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Abstract

The task of No-Reference Image Quality Assessment
(NR-IQA) is to estimate the quality score of an input im-
age without additional information. NR-IQA models play
a crucial role in the media industry, aiding in performance
evaluation and optimization guidance. However, these mod-
els are found to be vulnerable to adversarial attacks, which
introduce imperceptible perturbations to input images, re-
sulting in significant changes in predicted scores. In this
paper, we propose a defense method to improve the stability
in predicted scores when attacked by small perturbations,
thus enhancing the adversarial robustness of NR-IQA mod-
els. To be specific, we present theoretical evidence show-
ing that the magnitude of score changes is related to the ℓ1
norm of the model’s gradient with respect to the input im-
age. Building upon this theoretical foundation, we propose
a norm regularization training strategy aimed at reducing
the ℓ1 norm of the gradient, thereby boosting the robust-
ness of NR-IQA models. Experiments conducted on four
NR-IQA baseline models demonstrate the effectiveness of
our strategy in reducing score changes in the presence of
adversarial attacks. To the best of our knowledge, this work
marks the first attempt to defend against adversarial attacks
on NR-IQA models. Our study offers valuable insights into
the adversarial robustness of NR-IQA models and provides
a foundation for future research in this area.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated remark-
able performance across various domains [11, 16, 22], and
Image Quality Assessment (IQA) is one of them. IQA aims
to predict the quality of images consistent with human per-
ception. And it could be categorized as Full-Reference (FR)
and No-Reference (NR) according to the access to the ref-
erence images. While FR-IQA models specialize in assess-
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Figure 1. Comparison of DBCNN [46] trained with and without
the proposed Norm regularization Training (NT) strategy under
the Perceptual Attack [47] using the same setting. The absolute
differences between predicted scores before and after the attack
(|safter − sbefore|) for all test images are presented, with the fitted
distribution displayed on the right side of the picture. An example
is shown with predicted scores before and after the attack (zoom in
for a better view). It is evident that DBCNN+NT exhibits smaller
score changes compared to the baseline model.

ing the perceptual disparities between two images, NR-IQA
models focus on estimating a quality score for a single in-
put image. The importance of IQA extends to many ap-
plications such as image transport systems [8], image in-
painting [14] and so on [6, 27, 45]. Leveraging the capabili-
ties of DNNs, recent IQA models have achieved remarkable
consistency with human opinion scores [32].

However, the reliability of DNNs is challenged since
they are found to be susceptible to adversarial perturba-
tions. Attackers would mislead DNNs to make decisions
inconsistent with human perception by adding carefully de-
signed perturbations to inputs. This manipulation technique
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Figure 2. (Zoom in for a better view) Examples of adversarial attacks on the DBCNN [46] model. The range of MOS is [0, 100].

is called the adversarial attack, and the perturbed inputs
are called adversarial examples. The initial discovery of
DNNs’ vulnerability to adversarial attacks was in the con-
text of classification tasks [33]. Subsequently, the threats of
adversarial attacks are explored in various tasks, including
object detection [34], segmentation [26], natural language
processing [49], and many others [1, 19].

Recently, adversarial attacks on IQA models have gar-
nered significant attention. Several attack methods target-
ing NR-IQA models have been proposed, where attackers
aim to significantly change the predicted scores with small
adversarial perturbations to input images. For instance,
Zhang et al. [47] generated adversarial examples using the
Lagrange multiplier method, imposing several constraints
on the quality of adversarial examples. Besides, Shumit-
skaya et al. [30, 31] and Korhonen et al. [17] trained an
individual model to generate adversarial examples.

However, despite these proposed attack techniques high-
lighting vulnerabilities in NR-IQA models, no methods
have been put forth to defend against attacks and improve
the adversarial robustness of NR-IQA methods. Training
robust IQA models is essential for improving the reliability
of these models in real-world applications. For instance, in
online advertising, the quality of advertising images can sig-
nificantly impact viewer engagement. Adversarial attacks
on NR-IQA metrics could result in low-quality images be-
ing rated highly or high-quality images being rated lowly, as
cases shown in Figure 2, potentially reducing the effective-
ness of online advertising campaigns. Therefore, there is
an impending need to train robust NR-IQA models, which
is crucial for ensuring both the reliability and security of
NR-IQA models in practical applications.

