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Abstract

Accurate 3D neuron segmentation from electron mi-
croscopy (EM) volumes is crucial for neuroscience re-
search. However, the complex neuron morphology often
leads to over-merge and over-segmentation results. Recent
advancements utilize 3D CNNs to predict a 3D affinity map
with improved accuracy but suffer from two challenges:
high computational cost and limited input size, especially
for practical deployment for large-scale EM volumes. To
address these challenges, we propose a novel method to
leverage lightweight 2D CNNs for efficient neuron segmen-
tation. Our method employs a 2D Y-shape network to
generate two embedding maps from adjacent 2D sections,
which are then converted into an affinity map by measur-
ing their embedding distance. While the 2D network better
captures pixel dependencies inside sections with larger in-
put sizes, it overlooks inter-section dependencies. To over-
come this, we introduce a cross-dimension affinity distilla-
tion (CAD) strategy that transfers inter-section dependency
knowledge from a 3D teacher network to the 2D student
network by ensuring consistency between their output affin-
ity maps. Additionally, we design a feature grafting in-
teraction (FGI) module to enhance knowledge transfer by
grafting embedding maps from the 2D student onto those
from the 3D teacher. Extensive experiments on multiple EM
neuron segmentation datasets, including a newly built one
by ourselves, demonstrate that our method achieves supe-
rior performance over state-of-the-art methods with only
1/20 inference latency. We release our code and dataset
at https://github.com/liuxy1103/CAD.

1. Introduction
The reconstruction of neuron wiring diagrams plays a sig-
nificant role in unlocking the secret of the brain and in-
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Figure 1. Comparison of different inference pipelines in the whole
EM volume between existing 3D affinity modeling using a 3D net-
work (a), and our proposed modeling using a 2D network (b).

spiring the next generation of artificial intelligence from
neuroscience research [1, 3, 28, 30]. In recent years, 3D
electron microscopy (EM) has become a pivotal technique
for acquiring images at nanoscale resolution to trace deli-
cate neuronal processes and synapses [11, 19, 40]. How-
ever, instance segmentation of neurons from EM volumes
remains challenging due to their complicated morphologies,
ambiguous boundaries, and dense distribution. Moreover,
a single neuron could span the whole 3D volume, which
is much larger than the field of view of existing models.
Therefore, the direct application of existing instance seg-
mentation methods [5, 12, 22, 25, 36] in natural images
often leads to errors like over-merged and over-segmented
neuron instances.

Recently, advanced neuron segmentation approaches [7,
10, 14, 20, 21, 24, 33] based on 3D convolutional neural net-
works (CNNs) have achieved remarkable progress by pre-
dicting a 3D affinity map which can be converted into neu-
ron instances with post-processing algorithms [4, 26, 35].
Although 3D CNNs can effectively capture spatial con-
texts in 3D and emerge as the leading neuron segmentation
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method, the high computational and memory requirements
restrict their deployment to large-scale EM datasets. Mean-
while, as illustrated in Fig. 1 (a), since 3D networks take 3D
patches as input, the input size on the 2D section plane is
limited. When processing large volumes, sliding windows
to obtain 3D patches and stitching adjacent predictions are
required, which further introduces additional errors and re-
stricts the overall performance.

To overcome these limitations, we propose a novel
method that relies on lightweight 2D CNNs to generate a
3D affinity map for efficient neuron segmentation. Specif-
ically, we design a 2D Y-shaped network with an encoder
and two decoders to simultaneously extract two embedding
maps from the input of two 2D adjacent sections. We then
calculate the distance between pixel embeddings from the
two different embedding maps to complement the affinity
information along the axial direction. As illustrated in Fig. 1
(b), this new 3D affinity modeling has three advantages: (1)
It provides computational and memory savings by avoiding
expensive 3D convolutions. (2) It has superior capabilities
to capture spatial information of the 2D section plane due
to an increased input size along the lateral direction. (3) It
eliminates the need to divide and process large-scale EM
volumes in multiple 3D patches, which thus avoids the ad-
ditional error introduced by stitching the predicted affinities
from multiple patches.

Nevertheless, the above-obtained affinity map only con-
siders two adjacent 2D sections and lacks inter-section spa-
tial contexts along the axial direction, resulting in ambi-
guities in affinity prediction. To address this, we pro-
pose a cross-dimension affinity distillation (CAD) strategy
to transfer inter-section dependency knowledge from a 3D
teacher network to the 2D student network by minimizing
the affinity prediction discrepancy between the outputs of
the two networks. Furthermore, we design a feature graft-
ing interaction (FGI) module to enhance this knowledge
transfer process. FGI grafts embedding maps from the 2D
student onto those from the 3D teacher and fully calcu-
lates long-range inter-section affinities between the embed-
dings from the two networks. This provides complemen-
tary inter-section contextual information to refine the em-
beddings from the 2D CNN.

