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Abstract

State-of-the-art personalized text-to-image generation
systems are usually trained on a few reference images to
learn novel visual representations. However, this is likely
to incur infringement of copyright for the reference image
owners, when these images are personal and publicly avail-
able. Recent progress has been made in protecting these im-
ages from unauthorized use by adding protective noises. Yet
current protection methods work under the assumption that
these protected images are not changed, which is in contra-
diction to the fact that most public platforms intend to mod-
ify user-uploaded content, e.g., image compression. This
paper introduces a robust watermarking method, namely
InMark, to protect images from unauthorized learning. In-
spired by influence functions, the proposed method forges
protective watermarks on more important pixels for these
reference images from both heuristic and statistical per-
spectives. In this way, the personal semantics of these im-
ages are under protection even if these images are modi-
fied to some extent. Extensive experiments demonstrate that
the proposed InMark outperforms previous state-of-the-
art methods in both protective performance and robustness.

1. Introduction

As large-scale text-to-image models demonstrate incredible
capabilities in conditional image generation [15, 51, 53, 65],
their security and privacy issues become a serious topic for
consideration [19, 57, 58, 68, 71]. Recent studies [37, 39]
revealed that text-to-image models, e.g., diffusion models
[21, 25, 33, 34, 47], could be utilized for copyright viola-
tions or portrait misuses: Personalized text-to-image tech-
niques based on diffusion models [17, 27], such as Dream-
Booth [50, 54], allow users to imitate the art style of paint-
ings or produce vivid portraits at will, making artwork in-
fringements [75] and deepfakes [14, 26, 28, 38] possible.
Since the solution of personal data protection [13, 24, 63]
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Figure 1. The pipeline of unlearnable examples against diffu-
sion models. By exploiting a denoising process, diffusion models
are capable of realistic image generation, which may be privacy-
sensitive if personal images are involved. (a) To counteract this,
unlearnable examples use a protective watermark that counters
personalized image generation. (b) However, their effectiveness
could be degraded in the presence of real-world modifications
(e.g., image compression), due to the lack of robustness in their
approaches. We thus introduce a more robust method based on the
insight of focusing on more influential pixels within the image.

is still largely unexplored, it raises public concern about the
development of text-to-image model applications at scale.

Leveraging the adversarial noises related to the data has
been an essential design principle for a long in trustworthy
machine learning. Adversarial examples [4, 6, 44, 49, 66]
for images confuse a neural network by doing so, to
wrongly classify a given input. More recently, unlearnable
examples [55] consider scenarios where personal data is not
supposed to be learned by unauthorized neural networks.
By utilizing adversarial noises, training images become no
longer learnable for discriminatory machine learning tasks
[29]. Unlike machine unlearning [45, 61] which erases data
points from trained neural nets, unlearnable examples allow
users to take proactive action. These hard-to-learn exam-
ples may be a decent solution to protect reference images
from personalized text-to-image generation.

Towards countering personalized text-to-image gener-
ation, several recent studies present promising results in
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making training images unlearnable. With different moti-
vations though, these methods share the same thought of
treating adversarial examples at inference time as unlearn-
able examples. The pioneering method [39], namely Ad-
vDM, was proposed to prevent art style transfer from Tex-
tual Inversion [17]. Later, Le et al. [37] proposed to counter
DreamBooth [54] to protect personal images from deep-
fakes. These methods use projected gradient descent, which
was originally proposed for generating adversarial exam-
ples, to make the training images unlearnable. It is expected
that by using these methods, users could safely upload their
personal images onto public platforms, since the protective
noises within the personal images are supposed to destroy
the denoising ability of diffusion models.