In this paper, we propose a defense method to improve
the adversarial robustness of NR-IQA models in terms of
reducing the quality score changes before and after adver-
sarial attacks, which is supported by both theoretical foun-
dations and empirical evidence. We analyze existing attacks
on NR-IQA models and establish a theoretical foundation

demonstrating the strong relationship between the adver-
sarial robustness of an NR-IQA model f and the ℓ1 norm
of its gradient ∇xf(x) concerning the input image x. We
found that for an NR-IQA model, a smaller ||∇xf(x)||1
implies a more robust model. Drawing upon the theoreti-
cal analysis, we propose the regularization of the gradient’s
ℓ1 norm to enhance the adversarial robustness of NR-IQA
models. A direct way to regularize ∥∇xf(x)∥1 is adding
it to the loss function in the training phase, which needs
double backpropagation to compute the gradient of the reg-
ularization term with respect to model parameters consid-
ering the calculation mechanism of DNNs. However, dou-
ble backpropagation is not currently scalable for large-scale
DNNs [12]. Therefore, we approximate ∥∇xf(x)∥1 by fi-
nite differences [38] instead of using it directly. The ap-
proximation result is utilized as the regularization term, ef-
fectively constraining ∥∇xf(x)∥1.

To further verify our methodology, we conduct exper-
iments on four baseline NR-IQA models and four attack
methods. The results show the effectiveness of the norm
regularization strategy in boosting baseline models’ robust-
ness against adversarial attacks. To the best of our knowl-
edge, this is the first work to propose a defense method
against adversarial attacks on NR-IQA models, which uses
the ℓ1 norm of the gradient as a regularization term. This pa-
per establishes a theoretical connection between the robust-
ness of the NR-IQA model against adversarial attacks and
the gradient norm with respect to the input image. To sup-
port reproducible scientific research, we release the code at
https://github.com/YangiD/DefenseIQA-NT.

2. Related Work

Adversarial attacks were first studied in classification tasks,
so we introduce these attacks along with defense methods
in Sec. 2.1. Sec. 2.2 and Sec. 2.3 provide a brief overview
of NR-IQA models and attacks on these models.
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2.1. Adversarial Attacks and Their Defenses in
Classification Tasks

Based on the available knowledge of the target model, ad-
versarial attacks can be divided into white-box attacks and
black-box attacks. In white-box scenarios, attackers possess
comprehensive knowledge about the target model. Some
classic attacks treated the problem of generating adversarial
examples as an optimization task [3, 10, 25]. Alternatively,
some attacks proposed to train a new model to generate ad-
versarial examples [20, 39, 48]. Conversely, in the case of
black-box attacks, attackers are restricted to accessing only
the output of the target model. A predominant strategy for
executing black-box attacks involves generating adversarial
examples on a known source model and subsequently trans-
ferring them to the target model [13, 21, 40].

To defend against adversarial attacks in classification
tasks, a widely used method is adversarial training [33] and
its variants [29, 35, 43, 49]. Adversarial training involves
the generation of adversarial examples using specific at-
tacks, which are incorporated into the training dataset so
that the model can learn from these adversarial examples in
the training phase. It acts as a form of data augmentation
and helps to improve the robustness of the network.

2.2. IQA Tasks and Models

IQA tasks aim to predict image quality scores consistent
with human perception (i.e., Mean Opinion Score, MOS for
short), which could be divided into FR and NR. For FR-
IQA, it involves comparing a distorted image and its ref-
erence image to predict the quality score of the distorted
image. Due to the difficulty of obtaining reference images
in some authentic scenes, NR-IQA proposes to predict the
quality score with only the distorted image.

NR-IQA methods extract features related to human per-
ception of image quality. Some methods [23, 24] consid-
ered the hand-craft feature from Natural Scene Statistics.
Further works explored the impact of image semantic in-
formation on human perception of image quality. Hyper-
IQA [32] used a hypernetwork to obtain different quality
estimators for images with different content. DBCNN [46]
extracted distorted information and semantic information of
images by two independent neural networks and combined
them with a bi-linear pooling. LinearityIQA [18] proposed
the normalization of scores in the loss function for faster
convergence of the model. Meanwhile, some methods ex-
plored the effectiveness of different network architectures.
MANIQA [41] and MUSIQ [15] utilized vision transform-
ers [5] and verified their effectiveness in NR-IQA tasks.