We conduct extensive experiments on multiple EM
datasets which are imaged in the Drosophila melanogaster
brain, the mouse somatosensory cortex, and the mouse me-
dial entorhinal cortex. It is notable that we build a new EM
neuron segmentation dataset named Wafer4 which has a size
of 125× 1250× 1250 voxel3 with voxel-level fine-grained
annotation, to further validate the effectiveness and reliabil-
ity of practical deployment of our method. Comprehensive
evaluation results demonstrate that our method achieves su-
perior performance over previous state-of-the-art methods
with only 1/20 inference latency.

The contributions of this paper are as follows:
• We propose a novel method using a lightweight 2D Y-

shape network to efficiently generate a 3D affinity map,
alleviating the immense computational costs and the lim-
ited input size of 3D networks.

• We propose a cross-dimension affinity distillation (CAD)
strategy to transfer inter-section dependency knowledge
from a 3D teacher to a 2D student by enforcing affinity
map consistency.

• We design a feature grafting interaction (FGI) module to
enhance knowledge transfer by grafting 2D embedding
maps onto 3D embedding maps.

• We establish a new EM neuron segmentation dataset with
fine-grained voxel-level annotations for over 1.9 × 108

voxels. This dataset will be released as a benchmark to
facilitate future research in this area.

• We conduct extensive experiments on multiple EM neu-
ron segmentation datasets, validating superior perfor-
mance and ×20 inference efficiency improvement of the
proposed method over state-of-the-art methods.

2. Related Work

2.1. Neuron Segmentation

Neuron segmentation is an extremely challenging task com-
pared with general instance segmentation for natural im-
ages. Deep learning-based methods have provided feasi-
ble solutions, which can be roughly divided into two cate-
gories: object tracking based methods and boundary detec-
tion based methods.

Object tracking based methods [16, 28] iteratively seg-
ment and trace individual neurons using a recurrent CNN.
However, reconstructing neurons one at a time is inherently
inefficient. Moreover, the complex recurrent training pro-
cedure for these approaches poses difficulties. As such, ob-
ject tracking methods are impractical for connectomic re-
construction which requires segmenting numerous densely
packed neurons. In contrast, boundary detection based
methods [8, 10, 21, 38] adopt 3D convolutional neural net-
works to predict an affinity map for neuron segmentation.
The predicted affinities encode key instance boundaries and
are post-processed into final segmentations. Designing ad-
vanced 3D CNN architectures has become a popular ap-
proach to improve affinity prediction and segmentation ac-
curacy. For instance, Superhuman [21] incorporated long-
range affinity prediction to refine nearest-neighbor affini-
ties. MALA [10] introduced a 3D UNet with large param-
eters and a MALIS loss [34] during training for topologi-
cally correct segmentations. PEA [15] proposes to explic-
itly model affinities by measuring instance-aware embed-
ding distance. More recently, APViT [33] introduces an ap-
pearance prompt vision transformer network for this task.
However, the computational demands of these 3D networks
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Figure 2. The workflow of our proposed framework for modeling 3D Affinity from 2D networks via cross-dimension affinity distillation
(CAD) for neuron segmentation. The framework consists of two parallel networks. A 2D Y-shape network with an encoder and two
decoders generates two embedding maps from adjacent 2D sections. These embedding maps are then converted into a 3D affinity map by
measuring their embedding distances. In parallel, a 3D network predicts a 3D affinity map. To transfer sufficient inter-section dependency
knowledge from the 3D network to the 2D network, a CAD strategy is employed to align the outputs of these predictions. Furthermore, a
feature grafting interaction (FGI) module enhances the knowledge transfer process in this framework. The red and green colors indicate
that the two input sections are adjacent to each other. − represents the operation to measure the embedding distance.

limit their applicability to large-scale EM volumes.
In contrast to the boundary detection based methods

mentioned earlier, where large-scale EM volumes are di-
vided into multiple 3D sub-volumes and processed by 3D
networks to directly predict a 3D affinity map, our pro-
posed method introduces a novel manner for modeling 3D
affinities using 2D networks. The advantage of 2D net-
works lies in their ability to capture pixel dependencies in-
side individual sections more effectively. By incorporating
online knowledge distillation, our method further enhances
the modeling of inter-section dependencies. As a result, our
approach achieves both high performance and efficiency.

2.2. Online Knowledge Distillation

Knowledge distillation [13, 32] aims to distill knowledge
from a teacher model to a student model to improve the
performance of the student model. Existing knowledge
distillation methods can be divided into offline distilla-
tion [23, 29, 37] and online distillation [2, 6, 41]. Earlier
distillation methods often take an offline learning strategy,
requiring at least two phases of training, i.e., teacher model
pre-training and student model distillation. The more re-
cently proposed deep mutual learning [39] overcomes this
limitation by conducting an online distillation in one-phase
training between two peer student models. Online distilla-
tion can transfer the knowledge of the teacher model to the
student model in real-time, and optimize end-to-end dur-
ing training. This method can help the student model learn

more quickly and adapt to the knowledge of the teacher
model.