Nevertheless, we argue that current methods are not ro-
bust enough to be properly applied in real-world applica-
tions, since most public platforms intend to modify user-
uploaded images (Fig. 1), e.g., image compression. It is
empirically proved that even basic compression methods,
such as JPEG compression [64], will make current state-
of-the-art methods [37, 39] useless. The reason can stem
from the energy in the frequency domain of the reference
images: Current methods heavily rely on high-frequency
noises, which are often considered content-irrelevant, and
these noises are meant to be diminished by common image
compression approaches. Since image compression tech-
niques are widely deployed in public platforms and such
protective noises are largely filtered by these techniques, a
robust solution for unlearnable training images is still in ur-
gent need. Unfortunately, we find out in this paper that di-
rectly restricting noises in the low-frequency domain [22]
cannot protect the personal training images, either. From
this perspective, we desire to investigate the question: what
noises influence the denoising ability of diffusion models?
Instead of straightly exploiting adversarial examples to de-
teriorate the denoising performance, we focus on the most
influential pixels that will have a certain impact on the de-
noising ability, if the diffusion models are trained on them.

Present work. In this paper, we introduce a novel
image watermarking method, i.e., Influence Watermarks
(InMark), to protect personal images from unauthorized
text-to-image generation. Inspired by influence functions
[10], we seek to embed watermarks into pixels with high
influence on the final generative results. To find these in-
fluential pixels, the inspiration of influence functions from
robust statistics is extended to two perspectives. From a
heuristic perspective, we first concentrate on gradient de-
scent in subspace where these pixels are most likely to oc-
cur. We also take advantage of the effect on an estimator of a
slightly perturbed sample, instead of directly using the gra-
dient, from a statistical perspective. Thus, our method can
benefit from the insight of influence functions to achieve

competitive robustness. The contributions of the paper can
be summarized as follows: a) We propose the first unlearn-
able examples against diffusion models by embedding wa-
termarks into influential pixels. b) The proposed InMark
enjoys more significant protective performance with only
negligible visual quality deficits. c) Empirical results prove
that InMark achieves state-of-the-art performance in terms
of both performance and robustness.

2. Background
Text-to-image generation. For text-to-image generation,
diffusion models are trained to reverse a noise sampled from
a Gaussian distribution. During training, the ground-truth
input image x0 is perturbed by the diffusion process with
the noise scheduler through T steps, which generates a se-
quence of noisy variables at each time step t ∈ [1, T ]. The
trainable parameters θ in the diffusion model attempt to pre-
dict the noise by minimizing a squared error term:

SEϵ,θ,t,c(x0) = ||ϵθ(
√
αtx0 +

√
1− αtϵ, c)− ϵ||22, (1)

where ϵθ is a neural net, c is the conditional vector (e.g.,
originated from a text prompt), αt is the term controlling the
noise schedule and ϵ is the noise sampled from a standard
Gaussian distribution. Throughout this paper, we stand for
the perspective of the image owners, who release the per-
sonal images (e.g., the artwork and portraits) to the public
platforms. We aim to protect the released personal images
(i.e., reference images) from unauthorized imitations using
diffusion models. DreamBooth is one of the most common
personalized text-to-image methods by fine-tuning models,
which targets minimizing the personalized loss ℓθ for a dif-
fusion model θ with a reference image x0:

ℓθ(x0) = Ex0,c,ϵ,t[SEϵ,θ,t,c(x0)+λSEϵ′,θ,t′,cpr(xpr)], (2)

where xpr is the class example, cpr is the prior prompt and t′

is the corresponding time step. In Eq. (2), since the number
of reference images is comparably small, DreamBooth in-
troduces a prior preservation loss with the adjustable param-
eter λ to mitigate over-fitting and text-shifting problems.
With the prior prompt cpr, the class example x′ is gener-
ated at first using the original pre-trained weights.

Threat model. We assume that the adversary intends to
utilize personal images, which belong to other individuals,
as reference images for personalized text-to-image gener-
ation. The adversary is allowed to use personalized tech-
niques to fine-tune a pre-trained diffusion model and has
full control over the fine-tuning process of diffusion mod-
els. As compressing the uploaded content can save band-
width, the uploaded reference images are usually modified
by public platforms. However, the adversary may not mod-
ify the reference images, since the adversary only has lim-
ited prior knowledge about the uploaded reference images
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in the public platforms. Also, according to the prior knowl-
edge, the personalized methods used by the adversary may
also be unknown. The possible modifications and personal-
ized methods are discussed in the appendix and Sec. 4.