2.3. Adversarial Attacks on NR-IQA Models

The issue of adversarial attacks within the context of IQA
tasks has garnered some attention, although research in

this area remains somewhat limited. Recently, some attack
methods have been designed for NR-IQA models.

In white-box scenarios, the Perceptual Attack [47] mod-
eled NR-IQA attacks as an optimization problem, where it
employed the Lagrange multiplier method to solve this op-
timization problem. Perceptual Attack had tried different
constraints on the image quality of adversarial examples,
including the Chebyshev distance, LPIPS [44], SSIM [37]
and DISTS [4]. Shumitskaya et al. [30] proposed to update
a universal perturbation through a set of images and added
it to clean images to attack NR-IQA models.

In black-box scenarios, the Kor. Attack [17] adapted
ideas from attacks in classification tasks, creating adversar-
ial examples through ResNet50 [11] and transferring them
to the unknown target model. Likewise, Shumitskaya et al.
[31] proposed to train a U-Net [28] to generate different ad-
versarial perturbations for each image.

Although Korhonen et al. [17] adapted basic defense
mechanisms from classification models to NR-IQA models,
they did not investigate defense methods that are specifi-
cally designed for NR-IQA tasks.

3. Preliminary
3.1. Definition of Attacks on NR-IQA Models

Adversarial attacks on NR-IQA models aim to manipulate
the predicted score of an input image x by an NR-IQA
model f so that the objective score by models is inconsistent
with the subjective score by humans. As for a successful
attack on an NR-IQA model, there are imperceptible dif-
ferences to the human eye between original images and ad-
versarial examples, but these subtle perturbations result in
large changes in the predicted scores generated by NR-IQA
models. Examples are shown in Figure 2 (a) and (b). This
attack can be mathematically described as follows:

max |f(x+ δ)− f(x)|, s.t. D(x+ δ, x) ⩽ ϵ, (1)

where δ symbolizes the perturbation added to x, while the
function D(·, ·) quantifies the perceptual distance between
two images, and ϵ characterizes the tolerance of human eyes
for image differences. An assumption is that when D(x +
δ, x) ⩽ ϵ, the subjective score of x+ δ is the same as x. In
our methodology, we take D(·, ·) as defined by:

D(x+ δ, x) = ∥δ∥∞, (2)

for the convenience of our theoretical analysis. Moreover,
it has been used in attacks for IQA tasks [17, 47].

3.2. Robustness Evaluations of NR-IQA Models

The adversarial robustness of NR-IQA measures the stabil-
ity of the NR-IQA model to imperceptible perturbations of
input images generated by attacks. For example, when the
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original image and its adversarial example have the same
appearance, an NR-IQA model should give both the same
quality scores. Figure 2 presents instances where DBCNN
fails in this aspect. Researchers tend to assess the adversar-
ial robustness of NR-IQA models by evaluating their IQA
performance on adversarial examples [17, 47]. A better per-
formance implies that the model is more robust.

Typically, the performance of an NR-IQA model is mea-
sured using four metrics: Root Mean Square Error (RMSE),
Pearson’s Linear Correlation Coefficient (PLCC), Spear-
man Rank-Order Correlation Coefficient (SROCC), and
Kendall Rank-Order Correlation Coefficient (KROCC).1

RMSE and PLCC are indicators of prediction accuracy,
while SROCC and KROCC assess the prediction mono-
tonicity [36]. When an NR-IQA model is attacked, greater
robustness is indicated by smaller RMSE and larger PLCC,
SROCC, and KROCC values. In this paper, we provide a
theoretical analysis of robustness in terms of RMSE, and
test all these metrics in the experimental part.

Recently, some IQA-specific metrics were proposed for
evaluating the robustness of NR-IQA models [2, 47]. We
will discuss these metrics in the supplementary material.

4. Methodology
In this section, we offer a theoretical exposition on improv-
ing NR-IQA models’ adversarial robustness in terms of the
magnitude of changes in predicted scores. We show that the
robustness can be enhanced by regularizing the ℓ1 norm of
the gradient. We also propose a method for training a robust
NR-IQA model using the norm regularization method.