In this paper, we regard the 2D network and 3D net-
work as student and teacher models and then transfer the
inter-section dependency knowledge from a 3D teacher net-
work to the 2D student network in real-time. To the best of
our knowledge, we are the first to adapt the online knowl-
edge distillation to the pair of teacher and student networks
across different dimensions for EM neuron segmentation.

3. Method

In this section, we introduce the proposed framework to
model 3D affinity from 2D networks via cross-dimension
affinity distillation for neuron segmentation. As shown in
Fig. 2, our framework contains two parallel networks, i.e.,
a 3D network, and a 2D Y-shape network. The 3D network
adopts normal affinity modeling to predict the 3D affinity
map from an input 3D EM volume. The 2D network utilizes
the proposed affinity modeling (in Sec. 3.2) to generate two
2D affinity maps from the input of two consecutive sections.
These two embedding maps are converted into a 3D affin-
ity map by measuring their embedding distance. To transfer
inter-section dependency knowledge from the 3D network
to the 2D network, we employ cross-dimension affinity dis-
tillation (CAD) to align the outputs of the two networks (in
Sec. 3.3). Furthermore, a feature grafting interaction (FGI)
module is introduced to enhance this knowledge transfer
process (in Sec. 3.4).
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3.1. Preliminary

For the 3D network, denoted as f3D, an input volume
is composed of Z sections, represented as {Iz2D}z=1,...,Z ,
where each section has a size of H×W . This input volume
can be also considered as a 3D input, denoted as I3D, with
a size of Z ×H ×W . The annotated masks corresponding
to I3D are represented as Y3D ∈ RZ×H×W .
Affinity Definition. Conventionally, we directly employ
a 3D network f3D to predict a 3D affinity map A3D ∈
R3×Z×H×W , i.e., A3D = f3D(I3D), which represents
affinity in 3 dimensions and can be converted into in-
stance masks by post-processing algorithms. An arbitrary
voxel I3D(z, h, w) is mapped to a group of voxel affini-
ties A3D(1, z, h, w), A3D(2, z, h, w), and A3D(3, z, h, w).
These affinities indicate whether the current voxel and the
adjacent voxels along the Z (axial), H (lateral), and W (lat-
eral) dimensions belong to the same instance or not, respec-
tively. For instance, we define A3D(1, z, h, w) as

A3D(1, z, h, w) =

{
0, if Y (z, h, w) ̸= Y (z + 1, h, w)

1, if Y (z, h, w) = Y (z + 1, h, w)

(1)
where Y (z, h, w) and Y (z + 1, h, w) are the instance seg-
mentation IDs of paired voxels I3D(z, h, w) and I3D(z +
1, h, w). 1 means that voxel I3D(z, h, w) and I3D(z +
1, h, w) belong to one instance, while 0 means the opposite.
Affinity Generation. To better leverage the semantic in-
formation of instances in the feature space, explicit affinity
generation methods [15, 24] have been proposed. In line
with these approaches, the proposed cross-dimension affin-
ity distillation (in Sec. 3.3) follows a similar strategy. In-
stead of directly predicting a 3D affinity map, we utilize
the 3D network to predict a 3D embedding map, denoted as
E3D ∈ RC×Z×H×W from the 3D input. A voxel embed-
ding E3D(z, y, x) ∈ RC is a C-dimensional feature vector.

We then adopt a cosine distance to measure the rela-
tionship between voxel embeddings for their corresponding
voxel affinity. The transformation from a paired of voxel
embeddings to the voxel affinity A3D(1, z, h, w) is formu-
lated as

A3D(1, z, h, w) =
E3D(z, h, w)E3D(z + 1, h, w)

∥E3D(z, h, w)∥2 ∥E3D(z + 1, h, w)∥2
,

(2)
where E3D(z + 1, y, x) is the adjacent voxel embedding of
E3D(z, y, x) along the Z dimension. ReLU is used to en-
sure affinity values of A3D(1, z, h, w) are in the [0, 1] range.
For simplicity, we do not specifically represent the ReLU
mapping.

3.2. Modeling 3D Affinity from 2D Networks

Based on the representational meaning of affinity, we pro-
pose to model 3D voxel affinities from a 2D network f2D.
This 2D network is Y-shape and has an encoder and two

decoders consisting of 2D convolutional operators, which
preserve high inference speed and low computation cost. A
more detailed architecture of the 2D network can be found
in the supplementary material. As shown in Fig. 2, the 2D
network predicts two 2D embedding maps Ez

2D and Ez+1
2D

from the input of two adjacent 2D sections Iz2D and Iz+1
2D ,

where Ez
2D ∈ RC×H×W .