Unlearnable example. Contrary to model unlearning
which removes concepts or data points from trained models
[3, 9, 18, 23, 31, 36, 40, 48, 67, 73], unlearnable examples
are proposed to protect personal data from unauthorized ex-
ploitation [29, 32, 52, 72]. Huang et al. [29] proposed to use
a surrogate model to estimate the classification errors on the
target model, and minimized them to make data points un-
learnable. Tao et al. [60] adopted a similar method w.r.t.
Huang et al. [29] instead of using a pre-trained model to
estimate errors. By replacing the surrogate model with an
adversarial-trained one, Fu et al. [16] proposed a more ro-
bust method against adversarial training [43]. In the domain
of generative models, e.g., diffusion models [2, 7, 8, 69],
Liang et al. [39] proposed to bypass the process of person-
alized diffusion models, by changing artistic paintings into
adversarial examples [43] to protect art style from imita-
tions, and so do Zhao et al. [74]. Le et al. [37] proposed
to avoid personal portrait misuse, in a way similar to Liang
et al. [39] but involving the training process of models. In
this paper, to protect copyright from the adversary, we con-
sider adding protective noises onto these reference images
to forge unlearnable examples, as in Definition 1.

Definition 1 (Unlearnable examples for personalized diffu-
sion models). Given a diffusion model θ, the personalized
loss ℓp, and the reference images x0 ∼ q(x) from the target
distribution q(x), the unlearnable example x̃0 can be forged
by solving the bi-level optimization problem:

max
x̃0

SEϵ,θ∗,t,c(x̃0) (3)

s.t. θ∗ = argmin
θ

ℓθ(x̃0)

||x̃0 − x0||0 ≤ ∆,

where ∆ relates to the trade-off between the unlearnable
effectiveness and the visual quality of the image x0.

However, solving the bi-level optimization in Definition 1
is rather difficult: a) For the inner optimization where the
diffusion models are trained on the current unlearnable ex-
ample, it is extremely time-consuming to obtain θ∗, since
in real-world applications diffusion models usually own pa-
rameters at the billions level. b) The training process of dif-
fusion models itself consistently adds noises into the train-
ing images and removes them from images, which means
that diffusion models are intrinsically capable of denoising.

Projected gradient descent. To tackle these difficulties,
prior state-of-the-art methods [37, 39] use adversarial exam-
ples at inference time to approximate unlearnable examples

at training time1, using projected gradient descent [43]:

x̃
(i+1)
0 = Πγ(x̃

(i)
0 + α · SGN(∇

x̃
(i)
0
SEϵ,θ∗,t,c(x̃

(i)
0 )), (4)

where SGN(·) denotes the sign function, α is the step size
for each iteration, Π refers to a projection function which
clips the noise to a γ−ball around x0, and the iteration starts
with x̃(0)0 = x0. However, there is an inevitable shift be-
tween examples at training time and at inference time, since
in Eq. (4) noises are generated based on models trained on
other data points. In Definition 1, if adversarial examples at
inference time are taken as unlearnable examples at training
time, the purpose of forging x̃0 is no longer to maximize
Eq. (1) for worsening the process of fine-tuning diffusion
models, but for forging an example which is hard to denoise
w.r.t. current models trained on other data. We argue that
this shift results in a suboptimal performance for protect-
ing reference images with regard to diffusion models, and
propose InMark to mitigate this shift.

3. Influence Watermarks
The influence function is a classic technique from robust
statistics [10], which can help us identify what training
points are most responsible for a given prediction [35]. In
the proposed Influence Watermarks (InMark), we focus on
what pixels are most influential in reconstructing the train-
ing images, as many generative models [41, 70] do for train-
ing. In our proposed InMark, the insights of the classical
influence function are extended to two key points: a) we
heuristically confine the search space of projected gradient
descent to a subspace, where the pixels with high influence
are most likely to appear; b) we statistically perform gradi-
ent descent with self-influence, where the moving direction
of noises is guided by the training point itself. By focusing
on these influential pixels, countermeasures such as image
compression can be largely mitigated. Full proofs of propo-
sitions in this section are provided in the appendix.

