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“I want to enhance the face appearance of this image.” “Can you remove the rain in this photo?”

“Please help me enhance the lighting of this photo.” “ I need to remove the snow in this photo.” “… clear haze …” “remove snow and haze” 

Figure 1. Real-world applications of Diff-Plugin visualized across distinct single-type and one multi-type low-level vision tasks. Diff-
Plugin allows users to selectively conduct interested low-level vision tasks via natural languages and can generate high-fidelity results.

Abstract

Diffusion models trained on large-scale datasets have
achieved remarkable progress in image synthesis. How-
ever, due to the randomness in the diffusion process, they
often struggle with handling diverse low-level tasks that
require details preservation. To overcome this limitation,
we present a new Diff-Plugin framework to enable a sin-
gle pre-trained diffusion model to generate high-fidelity re-
sults across a variety of low-level tasks. Specifically, we
first propose a lightweight Task-Plugin module with a dual
branch design to provide task-specific priors, guiding the
diffusion process in preserving image content. We then pro-
pose a Plugin-Selector that can automatically select dif-
ferent Task-Plugins based on the text instruction, allowing
users to edit images by indicating multiple low-level tasks
with natural language. We conduct extensive experiments
on 8 low-level vision tasks. The results demonstrate the
superiority of Diff-Plugin over existing methods, particu-
larly in real-world scenarios. Our ablations further vali-
date that Diff-Plugin is stable, schedulable, and supports
robust training across different dataset sizes. Project page:
https://yuhaoliu7456.github.io/Diff-Plugin

†Joint corresponding authors. This project is in part supported by a
GRF grant (Grant No.: 11205620) from the Research Grants Council of
Hong Kong.

1. Introduction
Over the past two years, diffusion models [9, 21, 22, 61]
have achieved unprecedented success in image generation
and shown potential to become vision foundation models.
Recently, many works [4, 25, 28, 31, 46, 91, 96] have
demonstrated that diffusion models trained on large-scale
text-to-image datasets can already understand various vi-
sual attributes and provide versatile visual representations
for downstream tasks, e.g., image classification [31], seg-
mentation [25, 96], translation [46, 91], and editing [4, 28].

However, due to the inherent randomness in the dif-
fusion process, existing diffusion models cannot maintain
consistent contents to the input image and thus fail in han-
dling low-level vision tasks. To this end, some meth-
ods [46, 63] propose to utilize input images as a prior via
the DDIM Inversion [61] strategy when editing images, but
they are unstable when the scenes are complex. Other meth-
ods [16, 52, 56, 71, 83] attempt to train new diffusion mod-
els on task-specific datasets from scratch, limiting them to
solve only a single task.

In this work, we observe that an accurate text prompt
describing the goal of the task can already instruct a pre-
trained diffusion model to address many low-level tasks, but
typically leads to obvious content distortion, as illustrated
in Fig. 2. Our insight to this problem is that task-specific
priors containing both guidance information of the task and
spatial information of the input image can adequately guide
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pre-trained diffusion models to handle low-level tasks while
maintaining high-fidelity content consistency. To harness
this potential, we propose Diff-Plugin, the first framework
enabling a pre-trained diffusion model, such as stable dif-
fusion [54], to accommodate a variety of low-level tasks
without compromising its original generative capability.

Diff-Plugin consists of two main components. First, it
includes a lightweight Task-Plugin module to help extract
task-specific priors. The Task-Plugin is bifurcated into the
Task-Prompt Branch (TPB) and the Spatial Complement
Branch (SCB). While TPB distills the task guidance prior,
orienting the diffusion model towards the specified vision
task and minimizing its reliance on complex textual descrip-
tions, SCB leverages task-specific visual guidance from
TPB to assist the spatial details capture and complement,
enhancing the fidelity of the generated content. Second, to
facilitate the use of multiple different Task-Plugins, Diff-
Plugin includes a Plugin-Selector to allow users to choose
their desired Task-Plugins through text inputs (visual illus-
trations are depicted in Fig. 1). To train the Plugin-Selector,
we employ multi-task contrastive learning [49], using task-
specific visual guidance as pseudo-labels. This enables the
Plugin-Selector to align different visual embeddings with
task-specific text inputs, thereby bolstering the robustness
and user-friendliness of the Plugin-Selector.