For an arbitrary pixel Iz2D(h,w), we can obtain its 3D
affinity along Z,H ,W dimensions by

Az
2D(1, h, w) =

Ez
2D(h,w)Ez+1

2D (h,w)

∥Ez
2D(h,w)∥2

∥∥Ez+1
2D (h,w)

∥∥
2

,

Az
2D(2, h, w) =

Ez
2D(h,w)Ez

2D(h+ 1, w)

∥Ez
2D(h,w)∥2 ∥E

z
2D(h+ 1, w)∥2

,

Az
2D(3, h, w) =

Ez
2D(h,w)Ez

2D(h,w + 1)

∥Ez
2D(h,w)∥2 ∥E

z
2D(h,w + 1)∥2

,

(3)

where Az
2D(1, h, w), Az

2D(2, h, w) and Az
2D(3, h, w) are

the 3D affinity along Z,H ,W dimensions. They can form a
3D voxel affinity by

Ã3D(z, h, w) =Concat(Az
2D(1, h, w),

Az
2D(2, h, w), Az

2D(3, h, w)),
(4)

where Ã3D(z, h, w) is the 3D affinity modeled by the 2D
network, and Concat is the concatenation operation.

3.3. Cross-dimension Affinity Distillation

To capture inter-section spatial contexts along the axial di-
rection (Z dimension), we propose a cross-dimension affin-
ity distillation (CAD) strategy. This strategy serves as an
online knowledge distillation algorithm, transferring inter-
section dependency knowledge from the 3D teacher net-
work to the 2D student network. The goal is to ensure
consistency between their outputs by minimizing the mean
squared error (MSE) loss between the affinity predictions of
the 2D and 3D networks. The CAD loss, denoted as LCAD,
is calculated as

LCAD =
1

Z ×H ×W

Z∑
z=1

H∑
h=1

W∑
w=1

∥∥∥Ã3D −A3D

∥∥∥
2
,

(5)
where Ã3D represents the affinity predictions of the 2D net-
work obtained by processing the entire volume sequence in
sequence, and A3D represents the affinity predictions of the
3D network.

3.4. Feature Grafting Interaction

To further enhance knowledge transfer from the 3D network
to the 2D network, we propose a feature grafting interac-
tion (FGI) module. The FGI module enables the grafting of
2D embeddings onto 3D feature maps, and this interaction
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involves fully calculating inter-section long-range affinities
between the embeddings from the 2D CNN and the 3D
CNN. For a predicted pixel embedding Ez

2D(h,w) obtained
from the 2D CNN, we insert it into the predicted 3D em-
bedding map E3D to replace E3D(z, h, w). This grafting
process facilitates the incorporation of the 2D embedding
information into the 3D representation. Subsequently, we
measure the embedding distance between Ez

2D(h,w) and
other embeddings located in different sections along the Z
dimension. These measurements allow us to calculate long-
range affinities, capturing the relationships between the 2D
and 3D embeddings across different sections in the volume.
The calculation of the long-range affinity in FGI is formu-
lated as

Az′

FGI(z, h, w) =
Ez

2D(h,w)E3D(z′, h, w)

∥Ez
2D(h,w)∥2 ∥E3D(z′, h, w)∥2

, (6)

where z′ indicates the sequence number in the input 3D vol-
ume, and z′ ̸= z.

These long-range affinities along the Z dimension are
supervised by their corresponding affinity labels with an
FGI loss LFGI , which is calculated as

LFGI =

Z∑
z,z′=1,z ̸=z′

H∑
h=1

W∑
w=1

∥∥∥Az′
FGI(z, h, w)−Az′

gt(z, h, w)
∥∥∥
2

(Z − 1)×H ×W
,

(7)
where Az′

gt(z, h, w) is the affinity label to indicate if the
voxel I3D(z′, h, w) and I3D(z, h, w) belong to the same in-
stance.

3.5. Overall Optimization

In the training stage, we initialize the 2D network f2D and
the 3D network f3D independently. The supervision for
both networks is provided by the 3D affinity label Agt ∈
R3×Z×H×W , which is generated from the annotated masks
Y3D. We adopt the MSE loss to supervise both f2D and f3D
as

L2D =
1

Z ×H ×W

Z∑
z=1

H∑
h=1

W∑
w=1

∥∥∥Ã3D −Agt

∥∥∥
2
,

L3D =
1

Z ×H ×W

Z∑
z=1

H∑
h=1

W∑
w=1

∥A3D −Agt∥2 ,

(8)

where L2D and L3D represent the loss functions for f2D
and f3D, respectively.