Gradient descent in subspace. Since the training im-
ages used in diffusion models are usually with high res-
olutions, the search space for these pixels is prohibitively
large. Heuristically, we need to find a subspace which is
most likely to contain these influential pixels for counter-
ing personalized text-to-image generation, and manage to
modify these pixels through a gradient-based method.

Intuitively, the subspace holding high influential pixels
is supposed to satisfy the following criteria: a) in the sub-
space, the pixels are closely connected with the image qual-
ity, as our purpose is destroying the visual quality in per-
sonalized text-to-image tasks; b) the pixels in the subspace

1Le et al. [37] proposed to consider bi-level optimization, yet the noises
are still generated based on a model trained on the clean images.
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may appear anywhere in the reference image, since the ref-
erence images are usually portraits or artworks. Based on
the observation that most content-irrelevant information is
associated with the high frequency signal, we adopt the low
frequency subspace to search the desired influential pixels.
Assume the reference image x0 ∈ R3×d×d, we consider
discrete cosine transform (DCT) [1] to represent x0 in the
frequency space as X0:

X0(k, u, v) = cucv

d−1∑
i=0

d−1∑
j=0

x0(k, i, j)ϕ(i, u)ϕ(j, v), (5)

where we have the normalization term cu =
√

1
d if u = 0

or otherwise cu =
√

2
d for an isometric transformation, and

the basis function ϕ(·) is defined as:

ϕ(i, u) = cos (
π(0.5 + i)

d
u). (6)

Likewise, the inverse function (i.e., IDCT) is described as:

x0(k, i, j) =

d−1∑
u=0

d−1∑
v=0

cucvX0(k, u, v)ϕ(i, u)ϕ(j, v). (7)

Each channel in the reference image x0 corresponds to a
frequency matrix X0(k, ·, ·) = DCT(x0(k, ·, ·)), where the
entries represent the magnitudes of the basis functions. In
particular, the top-left entries, which denote cosine waves
with long periods, form a low-frequency space that can be
exploited to generate robust watermarks.

To implement gradient descent in this subspace, we use
a binary mask mη with ratio η to ensure that elements in the
top-left area (i.e., Rηd×ηd) remain intact and other elements
go zero. For gradient-based method (e.g., in Eq. (4)), we
can achieve this by directly masking the gradient according
to Proposition 1, which can be denoted as follows:

L(x,mη) = IDCT(DCT(∇xSEϵ,θ∗,t,c(x))⊙mη), (8)

where⊙ represents the element-wise product. For gradient-
based optimization, by replacing ∇

x̃
(i)
0
SEϵ,θ∗,t,c(x̃

(i)
0 ) in

Eq. (4) with L(x̃(i)0 ,mη), the search space for noises can
be confined to a low frequency subspace.

Proposition 1. To confine the optimization to the low fre-
quency subspace, directly masking the gradient is equiva-
lent to mask the image and perform gradient-based opti-
mization through discrete cosine transform.

Influence-based gradient descent. As our primary goal
is to deteriorate the ability to denoise after fine-tuning, we
are supposed to maximize the squared error loss in Defini-
tion 1. Within the attack budget ∆, we can achieve better

protective performance if the chosen pixels have a signifi-
cant influence on the loss. The question lies in how to know
the influence of pixels on loss after training? A naive but
straightforward idea is to change every single pixel and then
retrain the model. However, this is computationally impos-
sible though it may lead to a maximal loss. From a statis-
tical perspective, we can find out how would the predictive
results change if data points are slightly modified via influ-
ence functions [10]. Assume x̃0 = x0+δ, we are interested
in how would the diffusion model ability to denoise change
if we add a small noise δ to the reference image x0:

I(x0) = ∇δSEϵ,θ∗,t,c(x0 + δ)

∣∣∣∣
δ=0

s.t. θ∗ = argmin
θ

ℓθ(x0 + δ).
(9)

I(x0) is termed as self-influence, since it can be interpreted
as the effect on the squared error loss w.r.t. x̃0 by gradually
moving x0 to x̃0. In other words, I(x0) tells us which direc-
tion maximally increases the loss, when we use x̃0 = x0+δ
to train diffusion models. Moreover, compared to gradi-
ent descent in Eq. (4), the moving direction of noises is
no longer based on the loss at inference time, but is more
aligned with our goal to maximize the training loss after
convergence, thus enabling better image protection.