To thoroughly evaluate our method, we conducted ex-
tensive experiments on eight diverse low-level vision tasks.
Our results affirm that Diff-Plugin is not only stable across
different tasks but also exhibits remarkable schedulability,
facilitating text-driven multi-task applications. Addition-
ally, Diff-Plugin showcases its scalability, adapting to vari-
ous tasks across datasets of varying sizes, from less than 500
to over 50,000 samples, without affecting existing trained
plugins. Finally, our results also show that the proposed
framework outperforms existing diffusion-based methods
both visually and quantitatively, and achieves competitive
performances compared to regression-based methods.

Our key contributions are summarized as follows:

• We present Diff-Plugin, the first framework to enable a
pre-trained diffusion model to perform various low-level
tasks while maintaining the original generative abilities.

• We propose a Task-Plugin, a lightweight dual-branch
module designed for injecting task-specific priors into the
diffusion process, to enhance the fidelity of the results.

• We propose a Plugin-Selector to select the appropriate
Task-Plugin based on the text provided by the user. This
extends to a new application that can allow users to edit
images via text instructions for low-level vision tasks.

• We conduct extensive experiments on eight tasks, demon-
strating the competitive performances of Diff-Plugin over
existing diffusion and regression-based methods.

“A photo of a girl wearing a cotton hat, 
closing her eyes, with falling snow”

“A blurry photo of a dog running in garden”

“A car is moving on road on a rainy day” “A bowl on the table with a circle of 
sparkling highlights around the rim”cloudy

(1)

(3)

(2)

(4)

Figure 2. Stable Diffusion (SD) [54] results on four low-level
vision tasks: desnowing, deblurring, deraining, and highlight re-
moval. Each sub-figure illustrates a two-step process: First, we
generate the left image using SD with a full-text description,
where task-critical attributes are highlighted in red. Then, we re-
move unwanted attributes (indicated with strikethrough), option-
ally add new attributes (denoted with orange word), and employ
the img2img function in SD, using the left image as a condition
to generate the edited image on the right. We observe that while
SD can grasp rich attributes of various low-level tasks and create
content consistent with descriptions, its inherent randomness often
leads to content change in further editing. For instance, in sub-fig
(1), besides addressing the primary task-related degradation (e.g.,
snow), SD also alters unrelated content (e.g., face profile).

2. Related Works

Diffusion models [60, 62] have been applied to image
synthesis [9, 21, 22, 61] and achieved remarkable suc-
cess. With extensive text-image data [59] and large-scale
language models [49, 50], diffusion-based text-guided im-
age synthesis [2, 42, 51, 54, 57] has become even more
compelling. Leveraging the text-guided synthesis diffusion
model, several approaches harness the generative prowess
for text-driven editing. Zero-shot approaches [19, 46, 63]
rely on a correct initial noise [61] and manipulate the at-
tention map to edit specified content at precise locations.
Tuning-based strategies strive to balance between image
fidelity and generated diversity through optimized DDIM
inversion [65], attention tuning [29], text-image coupling
[28, 55, 93] and prompt tuning [10, 14, 39]. Conversely,
InstructP2P [4, 89] generates paired data through latent dif-
fusion [54] and prompt-to-prompt [19] for training and edit-
ing. However, the randomness in the diffusion process and
the absence of task-specific priors render them infeasible
for low-level vision tasks that require details preservation.
Conditional generative models use various external inputs
to ensure output consistency with the conditions. Training-
free methods [8, 76] can generate new contents at specified
positions by manipulating attention layers, yet with limited
condition types. Fine-tuning-based approaches inject addi-
tional guidance to the pre-trained diffusion models by train-
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ing a new diffusion branch [40, 90, 94] or the whole model
[1]. Despite the global structural consistency, these methods
cannot ensure high-fidelity between output and input image
details due to the randomness and generative nature.
Diffusion-based low-level methods can be grouped into
zero-shot and training-based. The former can borrow gener-
ative priors from pre-trained denoising diffusion-based gen-
erative models [22] to solve linear [27, 70] and/or non-linear
[7, 12] image restoration tasks, but often produce poor re-
sults on real-world data. The latter usually train or fine-tune
an individual model for different tasks via task-dependent
designs, such as super-resolution [58, 74], JPEG compres-
sion [56], deblurring [52, 73], face restoration [71, 95], low-
light enhancement [24, 83, 92], and shadow removal [16].
Concurrent works, StableSR [66] and DiffBIR [34], use a
learnable conditional diffusion branch with degraded or re-
stored images to train diffusion models specifically for blind
face restoration. In contrast, our framework enables one
pre-trained diffusion model to handle a variety of low-level
tasks by equipping it with lightweight task-specific plugins.
Multi-task models can learn complementary information
across different tasks, e.g., object detection and segmenta-
tion [18], rain detection and removal [80], adverse weather
restoration [45, 82, 98] and blind image restoration [33, 47].
However, these methods can only handle the pre-defined
tasks after training. Instead, our Diff-Plugin is flexible and
can integrate new tasks through task-specific plugins, as our
Task-Plugins are trained individually. Hence, when adding
new low-level tasks to Diff-Plugin, we only need to add the
pre-trained Task-Plugins to the framework, without the need
to retrain the existing ones.

