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Abstract

Recently, temporal action detection (TAD) has seen sig-
nificant performance improvement with end-to-end train-
ing. However, due to the memory bottleneck, only mod-
els with limited scales and limited data volumes can afford
end-to-end training, which inevitably restricts TAD perfor-
mance. In this paper, we reduce the memory consumption
for end-to-end training, and manage to scale up the TAD
backbone to 1 billion parameters and the input video to
1,536 frames, leading to significant detection performance.
The key to our approach lies in our proposed temporal-
informative adapter (TIA), which is a novel lightweight
module that reduces training memory. Using TIA, we free
the humongous backbone from learning to adapt to the
TAD task by only updating the parameters in TIA. TIA also
leads to better TAD representation by temporally aggregat-
ing context from adjacent frames throughout the backbone.
We evaluate our model across four representative datasets.
Owing to our efficient design, we are able to train end-
to-end on VideoMAEv2-giant and achieve 75.4% mAP on
THUMOS14, being the first end-to-end model to outper-
form the best feature-based methods. Code is available at
https://github.com/sming256/AdaTAD.

1. Introduction
Temporal Action Detection (TAD) plays a vital role in the
understanding of long-form videos. Its objective is to pin-
point specific action instances within untrimmed videos,
identifying their start and end times, along with their re-
spective categories [15, 20, 44, 60, 62, 67, 71]. This task is
crucial for various applications, including highlight detec-
tion [36, 64], video-language grounding [38, 48], and ac-
tion spotting [3]. Though innovations in the detector design
have made profound progress in the past years [30, 66, 67],
recent research highlights two new trends: end-to-end train-
ing [10, 32, 69], and scaling up [56, 57].

End-to-end training in TAD refers to jointly training the
video encoder and action detector [10, 29, 62, 70]. Com-
pared to feature-based methods, end-to-end training offers
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Figure 1. AdaTAD enjoys the benefit of end-to-end training
and scaling up with efficient memory usage. The bubble size
represents the number of the model’s learnable parameters. Using
SlowFast-R50, AdaTAD achieves better performance compared to
E2E-TAD [33] with less memory. When further scaling up the
model to VideoMAEv2-gaint and data to 1536 frames, we achieve
an impressive avg. mAP of 75.4% on THUMOS14.

distinct advantages. First, it can effectively bridge the gap
commonly found between pretraining and fine-tuning, such
as data and task discrepancy. Second, video spatial augmen-
tations can be utilized in the end-to-end setting, leading to
further performance gain.

Scaling up refers to improving performance by increas-
ing the model size or the input data volume, and has demon-
strated its effectiveness in various domains [14, 19, 39, 53].
In TAD, offline methods have attempted to scale up the
feature extraction network to reach a higher performance.
A notable example includes the work by Wang et al.[56],
which reports a 10% increase in mean Average Precision
(mAP) by scaling from VideoMAE-S to VideoMAEv2-
giant, using ActionFormer [66] on THUMOS14 [25].

Intuitively, combining the strengths of end-to-end train-
ing and scaling up is expected to be most beneficial for im-
proving TAD performance. However, both strategies de-
mand substantial GPU memory, which restricts end-to-end
training to a small model [29, 62, 69], or a small input vol-
ume [10, 33]. As shown in Fig. 1, the performance of pre-
vious end-to-end methods still significantly lags behind the
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best results achieved by feature-based approaches. Addi-
tionally, current end-to-end methods in TAD use compu-
tationally intensive full fine-tuning, risking the issues of
catastrophic forgetting and overfitting during transfer learn-
ing [50, 63]. These issues can result in less competitive
performance, especially when the downstream datasets are
small, which is a common scenario in the TAD domain.

In this paper, we aim to overcome the above limitations
by harnessing the advantages of both scaling-up and end-to-
end training. To achieve this, we introduce adapter tuning
for temporal action detection (AdaTAD). Our method suc-
cessfully trains a TAD model in an end-to-end manner, uti-
lizing a backbone with 1 billion parameters and processing
input videos of 1,536 frames. As illustrated in Fig. 1, to the
best of our knowledge, this is the first end-to-end work that
outperforms the best feature-based TAD methods.