To efficiently solve Eq. (9) and implement a more robust
watermark called InMark for curating unlearnable exam-
ples, I(x0) can be instantiated according to Proposition 2.

Proposition 2. To forge unlearnable example x̃0 from x0
against personalized diffusion models, the self-influence
I(x0) can be inferred as:

I(x0) = −∇θSEϵ,θ∗,t,c(x0)
TH−1

θ∗ ∇x0
∇θSEϵ,θ∗,t,c(x0),

(10)
where Hθ∗ = Ex0 [∇2

θSEϵ,θ∗,t,c(x0)] is the Hessian and we
assume that Hθ∗ is positive definite.

Here the calculation of the Hessian in Proposition 2 is
known to be computationally expensive. We therefore pro-
pose a more efficient approach by alternatively moving the
noises to form InMark, and the formulation yields:

x̃
(i+1)
0 = Πγ(x̃

(i)
0 +α·SGN(ψjL(x̃(i)0 ,mη)+ψj+1I(x0))),

(11)
where ψj = cos2 π

2 j is the factor that controls the noises
update alternatively and j is the optimization epoch. The
overall implementation is present in Algorithm 1. Since
there is a part of gradient-based optimization in Eq. (11),
we need to prepare a trained model to evaluate the loss w.r.t.
L(x̃(i)0 ,mη). Thus, we use the partly optimized x̃0 in the
last epoch or x0 at the beginning to train the model.
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Clean ASPL [37] FSMG [37] LF-ASPL [22, 37] LF-FSMG [22, 37] InMark (Ours)

Figure 2. Image variations on VGGFace2. Given input portrait images (top row), the following prompts are used to demonstrate the
effectiveness of the proposed method: a photo of sks person (middle row) and a DSLR portrait of sks person (bottom row).

Algorithm 1 Generate Influence Watermarks (InMark)
Parameter: reference image x0, step size α, range γ, mask
ratio η, pre-trained θ.

1: Prepare a set of class example x′ using pre-trained pa-
rameters;

2: Initialize x̃0 ← x0 and x̃(0)0 ← x0;
3: for j = 0, epoch do
4: Update θ by descending the gradients: ∇θℓθ(x̃0)
5: if j is an odd number then
6: Calculate the Hessian for I(x0);
7: end if
8: for i = 0, iteration do
9: if j is an even number then

10: x̃
(i+1)
0 ← Πγ(x̃

(i)
0 + α · SGN(L(x̃(i)0 ,mη))

11: else if j is an odd number then
12: x̃

(i+1)
0 ← Πγ(x̃

(i)
0 + α · SGN(I(x0)))

13: end if
14: end for
15: end for
16: return optimized noise δ∗ = x̃0 − x0;

4. Experiments

Setup. To evaluate the proposed InMark, we follow
common settings [37, 39] and include empirical results for
Stable Diffusion [53] and DreamBooth [54]. Other person-
alized techniques, such as Textual Inversion [17] and LoRA
[27, 54], are also evaluated. We consider two image gen-
eration tasks where diffusion models are typically applied:
image variations and style transfer, over WikiArt [56, 59]
and VGGFace2 [5, 37] datasets. Image compression meth-
ods, including JPEG [64] and WebP [20], are considered to
evaluate the robustness of InMark.

Baselines. To compare with other baselines comprehen-
sively, the proposed InMark is benchmarked against previ-

ous state-of-the-art methods, including ASPL [37], FSGM
[37], and the representative work in low-frequency attacks
for neural networks, namely LF-PGD [22]. To demonstrate
the effectiveness of the proposed InMark, the inference-
time method against diffusion models where the bi-level
optimization is not involved, i.e., AdvDM [39], is also con-
sidered. Note that we introduce results of LF-PGD to inves-
tigate if the protective method still works in low-frequency
subspace when there is no influence function. Since LF-
PGD was originally proposed for forging adversarial ex-
amples for classifiers, we implement LF-ASPL, LF-FSMG,
and LF-AdvDM to adapt it to the text-to-image scenario.
Other methods are omitted in the experiments as they share
similar spirits to the mentioned baselines or there is no pub-
lic implementation for comparison [69, 74].