3. Methodologies

In this section, we first review the diffusion model formula-
tions (Sec. 3.1). Then, we introduce our Diff-Plugin frame-
work (Sec. 3.2), which developed from our newly proposed
Task-Plugin (Sec. 3.3) and Plugin-Selector (Sec. 3.4).

3.1. Preliminaries

The diffusion model consists of a forward process and a
reverse process. In the forward process, given a clean
input image x0, the diffusion model progressively adds
Gaussian noise to it to get noisy image xt at time-step
t ∈ {0, 1, ..., T}, as xt =

√
ᾱtx0 +

√
1− ᾱtϵt, where ᾱt

is the pre-defined scheduling variable and ϵt ∼ N (0, I)
is the added noise. In the reverse process, the diffusion
model performs iteratively remove noise from a standard
Gaussian noise xT , and finally estimating a clean image
x0. This is typically employed to train a noise prediction
network ϵθ, with supervision informed by the noise ϵt, as
L = Ex0,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ (xt, t)∥22

]
.

Figure 3. Schematic illustration of the Diff-Plugin framework.
Diff-Plugin identifies appropriate Task-Plugin P based on the user
prompts, extracts task-specific priors, and then injects them into
the pre-trained diffusion model to generate the user-desired results.

3.2. Diff-Plugin

Our key observation is the inherent zero-shot capability of
pre-trained diffusion models in performing low-level vision
tasks, enabling them to generate diverse visual content with-
out explicit task-specific training. However, this capability
faces limitations in more nuanced task-specific editing. For
example, in the desnowing task, while the model should ide-
ally only remove snow and leave other contents unchanged,
as shown in Fig. 2, the inherent randomness of the diffusion
process often leads to unintended alterations in the scene
beyond just snow removal. This inconsistency arises from
the model’s lack of task-specific priors, which are crucial
for precise detail preservation in low-level vision tasks.

Inspired by modular extensions in NLP [75, 77] and
GPT-4 [43], which utilize plug-and-play tools to enhance
the capabilities of large language models for downstream
tasks without compromising their core competencies, we
introduce a novel framework, Diff-Plugin, based on a simi-
lar idea. This framework integrates several lightweight plu-
gin modules, termed Task-Plugin, into the pre-trained dif-
fusion models for various low-level tasks. Task-Plugins
are crafted to provide essential task-specific priors, guiding
the models to produce high-fidelity and task-consistent con-
tent. In addition, while diffusion models can generate con-
tent based on text instructions for targeted scenarios, they
lack the ability to schedule Task-Plugins for different low-
level tasks. Even existing conditional generation methods
[48, 90] can only specify different generation tasks through
input conditional images. Thus, to facilitate smooth text-
driven task scheduling and enable the switching between
different Task-Plugins for complex workflows, Diff-Plugin
includes a Plugin-Selector to allow users to choose and
schedule appropriate Task-Plugins with textual commands.

Fig. 3 depicts the Diff-Plugin framework. Given an im-
age, users specify the task through a text prompt, either
singular or multiple, and the Plugin-Selector identifies the
appropriate Task-Plugin for it. The Task-Plugin then pro-
cesses the image to extract the task-specific priors, guiding
the pre-trained diffusion model to produce user-desired out-
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comes. For more intricate tasks beyond the scope of a single
plugin, Diff-Plugin breaks them down into sub-tasks with a
predefined mapping table. Each sub-task is tackled by a
designated Task-Plugin, showcasing the framework’s capa-
bility to handle diverse and complex user requirements.

3.3. Task-Plugin

As illustrated in Fig. 4, our Task-Plugin module is com-
posed of two branches: a Task-Prompt Branch (TPB) and a
Spatial Complement Branch (SCB). The TPB is crucial for
providing task-specific guidance to the pre-trained diffusion
model, akin to using text prompts in text-conditional image
synthesis [54]. We employ visual prompts, extracted via the
pre-trained CLIP vision encoder [49], to direct the model’s
focus towards task-relevant patterns (e.g., rain streaks for
deraining and snow flakes for desnowing). Specifically, for
an input image I, the encoder EncI(·) first extracts general
visual features, which are then distilled by the TPB to yield
discriminative visual guidance priors Fp:

Fp = TPB(EncI(I)), (1)

where TPB, comprising three MLP layers with Layer Nor-
malization and LeakyReLU activations (except for the final
layer), ensures the retention of only the most task-specific
attributes. This approach aligns Fp with the textual features
the diffusion model typically uses in its text-driven gen-
eration process, thus facilitating better task alignment for
Plugin-Selector. Furthermore, using visual prompts simpli-
fies the user’s role by eliminating the need for complex text
prompt engineering, which is often challenging for specific
vision tasks and sensitive to minor textual variations [78].