4.1. Why to Regularize Gradient Norm?

In this subsection, we will outline the theoretical founda-
tions regarding the relationship between the robustness in
terms of score changes and the ℓ1 norm of the gradient. It
raises the necessity of regularizing the ℓ1 norm of the input
gradient of the predicted score. We prove that the magni-
tude of changes in predicted scores can be effectively ap-
proximated by the ℓ1 norm of ∇xf(x), with the assumption
that the ℓ∞ norm of perturbations is bounded.

Theorem 1. Suppose f represents an NR-IQA model, ϵ is
the strength of an attack, and x denotes an input image. The
maximum change in predicted scores of x by f against ℓ∞-
bounded attacks is highly correlated to ∥∇xf(x)∥1, which
can be formulated as

sup
δ:∥δ∥∞⩽ϵ

|f(x+ δ)− f(x)| ≈ ϵ∥∇xf(x)∥1. (3)

Proof. To begin, we apply the first-order Taylor expansion
to the function f(x+ δ) in the vicinity of x, yielding:

f(x+ δ) ≈ f(x) + δT∇xf(x). (4)
1Formulations of these metrics are in the supplementary material.

Then, |f(x + δ) − f(x)| ≈ |δT∇xf(x)|. Meanwhile,
|δT∇xf(x)| has the maximum value when δ = ϵ ·
sign(∇xf(x)), and this leads to Eq. (3).

This theorem establishes the connection between
changes in predicted scores and the ℓ1 norm of the gra-
dient. According to Theorem 1, suppose the strength of
attacks ϵ is fixed, then the extent of score changes is pri-
marily determined by the ℓ1 norm of the gradient ∇xf(x).
In practical terms, this signifies that the regularization of
∥∇xf(x)∥1 will lead to smaller fluctuations in predicted
scores and thereby improve the adversarial robustness of f
against imperceptible attacks.

4.2. How to Regularize Gradient Norm?

To train a robust NR-IQA model incorporating gradient
norm regularization, a direct way is to add the ℓ1 norm of
gradients to the loss function, i.e.,

L(f, x) = LIQA(f, x) + λ · ∥∇xf(x)∥21. (5)

The loss function L(f, x) comprises two components: the
loss LIQA tailored to the specific NR-IQA task, and the norm
regularization term with a positive weight λ.

However, directly adding the term ∥∇xf(x)∥1 to the loss
function leads to the requirement of double backpropaga-
tion for computing the gradient of this term with respect
to model parameters, which is time-consuming and cur-
rently not suitable for large-scale DNNs [7]. Therefore, we
employ an approximation technique for the regularization
term. Drawing inspiration from the methodology presented
in the work [12], we leverage the finite difference [38] tech-
nique to estimate ∥∇xf(x)∥1, i.e.,

∥∇xf(x)∥1 ≈
∣∣∣∣f(x+ h · d)− f(x)

h

∣∣∣∣ , (6)

where h ∈ R+ is the step size and d = sign(∇xf(x)).
Finally, the loss function with the regularization of the ℓ1

norm of the gradient is as follows:

L(f, x) = LIQA(f, x) + λ ·
∣∣∣∣f(x+ h · d)− f(x)

h

∣∣∣∣2 . (7)

5. Experiments
In this section, we present extensive experiments conducted
on various NR-IQA baseline models to validate the efficacy
of our proposed Norm regularization Training (NT) strat-
egy. We briefly overview our experimental setup in Sec. 5.1.
Subsequently, in Sec. 5.2, we demonstrate the enhancement
in robustness achieved by the NT strategy against a diverse
set of attacks. Furthermore, we illustrate the role of the fi-
nite difference approximation in reducing the ℓ1 norm of
the gradients (Sec. 5.3), as well as the relationship between
attack intensity and robustness (Sec. 5.4). We also perform
ablation studies on hyperparameters λ and h in Sec. 5.5.
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5.1. Experimental Settings

Experiments were carried out on the popular LIVEC
dataset [9]. We randomly selected 80% of the images for
training and the remaining 20% for testing and attacks.

Our experiments to assess the robustness of NR-IQA
models are structured along three key dimensions, as de-
picted in Figure 3. The first dimension revolves around
the choice of the baseline models. We evaluate our
NT strategy on four prominent NR-IQA baseline mod-
els: HyperIQA [32], DBCNN [46], LinearityIQA [18], and
MANIQA [41]. Each of these baseline models is referred to
as “baseline,” while the models trained with NT are denoted
as “baseline+NT.” The NT strategy is applied to HyperIQA
with the weight λ = 0.001, DBCNN, and LinearityIQA
with λ = 0.0005 and MANIQA with λ = 0.003. For all
models, the step size h = 0.01. Further training settings are
provided in the supplementary material.

