the importance of
the particle filtering process. Removing PF hurts FID for
PF-DISCRIMINATOR but does not affect object occurrence,

which indicates the conditional discriminator focuses on
image quality instead of object occurrence.

Second, we investigate the design choices of the re-
sampling weight. We explore two variants for estimating
�t(Xt|C). For PF-HYBRID, we remove its unconditional
discriminator and only include the object mention ratio (Eq.
(13)). For PF-DISCRIMINATOR, since we have observed
that the discriminator tends to ignore missing objects, we
introduce a variant to force its attention on missing objects
by training the discriminator on the object detector’s out-
put probability as the feature (instead of on the images).
The results in Table 2 (rows ‘�Discriminator’ and ‘Object
only’ respectively) show that these two variants manage to
improve object occurrence, but at the cost of higher FIDs,
which highlights the needs of balancing the two objectives.

We further study other aspects in class-conditioned gen-
eration, including when the resampling is performed (i.e.,

before or after adding noise), the amount of noise being
added, and the number of denoising steps per image. No-
tably, our PF method with Restart sampler achives the state-
of-the-art FID of 1.02 on ImageNet-64 when 4 images
are generated with 165 NFE (details in Appendix E).

5. Conclusion
In this paper, we propose a sampling-based approach us-
ing particle filtering to correct diffusion generation errors
and reduce discrepancies between model-generated and real
data distributions. Experiments on text-to-image, uncondi-
tional, and class-conditioned generation reveal our method
effectively corrects missing objects and low-quality errors.
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