The overall objective function, denoted as L, is a combi-
nation of the 2D loss L2D, the 3D loss L3D, the CAD loss
LCAD, and the FGI loss LFGI . Thus, the objective function
can be expressed as

L = L2D + L3D + λ1LCAD + λ2LFGI , (9)

where the weights λ1 and λ2 are trade-off weights that con-
trol the importance of the corresponding loss terms.

In the inference stage, we can input the entire volume
sequence to the 2D network in sequence to obtain the 3D
affinity map with the same effect as the 3D network. The 3D
affinity map is converted into final instance segmentation
results by different post-processing algorithms.

4. Experiments
4.1. Datasets

CREMI. The CREMI dataset [9] is widely used for 3D EM
neuron segmentation and is derived from adult Drosophila
melanogaster brain tissue. The imaging resolution of the
dataset is 4 × 4 × 40 nm. It consists of three sub-volumes
(CREMI-A/B/C), each containing 125 consecutive images.
For training and testing purposes, the dataset is divided into
100 sections for training and 25 sections for testing.
AC3/4. AC3 and AC4 are labeled subsets extracted from the
mouse somatosensory cortex dataset [17], which is a widely
used EM dataset for 3D neuron instance segmentation. The
images in this dataset were acquired at a resolution of 3×3×
29 nm. The AC3 dataset consists of 256 sequential images,
while the AC4 dataset contains 100 sequential images. To
evaluate our proposed method, we partitioned the data as
follows: the top 80 sections of AC4 are used for training,
20 sections for validation, and the top 100 sections of AC3
for testing.
Wafer4. The Wafer4 dataset is collected from a region of
the mouse medial entorhinal cortex and imaged at a resolu-
tion of 8 × 8 × 35 nm with the Multi-Beam-SEM technol-
ogy. We have established this new EM neuron segmentation
dataset, which has a size of 125× 1250× 1250 voxel3 with
fine-grained voxel-level annotations for over 1.9×108 vox-
els. This dataset is divided into 100 sections for training and
25 sections for testing.

4.2. Metrics

We employ two commonly used metrics to quantitatively
evaluate the segmentation results: the Variation of Informa-
tion (V OI) and the Adapted Rand Error (ARAND). The
VOI metric [27] measures the dissimilarity between two
segmentation masks, taking into account both over-merging
and over-segmentation errors. It can be further decomposed
into two components, V OIS and V OIM , which evaluate
the extent of over-segmentation and over-merging errors,
respectively. On the other hand, the ARAND metric is de-
rived from the Rand Index and incorporates adjustments to
compensate for the uneven distribution of object sizes in
EM image segmentation [31]. The ARAND metric quan-
tifies the agreement between the ground truth and the seg-
mented results. It is worth noting that lower values of both
metrics indicate better segmentation performance.
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Post. Method
CREMI-A CREMI-B CREMI-C

V OIS ↓ V OIM ↓ V OI ↓ ARAND ↓ V OIS ↓ V OIM ↓ V OI ↓ ARAND ↓ V OIS ↓ V OIM ↓ V OI ↓ ARAND ↓

Waterz

Superhuman [21] 0.3991 0.2405 0.6396 0.0887 0.5540 0.2215 0.7755 0.0482 0.8204 0.3375 1.1579 0.1793

MALA [10] 0.3980 0.2356 0.6336 0.0846 0.5892 0.2608 0.8501 0.0407 0.8415 0.3324 1.1739 0.1621

PEA [15] 0.3287 0.2977 0.6264 0.0909 0.4106 0.3741 0.7847 0.0407 0.7449 0.4464 1.1914 0.1689

APViT [33] 0.4447 0.2595 0.7041 0.1169 0.5793 0.2014 0.7807 0.0319 0.8839 0.2341 1.1181 0.1102

Ours w/o KD 0.3259 0.2986 0.6245 0.1067 0.4017 0.3472 0.7489 0.0445 0.7384 0.4547 1.1931 0.1695

Ours 0.3132 0.2521 0.5653 0.0788 0.3793 0.3051 0.6844 0.0297 0.7381 0.3216 1.0597 0.1487

LMC

Superhuman [21] 0.5243 0.2429 0.7672 0.1177 0.7612 0.1859 0.9471 0.0394 1.0102 0.2330 1.2432 0.1579

MALA [10] 0.5094 0.2483 0.7577 0.1064 0.8635 0.2157 1.0793 0.0494 1.0485 0.2622 1.3107 0.1660

PEA [15] 0.4117 0.2515 0.6633 0.0964 0.5597 0.2347 0.7943 0.0353 0.9078 0.2510 1.1589 0.1517

APViT [33] 0.4336 0.2914 0.7249 0.1304 0.5777 0.2162 0.7939 0.0340 0.8719 0.2527 1.1247 0.1116

Ours w/o KD 0.3835 0.2418 0.6253 0.0759 0.5795 0.2202 0.7997 0.0404 0.8725 0.3027 1.1752 0.1581

Ours 0.3719 0.2345 0.6063 0.0691 0.5394 0.2326 0.7720 0.0349 0.8605 0.2796 1.1401 0.1563

Table 1. Quantitative comparison of segmentation results on CREMI datasets. ‘Ours w/o KD’ represents the proposed 3D affinity modeling
from the 2D network without using the CAD strategy and the FGI module. ‘Post.’ represents the post-processing algorithms. The best
results and the second-best results are highlighted in bold and underlined.