Robustness
evaluation

Attack method

IQA

model

IQA
RMSE

SROCC

PLCC

KROCC

HyperIQA

DBCNN

Linearity
-IQA

MANIQA

FGSM

Perceptual 
Attack

UAP

MOS

Scores
before attacks

Scores
after attacks

IQA
performance

metric

Kor.
Attack

R Robustness

Figure 3. Three dimensions in experimental settings.

The second dimension involves the selection of attack
methods. We employ four attack methods designed for NR-
IQA tasks. These attacks include two white-box attacks:
FGSM2 [10] and Perceptual Attack [47], as well as two
black-box attacks: UAP3 [30] and Kor. Attack [17]. To
ensure fairness in our evaluations, each attack method uses
the same setting (i.e., employing the same hyperparameters
in attack) when targeting different models. We set different
hyperparameters for different attacks and ensure the major-
ity of attacked images’ SSIM [37] was above 0.9 to satisfy
the assumption that the MOS is the same for both images
before and after the attack. Detailed hyperparameter infor-
mation for these attacks can be found in the supplementary
material. Black-box attacks are indicated with an asterisk
in the tables of this paper.

2FGSM was originally designed for classification tasks, but we modify
its loss to for NR-IQA tasks (refer to the supplementary material).

3UAP is proposed as a white-box attack. We employ its perturbation
generated on PaQ-2-PiQ model [42], and serve UAP as a black-box attack.

The third dimension pertains to the evaluation metrics
for NR-IQA models. As detailed in Sec. 3.2, we follow the
evaluations in previous works and consider four metrics in
this paper, i.e., RMSE, PLCC, SROCC, and KROCC. Ad-
ditionally, we incorporate the R robustness [47] into our
analysis. This metric is proposed to assess the model ro-
bustness by measuring the relative score changes before and
after attacks. Formulations of these metrics are shown in
the supplementary material. Except for R robustness, other
metrics are conventionally computed by comparing the pre-
dicted scores by models against MOS provided by humans.4

In our evaluation, we extend the analysis of these metrics to
assess predicted scores by a model both before and after at-
tacks, since attackers only possess prediction scores before
attacks. Notably, in accordance with the attack definition in
Eq. (1), the NT strategy primarily focuses on the magnitude
of changes in predicted scores between predicted scores be-
fore and after attacks. It could be measured by RMSE be-
tween predicted scores before and after attacks.

5.2. Robustness Improvement

In this subsection, we present the performance of NR-IQA
models on unattacked images (where R robustness is not
applicable), as well as their adversarial robustness against
different attack methods. Our experimental results are sum-
marized into four key observations. We provide additional
analysis of adversarial robustness improvement in the sup-
plementary material.

Table 1. Performance of NR-IQA models on unattacked images
(“baseline

/
baseline+NT”). Bold denotes better value in a cell.

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

RMSE↓ 9.913
/

12.575 10.897
/

13.140 12.730
/

13.173 26.082
/

23.830
SROCC↑ 0.899

/
0.859 0.866

/
0.856 0.832

/
0.820 0.876

/
0.871

PLCC↑ 0.916
/

0.868 0.892
/

0.849 0.840
/

0.827 0.870
/

0.876
KROCC↑ 0.728

/
0.670 0.688

/
0.666 0.641

/
0.627 0.696

/
0.692

Observation 1. The NT strategy results in a slight decrease
in the performance of NR-IQA models on clean images.

The performance of both the baseline models and their
NT-enhanced versions on unattacked images are shown in
Table 1. These metrics are calculated between MOS val-
ues and predicted scores on unattacked images. We can see
that the NT strategy leads to a slight decrease in RMSE,
SROCC, PLCC, and KROCC compared with baseline mod-
els. Similar trends were reported in the context of classifica-
tion models that defense methods would cause a decline in
classification accuracy on clean images. [33, 35, 43]. These
findings suggest that enhanced robustness is often achieved
at the cost of reducing performance on unattacked images.

4We normalize MOS to [0, 100] for a straightforward comparison.