However, the task-specific visual guidance prior Fp,
while crucial for prompting global semantic attributes, is
not sufficient for preserving fine-grained details. In this
context, DDIM Inversion plays a pivotal role by providing
initial noise that contains information about the image con-
tent. Without this step, the inference would rely on random
noise devoid of image content, resulting in less controllable
results in the diffusion process. However, the inversion pro-
cess is unstable and time-consuming. To alleviate this, we
introduce the SCB to extract and enhance spatial details
preservation effectively. We utilizes the pre-trained VAE
encoder [11] EncV (·), to capture full content of input image
I, denoted as F. This comprehensive image detail, when
combined with the semantic guidance from Fp, is then pro-
cessed by our SCB to distill the spatial feature Fs:

Fs = SCB(F, Ft, Fp) = Att(Res(F, Ft), Ft, Fp), (2)

where Ft is time embedding used to denote the varied time
step in diffusion process. The Res and Att blocks repre-
sent the standard ResNet and Cross-Attention transformer
blocks, from the diffusion model [54]. The output from Res

EncV

I

Task-Prompt 
    Branch

t MLP

Fp

Fs
 Res. 
Block

  Att.
Block

      Spatial Complement Branch

I
EncI

Task-Plugin

Figure 4. Schematic illustration of task-specific priors extraction
via the proposed lightweight Task-Plugin. Task-Plugin processes
three inputs: time step t, visual prompt from EncI(·), and image
content from EncV (·). It distills visual guidance Fp via a task-
prompt branch and extracts spatial features Fs through a spatial
complement branch, jointly for task-specific priors.

is utilized as the Query features and Fp acts as both Key
and Value features in the cross-attention layer.

We then introduce the task-specific visual guidance prior
Fp into the cross-attention layers of the diffusion model,
where it serves to direct the model’s generation process to-
ward the specific requirements of the low-level vision task.
Following this, we directly incorporate the distilled spatial
prior Fs into the final stage of the decoder as a residual.
This placement is based on our experimental observations
in Table 4, which indicated that the fidelity of spatial de-
tails in the stable diffusion [54] tends to decrease from the
shallow layers to the deeper ones. By adding Fs at this spe-
cific stage, we effectively counteract this tendency, thereby
enhancing the preservation of fine-grained spatial details.

To train the Task-Plugin modules, we adopt the denois-
ing loss as defined in [54], introducing the task-specific pri-
ors into the diffusion denoising training process:

L = Ez0,t,Fp,Fs,ϵ∼N (0,1)
[
∥ϵ− ϵθ (zt, t, Fp, Fs) ∥22

]
, (3)

where zt =
√
ᾱtz0 +

√
1− ᾱtϵt represents the noised ver-

sion of the latent-space image at time t, and z0, the latent-
space representation of the ground truth image Î, is obtained
as z0 = EncV (Î). This loss function ensures that the Task-
Plugin is effectively trained to incorporate the task-specific
priors in guiding the diffusion process.

3.4. Plugin-Selector

We propose the Plugin-Selector, enabling users to select the
desired Task-Plugin using text input. For an input image I
and a text prompt T, we define the set of Task-Plugins as
P = {P1,P2, · · · ,Pm}, with each Pi corresponding to a
specific vision task, transforming I into task-specific priors
(Fp

i ,F
s
i ). Then, visual guidance Fp

i of each Task-Plugin
is then cast to a new textual-visual aligned multi-modality
latent space via a shared visual projection head VP(·) and
denoted as V = {v1,v2, · · · ,vm}. Concurrently, T is en-
coded into a text embedding by EncT (·) [49] and then pro-
jected to q using a textual project head TP(·), aligning the
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textual and visual embedding. The process is formulated as:

vi = VP(Fp
i ); q = TP(EncT (T)). (4)

We then compare the textual embedding q with each vi-
sual embedding vi ∈ V using cosine similarity function
such that si = sim(vi, q), yielding a set of similarity scores
S = {s1, s2, · · · , sm}. We select the Task-Plugin Pselected
that meet a specified similarity threshold, θ:

Pselected = {Pi | si ≥ θ, Pi ∈ P}. (5)

We adopt the Fp
i as the pseudo label and pair it with

task-specific text to construct training data. We employ con-
trastive loss [5, 49] to optimize the vision and text projection
heads, enhancing their capability to handle multi-task sce-
narios. This involves minimizing the distance between the
anchor image and positive texts while increasing the dis-
tance from negative texts. For each image I, a positive text
relevant to its task (e.g., “I want to remove rain” for derain-
ing task) and N negative texts from other tasks (e.g., “en-
hance the face” for face restoration) are sampled. The loss
function for a positive pair of example (i, j) is as follows:

ℓi,j = − log
exp

(
sim

(
vi, qj

)
/τ

)∑N+1
k=1 1[kc ̸=ic] exp (sim (vi, qk) /τ)

, (6)

where c represents the task type for each sample and
1[kc ̸=ic] ∈ {0,1} is an indicator function evaluating to 1
iff kc ̸= ic. τ denotes a temperature parameter.

4. Experiments
In this section, we first introduce our experimental setup,
including datasets, implementation, and metrics. We then
compare Diff-Plugin with current diffusion- and regression-
based methods in Sec. 4.1, and conduct component analysis
of Diff-Plugin via ablation studies in Sec. 4.2.
Datasets. To train the Task-Plugins, we utilize specific
datasets for each low-level task, desnowing: Snow100K
[36], dehazing: Reside [32], deblurring: Gopro [41], de-
raining: merged train [86], face restoration: FFHQ [26],
low-light enhancement: LOL [72], demoireing: LCDMoire
[85], and highlight removal: SHIQ [13]. For testing,
we evaluate on real-world benchmark datasets, desnow-
ing: realistic test [36], dehazing: RTTS [32], deblurring:
RealBlur-J [53], deraining: real test [68], face restoration:
LFW [23, 69], low-light enhancement: merged low-light
[17, 30, 38, 64, 67, 72], demoireing: LCDMoire [85], and
highlight removal: SHIQ [13]. To train the Plugin-Selector,
we employ GPT [44] to generate text prompts for each task.
Implementation. During training and testing, we resize
the image to 512×512 for a fair comparison. We employ
the AdamW optimizer [37] with its default parameters (e.g.,
betas, weight decay). The training of our Task-Plugins was

conducted using a constant learning rate of 1e−5 and a batch
size of 64 on four A100 GPUs, each with 80G of memory.
To train the Plugin-Selector, we randomly sample 5,000 im-
ages from each task and augment text diversity by randomly
combining text inputs from various tasks. We set the batch
size to 8 and adopt the same learning rate for Task-Plugins.
For negative texts, we set N = 7 by default. During infer-
ence, we set the specified similarity threshold θ = 0.
Metrics. We follow [54] to employ widely adopted non-
reference perceptual metrics, FID [20] and KID [3], to eval-
uate our Diff-Plugin on real data, as GT is not always avail-
able. As for the Plugin-Selector, we follow multi-label
object classification [6] to report the mean average preci-
sion (mAP), the average per-class precision (CP), F1 (CF1),
and the average overall precision (OP), recall (OR), and F1
(OF1). For each class (i.e., task type), the labels are pre-
dicted as positive if their confidence score is greater than
θ. We further propose a stringent zero-tolerance evaluation
metric (ZTA) that rigorously assesses sentence-level classi-
fication results from a user-first perspective, making binary
classification to ensure utmost accuracy:

ZTA =
1

Q

Q∑
i=1

((
min
j∈Yi

Sij > θ

)
∧
(
max
k∈Hi

Sik ≤ θ

))
,

(7)
where Q is the total number of test samples, Si is the set
of predicted similarity scores for sample i, Yi is the set of
indices for positive classes (i.e., user interested tasks), Hi is
the set of indices for negative classes (i.e., irrelevant tasks).