Superhuman MALA PEA APViT Ours w/o KD Ours GTRaw Image

A
C

3/
4

C
R

EM
I-

C
W

af
er

4

Figure 3. The 2D visual results on various datasets. In each dataset, the first row displays the affinity map, while the second row shows the
corresponding instance segmentation result. Red and orange boxes indicate merge and split errors, respectively.

4.3. Implementation Details

We conduct all experiments using the Adam optimizer [18]
with β1 = 0.9 and β2 = 0.999, a learning rate of 1e − 4,
and a batch size of 2. The experiments are performed on a
single NVIDIA TitanXP GPU for a total of 200,000 itera-
tions. To account for the faster convergence of the 2D net-

work compared to the 3D network, we introduce the LCAD

and LFGI loss terms after 10,000 iterations. This ensures a
balanced training process. The model configurations and
hyper-parameters are determined on the validation set of
AC3/4. Once the hyper-parameters are determined, they are
fixed for other datasets.

We utilize the same 3D network as in previous
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Post. Method V OIS ↓ V OIM ↓ V OI ↓ ARAND ↓

AC3/4

Waterz

Superhuman [21] 0.5973 0.4332 1.0305 0.1794

MALA [10] 0.6767 0.4571 1.1338 0.1664

PEA [15] 0.5522 0.4980 1.0502 0.2093

APViT [33] 0.7671 0.2039 0.9764 0.0775

Ours w/o KD 0.6008 0.4309 1.0317 0.1187

Ours 0.5326 0.3509 0.8835 0.0808

LMC

Superhuman [21] 1.1253 0.1891 1.3144 0.1015

MALA [10] 1.0778 0.2435 1.3213 0.1113

PEA [15] 0.8061 0.3052 1.1112 0.1300

APViT [33] 0.8231 0.2054 1.0285 0.0940

Ours w/o KD 0.8487 0.2536 1.1023 0.1094

Ours 0.6966 0.22451 0.9212 0.0771

Wafer4

Waterz

Superhuman [21] 0.4518 0.1658 0.6176 0.0411

MALA [10] 0.4552 0.1581 0.6133 0.0361

PEA [15] 0.4208 0.1722 0.5930 0.0341

APViT [33] 0.5813 0.1226 0.7039 0.0362

Ours w/o KD 0.4039 0.2235 0.6274 0.0505

Ours 0.4149 0.1439 0.5587 0.0302

LMC

Superhuman [21] 0.7367 0.1411 0.8778 0.0390

MALA [10] 0.7573 0.1403 0.8976 0.0365

PEA [15] 0.6135 0.1578 0.7713 0.0375

APViT [33] 0.6456 0.1114 0.7570 0.0355

Ours w/o KD 0.5987 0.1580 0.7567 0.0373

Ours 0.5792 0.1501 0.7289 0.0344

Table 2. Quantitative comparison of segmentation results on
AC3/4 and Wafer4 datasets.

works [15, 21] to predict a 3D affinity map in our pro-
posed training framework. During the inference stage, the
affinity map predicted by the 2D network is processed into
neuron instances using two different post-processing algo-
rithms: waterz [10] and LMC [4]. It is important to note
that we maintain consistent post-processing settings across
all our experiments. These settings align with existing base-
line methods to ensure that the conclusions drawn from our
method are not influenced by the post-processing step.

4.4. Comparison with State-of-the-art Methods

Quantitative Segmentation Results. We list an extensive
quantitative comparison of the CREMI datasets in Table 1
and AC3/4 and Wafer4 datasets in Table 2. Our proposed
method achieves superior performance over existing state-
of-the-art approaches in most cases. In Table 1, using Wa-
terz post-processing, our method outperforms the second-
best methods on the VOI metric by 9.7%, 12.3%, and 5.2%
on Cremi-A, Cremi-B, and Cremi-C respectively. Notably,
even without our proposed cross-dimension affinity distil-
lation, our proposed 3D affinity modeling from a 2D net-

APViT Ours GT

A
C

3/
4

C
R

EM
I-

C

Superhuman MALA PEA

APViT Ours GT

Superhuman MALA PEA

Figure 4. The 3D visual results on the AC3/4 and CREMI-C
dataset. The orange and red arrows indicate the split and merge
errors in the 3D structure.