25558



Table 2. The RMSE↓ metric of NR-IQA models against attacks (“baseline
/

baseline+NT”). Bold denotes better value in a cell.

MOS & Predicted Score After Attack Score Before Attack & Score After Attack

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

FGSM 25.729
/

16.828 36.758
/

24.711 50.823
/

40.104 24.899
/

25.712 19.174
/

7.885 32.778
/

19.065 48.128
/

36.988 15.549
/

6.562
Perceptual 13.565

/
12.593 88.864

/
51.961 115.395

/
80.949 22.745

/
21.998 6.360

/
0.130 63.991

/
14.524 115.732

/
80.857 0.079

/
0.189

UAP∗ 17.765
/

16.363 19.775
/

17.188 16.997
/

16.847 23.109
/

27.832 10.583
/

8.131 14.833
/

10.922 20.813
/

19.434 5.795
/

5.592
Kor.∗ 18.564

/
17.667 12.617

/
12.707 19.500

/
17.865 18.423

/
17.395 13.698

/
10.107 6.514

/
5.298 14.807

/
12.407 7.759

/
6.680

Table 3. The SROCC↑ metric of NR-IQA models against attacks (“baseline
/

baseline+NT”). Bold denotes better value in a cell.

MOS & Predicted Score After Attack Score Before Attack & Score After Attack

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

FGSM 0.021
/

0.810 -0.318
/

0.200 -0.375
/

-0.347 0.417
/

0.772 0.043
/

0.941 -0.333
/

0.227 -0.429
/

-0.426 0.428
/

0.878
Perceptual 0.815

/
0.858 -0.127

/
0.643 0.477

/
0.567 0.876

/
0.871 0.938

/
1.000 -0.160

/
0.773 0.542

/
0.685 1.000

/
1.000

UAP∗ 0.736
/

0.822 0.705
/

0.760 0.715
/

0.739 0.773
/

0.839 0.825
/

0.941 0.836
/

0.887 0.836
/

0.869 0.923
/

0.976
Kor.∗ 0.808

/
0.802 0.863

/
0.856 0.775

/
0.775 0.828

/
0.847 0.892

/
0.922 0.978

/
0.983 0.936

/
0.936 0.942

/
0.969

Nonetheless, the performance decline induced by the NT
strategy is marginal and well within acceptable limits.

Observation 2. The NT strategy significantly improves the
robustness of NR-IQA models in most cases, where the ro-
bustness is in terms of RMSE, SROCC, PLCC, KROCC or
R robustness.

Due to space constraints, we only present the robustness
results for RMSE (Table 2) and SROCC (Table 3) in this
subsection. Comprehensive results for PLCC, KROCC, and
R robustness can be found in the supplementary material.
In both tables, columns 2-5 display the IQA metric calcu-
lated between MOS values of unattacked images and pre-
dicted scores on adversarial examples, while columns 6-9
showcase the metric calculated between predicted scores on
unattacked images and scores on adversarial examples.

As shown in Table 2, when RMSE is computed between
predicted scores before and after attacks, NR-IQA models
trained with the NT strategy exhibit smaller score changes
under nearly all attack scenarios compared to baseline mod-
els. These results confirm the correctness of our theoretical
analysis in Sec. 4.1. The robustness improvement is espe-
cially significant when models are attacked by FGSM. The
only exception is MANIQA when attacked by the Percep-
tual Attack. In this case, the RMSE of MANIQA is smaller
than that of the NT-trained model, where the difference is
only 0.11. We think this phenomenon can be attributed to
inherent biases among test images. Furthermore, MANIQA
and its NT-enhanced version exhibit significant robustness
against the Perceptual Attack, as indicated by an SROCC
value of 1 between predicted scores before and after the at-
tack. This signifies that the Perceptual Attack has minimal
impact on MANIQA and MANIQA+NT, resulting in a rea-

sonably small difference in RMSE between the two models.
When considering RMSE results measured between

MOS values and predicted scores after attacks, the robust-
ness of NT-trained models is also improved. For exam-
ple, the RMSE value of DBCNN under the FGSM attack is
about 36.758, whereas that of DBCNN+NT is just 24.711.
There are only 3 out of 16 cases where baseline+NT models
perform worse than baseline models. Such occurrences are
expected because the NT strategy does not leverage MOS
information but relies on the original predicted scores.