4.1. Comparison with State-of-the-Art Methods

We compare the proposed Diff-Plugin with the state-of-the-
art methods from different low-level vision tasks, includ-
ing regression-based specialized models: DDMSNet [88],
PMNet [81], Restormer [87], NeRCO [79], VQFR [15],
UHDM [84], SHIQ [13], multi-task models: AirNet [33],
WGWS-Net [98] and PromptIR [47], and diffusion-based
models: SD [54], PNP [63], P2P [46], InstructP2P [4], Null-
Text [39] and ControlNet [90]. We conduct the experiment
on real-world datasets to compare the generalization ability.
Qualitative Results. Fig. 5 demonstrates the superior per-
formances of our Diff-Plugin on eight low-level vision tasks
with challenging natural images. First, using SD’s img2img
[54] function does not ensure content accuracy. It often
leads to major scene changes (column 8). InstructP2P [4],
which lacks task-specific priors, also falls short, producing
poorer results in tasks like dehazing and low-light enhance-
ment (column 7). The lack of task-specific priors also leads
P2P [46] and Null-Text [39] into generating inconsistent
contents (columns 5 and 6), despite using initial noise from
DDIM Inversion [61]. ControlNet [90] handles some tasks
well (column 4) by providing condition information via a
diffusion branch, but its strong color distortion reduces its
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Figure 5. Qualitative Comparison. Our Diff-Plugin notably surpasses regression-based method (3) and diffusion-based methods (4)-(8)
in performance. Magnified regions of several tasks are provided for clarity. Refer to Supplemental for further comparisons.

effectiveness in these tasks. The latest multi-task method,
PromptIR [47] (column 3), is limited by model scale and
can only handle a few tasks. In contrast, our method uses a
lightweight task-specific plugin for each task, offering flex-
ibility and stable performance across all tasks (column 2).

Quantitative Results. We also provide the quantitative
comparison in Table 1. Compared with diffusion-based
methods, our Diff-Plugin achieves SOTA results overall.
While PNP [63] and InstructP2P [4] are capable of pro-
ducing high-quality images with low FID & KID, they of-
ten produce significant content alterations (refer to Fig. 5).
Compared with regression-based multi-task methods, our
approach delivers competitive performances in most tasks,
though it is slightly ineffective in sparse degradation tasks
like demoireing and highlight removal. While special-
ized models may outperform ours in their respective ar-
eas, their task-dependent designs limit their applicability to

other tasks. Note that the primary goal of this paper is not to
achieve top performances in all tasks, but to lay groundwork
for future advancements. In addition, Diff-Plugin, enables
text-driven low-level task processing, a capability absent in
regression-based models.

User Study. We conduct a user study with 46 participants to
assess various methods through subjective evaluation. Each
participant reviewed 5 image sets from the test set, each
comprising an input image and 10 predicted images, for a
total of 8 tasks. The images were ranked based on content
consistency, degradation removal (e.g., rain, snow, high-
light), and overall quality. Analyzing 1,840 rankings (46
participants × 40 sets), we compute the Average Ranking
(AR) of each method. Table 2 shows the results. It is obvi-
ous to see a preference for our approach among the users.
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Desnowing Dehazing Deblurring Deraining Low-light Enhanc. Face Restoration Demoireing Highlight Removal
Realistic [36] Reside [32] RealBlur-J [53] real test [68] merged low. LFW [69] LCDMoire [85] SHIQ [13]

FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓
Regression-based specialized models

All 33.92 5.39 36.40 15.66 55.64 15.70 52.78 16.28 48.47 10.96 19.28 6.72 29.59 1.45 33.74 18.79

Regression-based multi-task models
AirNet* [33] 35.02 5.52 39.53 17.86 59.38 20.95 52.04 16.20 59.92 19.74 31.03 13.35 33.05 4.27 10.13 5.89
WGWS-Net* [98] 34.84 5.71 36.25 15.79 56.80 16.83 53.64 16.55 53.67 12.99 29.89 12.08 29.86 2.28 8.28 3.05
PromptIR* [47] 34.66 5.35 40.88 17.80 55.37 16.42 53.78 16.88 53.42 13.16 30.52 12.80 29.01 1.56 9.01 5.07

Diffusion-based models
SD [54] 35.24 7.88 48.89 24.47 59.21 18.96 51.78 17.69 53.09 15.38 30.90 9.63 58.20 17.34 36.54 12.06
PNP [75] 35.01 6.52 42.82 16.98 63.16 23.58 52.89 21.02 54.19 14.43 34.08 13.45 36.37 6.18 33.09 14.94
P2P [46] 34.48 6.03 42.17 17.33 63.43 25.15 44.49 13.94 52.06 13.26 54.67 24.66 36.37 9.35 26.96 13.11
InstructP2P [4] 42.01 8.54 33.48 12.76 57.38 19.37 54.12 17.87 55.65 15.25 24.66 9.73 34.29 4.73 16.80 6.81
Null-Text [39] 60.49 16.38 39.94 14.88 60.38 20.37 51.49 15.43 52.86 12.79 33.06 12.82 33.72 4.91 14.65 6.52
ControlNet* [90] 34.36 5.70 37.02 15.45 52.30 17.19 52.55 15.22 51.56 15.51 21.59 7.84 41.97 8.80 15.75 8.17
Diff-Plugin (ours) 34.30 5.20 34.68 14.38 51.81 14.63 50.55 13.84 48.98 11.73 20.07 6.91 29.77 1.75 12.58 6.37