work can surpass existing approaches in VOI on Cremi-A
and Cremi-B. In Table 2, our method achieves the lowest
VOI using both Waterz and LMC post-processing on AC3/4
and wafer4 datasets. For instance, we reduced the VOI met-
ric by 9.5% and 5.7% compared to the second-best method
on AC3/4 and wafer4 respectively. Overall, these results
validate the advantages of our proposed approach for 3D
neuron segmentation across diverse datasets.
Qualitative Segmentation Results. We present the 2D and
3D visual comparison results in Fig. 3 and Fig. 4, respec-
tively. From these figures, it is evident that our proposed
method outperforms other baseline methods in terms of pre-
dicting affinity maps with higher fidelity, resulting in a sig-
nificant reduction in split and merge errors. As observed,
our method accurately preserves the 3D structures of the
neuron, surpassing the performance of other methods. Ad-
ditionally, we provide supplementary material that includes
more visual comparison results and the analysis of the vi-
sualization of the embedding maps from the 3D and the 2D
networks.
Model Complexity Comparison. To validate the compu-
tational advantage of our proposed method in the inference
stage, we conduct experiments on the test set of the AC3/4
dataset, which has a size of 100× 1024× 1024 voxel3. We
compare the model complexity of different methods in Ta-
ble 3. Our method has the following advantages:

(1) Smaller model size and computational complexity:
Compared to light 3D CNNs utilized in Superhuman [21]
and PEA [15] and a heavy 3D CNN used in MALA [10], our
method based on the 2D network has the smallest number
of parameters and floating-point operations (FLOPs). Addi-
tionally, it exhibits the lowest GPU memory occupancy. On
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Method VOI #Params (M) FLOPs (GMAC) Latency(s)

Superhuman [21] 1.0305 1.48 147520.10 113.83

MALA [10] 1.1338 84.02 298936.88 160.94

PEA [15] 1.0502 1.48 147824.30 374.02

APViT [33] 0.9764 37.25 60197.80 345.50∗

Ours 0.8835 0.88 7509.00 17.29

Table 3. Quantitative comparison of model complexity and in-
ference latency (seconds) on the AC3/4 testset. ∗Note that the
GPU usage of APViT is high and its inference is performed on
one NVIDIA 3090 GPU. VOI results are obtained by the Waterz
post-processing.

the contrary, APViT [33] based on the transformer back-
bone requires a significant amount of GPU memory during
inference. It is worth noting that we replace the NVIDIA
XP GPU (12 GB) with the NVIDIA 3090 GPU (24 GB)
for normal inference of APViT. The high GPU memory
requirement of APViT is not practical for deployment, as
it would necessitate hundreds of GPUs to process large-
scale data. Our method offers a more cost-effective and
deployment-friendly solution.

(2) Reduced inference latency: Our method achieves the
lowest inference latency, making it highly suitable for prac-
tical deployment. The low latency is attributed to two fac-
tors: the reduced computational complexity and the ability
of our method to handle larger input sizes of 2D data. This
eliminates the need to divide and process large-scale EM
volumes in multiple 3D patches, as required by the 3D net-
work. While MALA [10] is designed for larger 3D inputs
and fewer 3D patches divided, it still experiences significant
delays when confronted with the aforementioned factors af-
fecting inference.

4.5. Ablation Studies and Analysis

We conduct ablation studies on the AC3/4 testset and report
VOI results. As shown in Table 4, we conduct an ablation
study on the main components of our proposed method, in-
cluding the CAD strategy and the FGI module. We compare
different combinations of CAD and FGI for the 3D network
f3D and the 2D network f2D. The results demonstrate that
CAD plays a crucial role in enhancing the performance of
both the 2D and 3D networks. This is attributed to the on-
line knowledge distillation technique employed by CAD,
which facilitates the transfer of cross-intersection depen-
dency knowledge from the 3D network to the 2D network,
as well as the transfer of intra-section pixel dependency
knowledge from the 2D network to the 3D network. This
mutual knowledge transfer contributes to the improved per-
formance of both the 2D and 3D networks. Furthermore, the
FGI module facilitates the interaction between the knowl-
edge of the 3D network f3D and the 2D network f2D by
calculating the long-range affinity across multiple sections.

Method CAD FGI Waterz LMC

f3D

% % 1.0502 1.1112
! % 0.9460 1.0614
! ! 0.8838 0.9977

f2D

% % 1.0317 1.1023
! % 0.9259 0.9490
! ! 0.8835 0.9212

Table 4. Ablation study on different components of the proposed
cross-dimension affinity distillation strategy.

λ1 0.1 1.0 10

Waterz / LMC 0.6572 / 0.7552 0.5915 / 0.6705 0.6765 / 0.6941

λ2 0.1 1.0 10

Waterz / LMC 0.6117 / 0.6902 0.5915 / 0.6705 0.6045 / 0.7170

Table 5. Ablation study on loss weights of our framework.