Results shown in Table 3 demonstrate that the NT strat-
egy can also enhance the robustness in terms of SROCC,
although we are not clear about the theoretical connection
between the NT strategy and SROCC. The improvement is
particularly pronounced in white-box scenarios. Taking the
HyperIQA model as an example, the robustness of the base-
line model measured by SROCC is notably deficient under
the FGSM attack. The SROCC value between MOS val-
ues and predicted scores is a mere 0.021, while the SROCC
value between predicted scores before and after the FGSM
attack is only 0.043. However, with the inclusion of the NT
strategy, there is a significant enhancement in SROCC. The
SROCC value between MOS values and predicted scores in-
creases to 0.810, while the SROCC between scores before
and after the FGSM attack rises to 0.941. This exemplifies
the effectiveness of the NT strategy in boosting the SROCC
robustness of NR-IQA models.

Observation 3. In IQA tasks, the robustness in terms of
distinct metrics is not completely the same.

In Table 2 and Table 3, it is evident that a model showing
robustness in terms of RMSE when subjected to an attack
method may not necessarily exhibit robustness in SROCC.
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Take the left part of the two tables as an example, for base-
line models, we can see that HyperIQA achieves much bet-
ter robustness in terms of RMSE than MANIQA against the
UAP attack (17.765 vs. 23.109), but it performs worse in
SROCC (0.736 vs. 0.773). Similar phenomena also oc-
cur with NT-trained models where LinearityIQA+NT shows
better RMSE robustness but worse SROCC robustness than
DBCNN+NT against the UAP attack. How to make a trade-
off between the adversarial robustness from different per-
spectives brings challenges in IQA tasks, potentially open-
ing up new avenues for further exploration and research.

Observation 4. The NT strategy exhibits a more effective
defense against white-box attacks compared to black-box
attacks.

Table 2 and Table 3 demonstrate that the improvement
in RMSE / SROCC from the baseline to baseline+NT mod-
els is generally greater under white-box attacks than under
black-box attacks. This trend is more clear from Table S7
in the supplementary material by comparing the averaged
metrics of improvement.

This happens because the attack capability of existing
black-box attacks is generally weaker than that of white-box
attacks on NR-IQA models. Hence, the baseline models ex-
hibit better robustness against black-box attacks compared
to white-box attacks, making the robustness improvement
brought by NT less evident in the black-box scenario. For
instance, when attacked by black-box methods, the SROCC
values between predicted scores before and after attacks
for all baseline models exceed 0.8, while these values for
most baseline models under white-box attacks are below
0.6. This observation highlights the importance of explor-
ing effective black-box attacks on IQA models.

5.3. Norm Reduction

To validate the effectiveness of the NT strategy in reducing
the norm of the gradient, as well as the accuracy of Eq. (6)
in approximating the ℓ1 norm, we generate distribution plots
of ∥∇xf(x)∥1. Here, x represents samples from the test set.

Figure 4 compares the norm distribution between base-
line and baseline+NT models. We can see that the gradient
norms of the baseline+NT models are all shifted towards
the left compared to the baseline models. This indicates
that models trained with the NT strategy exhibit a smaller ℓ1
gradient norm concerning the input image compared to the
baseline models. These results confirm that Eq. (6) serves
as a reliable approximation of the gradient ℓ1 norm.

To further demonstrate that a smaller ∥∇xf∥1 enhances
the robustness of an NR-IQA model against adversarial at-
tacks, we draw a scatter plot to show the relationship be-
tween the adversarial robustness and the gradient norm. In
Figure 5, the horizontal axis represents the logarithm of the
average ∥∇xf(x)∥1 value across all test images. Points in

×10!" ×10!"

×10!" ×10!"

Figure 4. The comparison of ℓ1 norm distribution of gradient be-
tween baseline models (blue) and baseline+NT models (orange).

Figure 5. The relationship between the gradient norm and the ro-
bustness in terms of RMSE (left) and SROCC (right). The hor-
izontal axis represents the logarithm of the average ∥∇xf(x)∥1
value across all test images. All metrics are calculated between
predicted scores before and after the UAP attack.

the left part of Figure 5 generally follow a diagonal distri-
bution from bottom left to top right, indicating that models
with smaller gradient norms tend to exhibit better robust-
ness in terms of RMSE. Moreover, points in the right part
of Figure 5 are generally distributed from the top left to the
bottom right. This reflects that models with smaller gradient
norms tend to exhibit better robustness in terms of SROCC.