Table 1. Quantitative comparisons to SOTAs (both regression-based and diffusion-based methods) on eight low-level vision tasks that need
high content-preservation. We summarise all the regression-based specialized models in one line, denoted as “All”. They are: DDMSNet
[88] (desnowing), PMNet [81] (dehazing), Restormer [87] (deblurring and deraining), NeRCO [79] (low-light enhancement), VQFR [15]
(face restoration), UHDM [84] (demoireing), SHIQ [13] (highlight removal). KID values are scaled by a factor of 100 for readability. *
means that this method is re-trained on eight tasks by us. The best and second-best results are highlighted.

Methods AirNet [33] WGWS-Net [98] PromptIR [47] SD [54] PNP [63] P2P [46] InstructP2P [4] Null-Text [39] ControlNet [90] Ours
AR ↓ 5.26 2.75 3.04 9.66 6.32 7.39 7.14 7.94 4.33 1.17

Table 2. Average Ranking (AR) of different methods in the User Study. The lower the value, the better the human subjective evaluation.

Input ➀ Inversion+Edit. ➁ TPB ➂ TPB+Inversion ➃ SCB ➄ TPB+SCB (Rec.) Ours
Figure 6. Visual comparison of various Task-Plugin design variants. Row 1 and Row 2 showcase desnowing and dehazing, respectively.

4.2. Ablation Study

Task-Plugin. We first evaluate the efficacy of Task-Plugins
by exploring various ablated designs and comparing their
performances on desnowing and dehazing. Unless speci-
fied otherwise, random noise is used during inference. We
have five ablated models. ➀ Inversion + Editing: DDIM
Inversion with a task-specific description (e.g., “a photo of
a snowy day”) inverts the input image into an initial noise,
retaining content. This is followed by editing using a tar-
get description (e.g., “a photo of a sunny day”). ➁ TPB:
The SCB is removed, focusing solely on TPB training. ➂
TPB + Inversion: Only TPB is trained, but DDIM Inver-
sion is used for initial noise during inference. ➃ SCB:
The TPB is removed to train the SCB exclusively. ➄ TPB
+ SCB (Reconstruction): Training begins with SCB us-
ing self-reconstruction denoising loss, and then proceeds to
TPB training with the fixed SCB. Performance results and
comparison are presented in Fig. 6 and Table 3.

We have the following observations. ➀ Inversion + Edit-

ing captures the global structure of the input image but
loses detailed content. ➁ TPB provides task-specific visual
guidance but lacks spatial content constraints due to its fo-
cus on advanced features only. ➂ TPB, using inverted ini-
tial noise, excels in structured scenes (e.g., large buildings)
but tends to deepen colors and create random content for
smaller objects. ➃ SCB maintains content details, but with-
out task-specific visual guidance, it struggles to effectively
remove degradations (e.g., snow or haze). ➄ TPB, when
combined with reconstruction-based SCB, preserves image
content through reconstruction while relying solely on TPB
to address degradation. However, as SCB reintroduces all
image features in each diffusion iteration, including original
degradations (e.g., haze in row-2 of Fig. 6), it inadvertently
compromises the desired outcomes. Finally, incorporating
the task-specific priors from both TPB and SCB in our Task-
Plugin enables high-fidelity low-level task processing.

We also confirm the placement of SPB within the pre-
trained SD model on desnowing task and show the results
in Table 4. Obviously, we can observe that for both the en-
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Methods \ FID ↓ Desnowing Dehazing
➀ Inversion + Editing 48.54 35.05
➁ TPB 36.02 37.73
➂ TPB + Inversion 34.87 33.05
➃ SCB 34.71 36.16
➄ TPB + SCB (Reconstruction) 34.50 35.94

TPB + SCB (Ours) 34.30 34.68

Table 3. Ablation studies of variant Task-Plugin designs on two
tasks: desnowing, dehazing. Note that although some variants
have much lower FID scores, they tend to generate random content
(refer to ➀-➂ of Fig. 6). In contrast, our final model guarantees
both content fidelity and robust metric performances.