This allows us to explicitly calculate the long-range affini-
ties and proves to be an additional factor in improving the
performance of both the 3D network f3D and the 2D net-
work f2D, thereby facilitating the processing of CAD. The
combination of CAD and FGI exhibits the most favorable
performance, as observed from the results.

4.6. Hyper-parameters determination

We perform experiments on the AC3/4 validation set to as-
sess the influence of hyper-parameters λ1 and λ2 on balanc-
ing the impact of the CAD strategy and the FGI module in
the overall optimization objective of our proposed frame-
work. The results are presented in Table 5. Different values
are tested to determine an appropriate weight. Based on the
experimental findings, we empirically set both λ1 and λ2 to
1. This choice is made to ensure the optimal performance.

5. Conclusion
We propose a novel method to efficiently generate a 3D
affinity map from the 2D network for neuron segmentation
in EM volumes. We propose a cross-dimension affinity dis-
tillation (CAD) strategy to transfer inter-slice dependency
knowledge from the 3D network to the 2D network by en-
forcing consistency between their predicted affinity maps.
Furthermore, we design a feature grafting interaction (FGI)
module to enhance this process by grafting embedding from
the 2D network into those from the 3D network. Extensive
experiments on multiple EM datasets demonstrate that our
2D affinity modeling method achieves superior neuron seg-
mentation performance compared to the previous methods.
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Berger, Dan Cireşan, Alessandro Giusti, Luca M Gam-
bardella, Jürgen Schmidhuber, Dmitry Laptev, Sarvesh
Dwivedi, Joachim M Buhmann, et al. Crowdsourcing
the creation of image segmentation algorithms for connec-
tomics. Front. Neuroanat., 9:142, 2015. 1

[4] Thorsten Beier, Constantin Pape, Nasim Rahaman, Timo
Prange, Stuart Berg, Davi D Bock, Albert Cardona, Gra-
ham W Knott, Stephen M Plaza, Louis K Scheffer, et al.
Multicut brings automated neurite segmentation closer to hu-
man performance. Nature Methods, 14(2):101–102, 2017. 1,
7

[5] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
Yolact: Real-time instance segmentation. In ICCV, 2019. 1

[6] Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and
Chun Chen. Online knowledge distillation with diverse
peers. In AAAI, 2020. 3

[7] Yinda Chen, Wei Huang, Shenglong Zhou, Qi Chen, and
Zhiwei Xiong. Self-supervised neuron segmentation with
multi-agent reinforcement learning. IJCAI, 2023. 1

[8] Dan Ciresan, Alessandro Giusti, Luca Gambardella, and
Jürgen Schmidhuber. Deep neural networks segment neu-
ronal membranes in electron microscopy images. In
NeurIPS, 2012. 2

[9] CREMI. Miccai challenge on circuit reconstruction from
electron microscopy images. https://cremi.org/,
2016. 5

[10] Jan Funke, Fabian Tschopp, William Grisaitis, Arlo Sheri-
dan, Chandan Singh, Stephan Saalfeld, and Srinivas C
Turaga. Large scale image segmentation with structured loss
based deep learning for connectome reconstruction. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
41(7):1669–1680, 2019. 1, 2, 6, 7, 8

[11] Kristen M Harris, Elizabeth Perry, Jennifer Bourne, Marcia
Feinberg, Linnaea Ostroff, and Jamie Hurlburt. Uniform se-
rial sectioning for transmission electron microscopy. J. Neu-
rosci., 26(47):12101–12103, 2006. 1

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 1

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3

[14] Wei Huang, Chang Chen, Zhiwei Xiong, Yueyi Zhang, Xue-
jin Chen, Xiaoyan Sun, and Feng Wu. Semi-supervised neu-
ron segmentation via reinforced consistency learning. IEEE
Transactions on Medical Imaging, 41(11):3016–3028, 2022.
1

[15] Wei Huang, Shiyu Deng, Chang Chen, Xueyang Fu, and Zhi-
wei Xiong. Learning to model pixel-embedded affinity for
homogeneous instance segmentation. In AAAI, 2022. 2, 4, 6,

7, 8
[16] Michał Januszewski, Jörgen Kornfeld, Peter H Li, Art Pope,

Tim Blakely, Larry Lindsey, Jeremy Maitin-Shepard, Mike
Tyka, Winfried Denk, and Viren Jain. High-precision auto-
mated reconstruction of neurons with flood-filling networks.
Nature Methods, 15(8):605–610, 2018. 2

[17] Narayanan Kasthuri, Kenneth Jeffrey Hayworth,
Daniel Raimund Berger, Richard Lee Schalek, José Angel
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