Metrics. The evaluation metrics of interests at each stage
are also different. At the unlearnable image generation
stage, the resulting images are supposed to suffer minor
visual defects. In this stage, the root mean squared error
(RMSE) and the peak signal-to-noise ratio (PSNR) are mea-
sured for each image. At the fine-tuning stage for diffusion
models, the learned subject should be avoided for copyright
infringement. Therefore, the blind/referenceless image spa-
tial quality evaluator (BRISQUE) [46], the face detection
failure rate (FDFR) [11], and the identity score matching
(ISM) [12] are evaluated based on 128 generated images.

4.1. Personalized Image Generation

When personal portraits are uploaded onto public platforms,
malicious users could use DreamBooth to spread fake news
with photo-realistic images of the specific person. Image
variation tasks demonstrate the ability to capture the high-
level semantics of the portraits using a single pseudo-word.
In Fig. 2 we compare InMark with baselines for image
variations. We use Stable Diffusion (version 2.1) as the
backbone by default, and the output size of images is set
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Table 1. Numerical results of image variations on VGGFace2. ↑ and ↓ indicate that the higher and lower values represent better perfor-
mance, respectively. photo denotes the prompt a photo of sks person and portrait represents the prompt a DSLR portrait of sks person.

PSNR (↑) RMSE (↓)
BRISQUE (↑) FDFR (↑) ISM (↓)

photo portrait Avg. photo portrait Avg. photo portrait Avg.

Clean - 0.00 18.61 2.10 10.36 0.00 0.06 0.03 0.66 0.55 0.61
ASPL [37] 34.42 4.85 36.08 35.45 35.77 0.17 0.34 0.26 0.28 0.28 0.28
FSMG [37] 34.70 4.70 36.08 35.59 35.84 0.16 0.31 0.24 0.38 0.27 0.33
AdvDM [39] 34.69 4.70 36.98 32.35 34.67 0.06 0.08 0.07 0.36 0.36 0.36
LF-ASPL [22, 37] 33.95 5.12 37.03 19.57 28.30 0.00 0.06 0.03 0.61 0.43 0.52
LF-FSMG [22, 37] 34.17 4.99 36.42 11.79 24.11 0.00 0.08 0.04 0.66 0.46 0.56
LF-AdvDM [22, 39] 34.16 5.00 35.01 10.88 22.95 0.00 0.05 0.03 0.62 0.44 0.53
InMark (Ours) 34.96 4.55 36.96 50.05 43.51 0.67 0.28 0.48 0.33 0.31 0.32

as 512 × 512. The learning rate and the maximum train-
ing step are set as 5 × 10−7 and 1000 respectively, with
the batch size of 2. Before each experiment, we use the pre-
trained diffusion model to generate 200 class images and set
the prior loss weight for DreamBooth as 1.0. The prompt
a photo of sks person is used to evaluate whether the resul-
tant generative model can memorize the details of the input
images. Another prompt, a DSLR portrait of sks person,
is used to forge fake photos captured by a DSLR camera
[30, 42, 62], to simulate the fake news propagation by mali-
cious users. For each experiment, we use 4 training images
from VGGFace2 for DreamBooth-based fine-tuning.

In Fig. 2, it appears that LF-ASPL and LF-FSMG fail
to protect the portraits, as the generated images with the
prompt a DSLR portrait of sks person enjoy high visual
quality. Empirical results demonstrate that high-frequency
noises in unlearnable examples for diffusion models are
more important than low-frequency ones, which is not fully
aligned with the conclusion in the domain of convolutional
neural network classifiers [22]. Among the prompts, both
ASPL and FSMG can protect the training portraits, with the
visually destroyed output images. For numerical results, we
report the metrics of PSNR, RMSE, BRISQUE, FDFR, and
ISM in Tab. 1. Among all baselines, InMark has the lowest
RMSE and the highest PSNR, which means our proposed
method has the least impact on the image quality of the orig-
inal image. For BRISQUE and FDFR, InMark far exceeds
the baselines, which indicates diffusion models cannot learn
high-level semantics from images protected by InMark
through personalized techniques. For ISM, our InMark
also achieves competitive results w.r.t. baselines. Empiri-
cal results prove that our proposed method works when the
uploaded portraits are embedded with InMark.