Metrics
Encoder Decoder

E-1 E-2 E-3 E-4 D-4 D-3 D-2 D-1
FID ↓ 34.33 34.46 36.58 37.41 37.71 34.59 34.20 34.30
KID ↓ 5.23 5.52 7.18 7.84 7.57 5.55 5.20 5.20
Param.(MB) 14.88 48.77 182.31 48.77 14.88

Table 4. Ablation studies on the placement of SCB within the
pre-trained SD’s Encoder/Decoder stages on desnowing. ‘E/D-i’
represents the i-th stage, with higher numbers indicating deeper
layers. We modify the feature dimension in SCB to suit various
stages of the pre-trained SD model, resulting in varied parameters.

coder and decoder of the pre-trained SD [54], the fidelity
diminishes and performance progressively decreases from
the shallower to the deeper stages (e.g., stages 1 to 4). Thus,
we inject the spatial features into the final stage of the de-
coder, balancing performance and parameters. Notably, the
parameters of Task-Plugin module is only 1.67% of the SD.
Plugin-Selector. As shown in Table 5, we first evalu-
ate the accuracy of Plugin-Selector in both single-task and
multi-task scenarios (row-1 and -2), and observe consis-
tently high accuracy. In addition, in a significantly exten-
sive test with 120,000 samples (denoted as Multi-task*), it
achieves an mAP accuracy of 0.936, demonstrating its ef-
fectiveness. Further, in a robustness test (denoted as Single
+ Non.) combining task-specific and task-irrelevant texts, it
still achieves a notable zero-toleration accuracy of 0.779.

We also conduct an ablation study on the Plugin-Selector
to evaluate the significance of each component, with results
detailed in Table 6. ➀ We remove the visual and textual pro-
jection heads separately. ➁ We assess the impact of vary-
ing the number of negative samples for contrastive training.
The results first reveal that both visual and textual projec-
tion heads are crucial. Omitting the visual head results in
training collapse and NaN output, while removing the tex-
tual head lowers the ZTA metric by 15.4%. It also shows
that increasing the number of negative samples (e.g., from
N = 1 to 15) consistently enhances selection accuracy.
Diverse Applications. Fig. 7 demonstrates the versatility
of Diff-Plugin. Row-1 exemplifies complex, low-level task

The default batch size is 8, implying 7 neg. samples and 1 pos. sample.

Tasks ZTA ↑ CP ↑ OP ↑ OR ↑ CF1 ↑ OF1 ↑ mAP ↑
Single-task 0.998 - 0.998 - - 0.998 0.998
Multi-task 0.979 0.988 0.988 0.927 0.956 0.956 0.933
Multi-task* 0.969 0.983 0.983 0.936 0.960 0.959 0.936
Single + Non. 0.779 0.814 0.808 0.941 0.872 0.870 0.775

Table 5. Quantitative evaluation of the proposed Plugin-Selector.
Asterisks (*) denotes more sample combinations. A dash (-) indi-
cates metric not applicable. ‘Single + Non’ refers to random com-
binations of single-task text inputs with non-existing (i.e., plugin-
irrelevant) tasks, to test the Plugin-Selector’s robustness.

Single + Non.
Remove Number of Negative Samples

VP(·) TP(·) 1 3 5 7 15

ZTA ↑ NaN 0.625 0.559 0.648 0.725 0.779 0.817

Table 6. Ablation studies of Plugin-Selector. ‘NaN’ indicates non-
convergence of training, resulting in unavailable result.

Input Restoration Colorization Restor. + Colori.

Input Snow Generation Input Rain Generation

Figure 7. Diverse uses of Diff-Plugin: multi-task combination in
row-1 and reversed low-level tasks in row-2.

execution via sub-task integration (e.g., old photo restora-
tion can be roughly divided into restoration and coloriza-
tion.). Row-2 highlights its ability to invert low-level tasks,
enabling the generation of special effects like rain and snow.

5. Conclusion
In this paper, we presented Diff-Plugin, a novel framework
tailored for enhancing pre-trained diffusion models in han-
dling various low-level vision tasks that need stringent de-
tails preservation. Our Task-Plugin module, with its dual-
branch design, effectively incorporates task-specific priors
into the diffusion process to allow for high-fidelity details-
preserving visual results without retraining the base model
for each task. The Plugin-Selector further adds intuitive
user interaction through text inputs, enabling text-driven
low-level tasks and enhancing the framework’s practicality.
Extensive experiments across various vision tasks demon-
strate the superiority of our framework over existing meth-
ods, especially in real-world scenarios.

One limitation of our current Diff-Plugin framework is
the inability in local editing. For example, in Fig. 1, our
method may fail to only remove snow specifically from the
river but remain those in the sky. One possible solution for
this problem is to integrate LLMs [35, 97] to indicate the
region in which the task is performed.
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