5.4. Attack Intensity and Robustness

To evaluate the robustness of the baseline model and the
baseline+NT model under different attack intensities, we
adjust the strength of the iterative FGSM attack (illustrated
in the supplementary material) with different iterations and
the ℓ∞ norm ϵ of perturbations. Generally, a higher number
of iterations and larger ϵ values correspond to more potent
attacks. The attack intensity is quantified using SSIM, with
smaller SSIM values signifying greater attack intensity.

Figure 6 presents the performance of HyperIQA and
its NT-trained versions under attacks with varying inten-
sities. As the attack intensities increase, the RMSE and
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Figure 6. RMSE (left) and SROCC (right) values of Hyper-
IQA and HyperIQA+NT models under different attack intensities.
RMSE and SROCC are calculated between predicted scores be-
fore and after the FGSM attack.

SROCC values for HyperIQA and its NT version tend to get
worse in general. This reflects that stronger attacks lead to
decreased performance for both normally-trained and NT-
trained models in most cases. Meanwhile, HyperIQA+NT
model consistently keeps lower RMSE values than Hyper-
IQA at the same attack intensity, regardless of the intensity
levels. This demonstrates the effectiveness of the NT strat-
egy against attacks with varying intensities.

5.5. Ablation Study

We conduct additional experiments to test the impact of hy-
perparameters in Eq. (7) for the NT strategy: the weight λ
of the gradient norm and the step size h in the finite differ-
ence. Due to the space limit, we present partial results, and
full results are shown in the supplementary material.

In Figure 7, we fix h = 0.01 and vary λ in Eq. (7) in
the range from 0 to 0.003. Our analysis focuses on two as-
pects of an NR-IQA model: its performance on unattacked
images and its robustness against attacks. For the former,
we utilize SROCC on unattacked images across MOS val-
ues and predicted scores, and for the latter, we employ the
RMSE between predicted scores before and after the FGSM
attack. As λ increases, SROCC values on unattacked im-
ages tend to decrease on all baseline+NT models, while
the RMSE values under the FGSM attack tends to decrease
consistently. This implies that increasing λ enhances the
robustness of NR-IQA models but leads to a performance
decline on unattacked images.

To explore the effect of the step size h in Eq. (7) on
the performance of IQA models, we fix λ = 0.0005 and
vary h in {0.001, 0.01, 0.1, 1} for DBCNN. In Table 4, we
present the SROCC and RMSE values across MOS values
and predicted scores for unattacked images, and SROCC
and RMSE values between predicted scores before and after
the FGSM attack for adversarial examples. In theory, a large
h cannot sufficiently represent the neighborhood of x, so
the approximation of the ℓ1 norm is inaccurate. The exper-
imental results also confirm this point where the robustness
of the model is worse when h = 0.1 and 1. Conversely, an

Figure 7. The impact of λ to SROCC on unattacked images and
RMSE on FGSM attacked images.

Table 4. The comparison of different h of the DBCNN+NT model
with unattacked images and FGSM attacked images.

h

0.001 0.01 0.1 1

Unattacked SROCC↑ 0.788 0.856 0.846 0.844
RMSE↓ 16.099 14.138 12.417 14.809

Attacked SROCC↑ 0.577 0.200 -0.3832 -0.4406
RMSE↓ 7.356 19.065 28.785 18.767

exceedingly small h, such as h = 0.001, achieves effective
defense performance but leads to a significant performance
decline on unattacked images.

6. Conclusion
To the best of our knowledge, this is the first work designing
IQA-specific defense methods against adversarial attacks.
Our work offers a rigorous theoretical proof that the score
changes of NR-IQA models are related to the ℓ1 norm of
the gradient when the perturbation is small. Furthermore,
models trained with the proposed NT strategy exhibit sig-
nificant improvement in adversarial robustness against both
white-box and black-box attacks.
Limitations and future work. In this study, our primary
theoretical analysis is on reducing the changes in predicted
scores when NR-IQA models are exposed to attacks. Nev-
ertheless, an interesting and valuable avenue for future re-
search is the development of NR-IQA models that demon-
strate robustness in terms of prediction monotonicity like
SROCC. Besides, we intend to explore our method applied
to FR-IQA models in future work.
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