When artists upload their paintings onto public plat-
forms, they may anticipate copyright protection for their
artworks. In addition to the legal responsibility of the plat-
forms, artists can also apply unlearnable noises to their

ASPL [37] LF-ASPL [22, 37] InMark (Ours)

Figure 3. Style transfer on WikiArt. Given input artwork images
(top row), the prompt a painting of sks illustration style is used to
generate paintings of transferred illustration style by DreamBooth
(middle row). The last row and the penultimate row denote results
from pre-trained models and the DreamBooth results when the in-
put images are clean and unprotected respectively, for comparison.

paintings, without losing the fine-grained details of the im-
ages. Empirical results on WikiArt are shown in Fig. 3.
Generated images w.r.t. LF-ASPL only suffer limited degra-
dation compared to its constrain-free version, i.e., ASPL.
This reinforces our point of view that merely confining
the search space to low-frequency subspace cannot yield
stronger protective performance. Protected by our proposed
InMark, the details of generated paintings present stripe-
like noises, making their original artistic value worthless.

4.2. Robustness

When images are uploaded onto public platforms, the con-
tent may be modified by others. In terms of robustness, we
consider image compression methods for the following cru-
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Clean ASPL [37] FSMG [37] LF-ASPL [22, 37] LF-FSMG [22, 37] InMark (Ours)

Figure 4. Conventional image compression robustness on VGGFace2. The input images are compressed by conventional image compres-
sion algorithms (the first row for JPEG and the third row for WebP). Then the compressed images are trained by DreamBooth and images
are generated using the prompt a DSLR portrait of sks person (the second row for JPEG results and the fourth row for WebP results).

cial reasons. First, modification methods like image crop-
ping and color jittering are not suitable for the application
scenario, since they intend to ruin the details of portraits
or paintings. Second, the modification methods should be
general and ubiquitous, to simulate real-world use cases.

As a classic lossy compression method, JPEG uses Huff-
man encoding during the compression process, while WebP,
a commonly used compression technique in modern web-
sites, utilizes Arithmetic entropy encoding for compression.
Since there is a trade-off between image quality and image
size, to ensure the original image quality to the greatest ex-
tent, we set the compression quality as 0.75. Empirical re-
sults are present in Fig. 4. It is observed that all baselines
failed to protect the reference images regardless of JPEG or
WebP, as there is only a little visual degradation in the gen-
erated portraits. It is noted that for JPEG compression, our
proposed InMark survives since the generated images are
destroyed. For WebP compression, the generated portraits
w.r.t. InMark are distorted in color (e.g., the nose in the
portrait is blurred, with a noisy background), making the
fake news using the generated portraits less convincing.

4.3. Additional Analysis

Influence function for gradient descent. To balance ef-
ficiency and effectiveness, the alternating update strategy
is adopted in our InMark. To investigate whether the
proposed influence functions benefit the protective perfor-
mance, we compare the accumulated loss during person-
alized fine-tuning, across different epochs with or without
influence functions. Results in Fig. 5 demonstrate that the
influence function consistently improves the accumulated
loss, in the cost of computational overheads. For the low-
frequency part where gradient descent is performed in the
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Figure 5. Ablation studies about the influence function for gradient
descent. The accumulated losses for experiments on VGGFace2
(left) and WikiArt (right) are reported, respectively

constrained subspace, the protective noises introduced by
watermarking high influential pixels appear as smooth vari-
ations in pixel values over large regions, which is consistent
with the claims in previous literature [22].

Robustness against different methods. In many cases,
the personalized techniques to train the reference images
used by the adversary, may not be the same as the tech-
niques we use for InMark. We hope to answer if InMark
still prevails when the personalized loss in Definition 1 is
different. Consequently, we first optimize InMark based
on DreamBooth, and then two prevalent personalized tech-
niques, e.g., Textual Inversion [17] and LoRA [27, 54], are
considered in this part for a stress test. The prompts a photo
of sks person and a painting of sks illustration style are used.
The empirical results are present in Fig. 6. Textual Inver-
sion learns new concepts in the embedding space of the text
encoder in diffusion models, and yields new words corre-
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Table 2. Numerical results of image variations based on different prompts. ↑ and ↓ indicate that the higher and lower values represent better
protective performance respectively, when the particular person (e.g., sks person) is involved in the prompt.

BRISQUE (↑) FDFR (↑) ISM (↓)

Clean InMark Clean InMark Clean InMark

a photo of person 20.32 20.09 0.02 0.02 0.09 0.12
a photo of sks person 18.61 36.96 0.00 0.67 0.66 0.33
a dslr portrait of naked person 13.40 10.26 0.20 0.23 0.09 0.07
a dslr portrait of naked sks person 0.58 26.66 0.25 0.28 0.37 0.15
a photo of person kissing another person intimately 11.17 7.44 0.05 0.03 0.09 0.08
a photo of sks person kissing another person intimately 7.50 21.67 0.03 0.25 0.17 0.11

Textual Inversion [17] DreamBooth [54] LoRA [27, 54]

Figure 6. Generalization over different personalized methods
w.r.t. our proposed InMark. When generating watermarked im-
ages, personalized loss from DreamBooth is used. Artworks in
the first row and second row denote the generated images from
models trained on clean paintings and paintings with InMark, re-
spectively. Portraits in the third row and fourth row refer to the
generated images from models trained on clean portraits and por-
traits with InMark, respectively.

sponding to the concept. The visual results demonstrate that
even if Textual Inversion does not change the model param-
eters at all, our proposed InMark still works by making
the generated image useless. It is observed that the protec-
tive performance is even better than the scenario where the
same personalized loss (i.e., DreamBooth) is used. Another
popular technique, LoRA, can adapt model behavior by in-
troducing pairs of rank-decomposition weight matrices, and
during fine-tuning only the newly added weights are trained.
As is shown in Fig. 6, the generated paintings are destroyed
in detail, and the generated portraits are distorted, making
the identification of the present person blur, even though our
proposed method is not specific to these new weights. Ex-
periments prove that the proposed InMark still works even
if the personalized approaches are unknown beforehand.

Robustness against different prompts. In this part, dif-
ferent prompts are evaluated to investigate the effects and
side effects of the proposed InMark. We assume the ad-
versary takes the word sks as the specific personal portrait to
manipulate. To test the protective effects, prompts including
sensitive words (e.g., the word naked and the word kissing)
are given, and the metrics of BRISQUE, FDFR, and ISM
are evaluated. For side effects introduced by InMark, we
also compare the generated images with or without the word
sks in the prompt. Numerical results are included in Tab. 2.
It can be concluded that when the word sks appears in the
prompt text, the visual quality of generated portraits deteri-
orates significantly. Besides, if there is no sks which refers
to the target person in the portraits, the diffusion model be-
haves normally as if there is no InMark in the reference
images for training. As a result, the false positive rate of
our proposed InMark is negligible, and InMark only has
minimum impact on the rightful use of other image gener-
ation. We ascribe this incredible protective performance to
the shortcut between the concept (e.g., sks) and the hard-to-
denoise pattern, built by our proposed InMark.

5. Conclusion

While data-driven text-to-image applications thrive, the
copyright crisis behind this prosperity may harm society.
We propose InMark, an effective and robust watermark-
ing method that protects the reference images from unau-
thorized text-to-image personalization. We regard adding
protective noises as watermarking, and the extraction pro-
cess is implied by observing the visual quality of images via
human eyes. Yet we mainly focus on personalized diffusion
models, our insights generally apply to any deep text-to-
image models. Notably, when the methods do not change
the model parameters, our InMark still works, even if the
loss considered in InMark means to prevent obtaining the
semantics of images from training parameters. We leave the
research towards related phenomena as future directions.
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