Specifically, we employ the following strategies to en-
hance the TAD performance while maintaining reasonable
memory consumption. First, we identify that the snip-
pet representation commonly used in feature-based meth-
ods is excessively redundant. In response, we have adopted
a more memory-efficient frame-representation scheme, es-
tablishing an effective end-to-end baseline for TAD. Sec-
ond, we adopt the parameter-efficient fine-tuning technique
to minimize memory usage and mitigate overfitting in trans-
fer learning. Notably, we introduce a novel Temporal-
Informative Adapter (TIA). This adapter is injected between
backbone layers and is the only learnable component in the
backbone during fine-tuning. Different from conventional
adapters [22], TIA is tailored for the TAD task and inte-
grates temporal depth-wise convolutions to aggregate in-
formative context from adjacent frames. Third, for addi-
tional memory efficiency, we propose a lighter variant of
our method. By positioning the TIAs alongside the origi-
nal backbone, rather than inside it, backpropagation can be
done through the TIAs only. This configuration can further
cut down on the need for intermediate activations within
the primary backbone, thereby allowing us to scale up the
model size and data size to unprecedented levels.

AdaTAD establishes a new state-of-the-art across multi-
ple TAD datasets. Notably, our method achieves an impres-
sive 75.4% mAP on THUMOS14, outperforming the pre-
vious feature-based best result of 71.5% by a large margin.
This achievement underscores the possible paradigm shift
in TAD, i.e., moving from traditional feature extraction plus
offline detectors to scaling up end-to-end TAD training. We
summarize our contribution as follows:

1. We introduce an efficient end-to-end framework for
TAD, scaling up the model size to 1 billion parameters
and the input data to 1,536 frames. We achieve a consis-
tent performance improvement with the scaling up, shed-
ding light on the importance of scaling for TAD.

2. We propose a novel temporal-informative adapter to re-

duce memory as well as aggregate the temporal context
for TAD. Different variants of these adapters are de-
signed to trade off between performance and memory
cost. To the best of our knowledge, we are the first to
introduce the adapter mechanism to TAD.

3. Our method achieves state-of-the-art performance across
four TAD datasets. Remarkably, this represents the
first end-to-end approach that outperforms the previous
feature-based methods by a large margin.

2. Related Work
Temporal Action Detection. Current methods for tempo-
ral action detection, also referred to as temporal action lo-
calization, can be broadly classified into three categories
based on their architectural design: one-stage, two-stage,
and DETR-based methods. One-stage methods directly lo-
calize actions from a multi-scale feature pyramid, such as
ActionFormer [66] and TriDet [47]. These methods inte-
grate action classification and temporal boundary regres-
sion in a single step [45, 61, 62]. Two-stage methods, in
contrast, involve an additional step of proposal feature ex-
traction [4, 30, 40, 58, 59, 68, 73]. For instance, VSGN [67]
employs boundary sampling to further refine proposals. Re-
cently, there is a growing interest in query-based meth-
ods [34, 46, 51], which deploy a set of learned queries to
interact with the feature maps and directly predict the ac-
tions’ temporal boundaries and categories.

In addition to the aforementioned categories, TAD can
also be divided into feature-based and end-to-end methods.
The former relies on pre-extracted RGB features and op-
tionally incorporates optical flow features. On the other
hand, end-to-end methods take raw video frames as input
and jointly optimize the video encoder and action detector
[31]. Due to computational constraints, AFSD [29] down-
samples the input to a resolution of 962. DaoTAD [55]
and E2E-TAD [33] provide evidence that high TAD perfor-
mance can be achieved by relying solely on the RGB modal-
ity with various data augmentations. Further innovations
came from SGP [11], TALLFormer [10], and ETAD [32],
all of which introduced strategies to backpropagate only
through parts of the data. Additionally, Re2TAL [69] and
Dr2Net[70] design reversible network architectures to re-
lease the memory occupied by intermediate activations. De-
spite these advancements, all above methods follow the full
fine-tuning paradigm, and none has yet surpassed the best
results achieved by feature-based approaches.
Scaling Law in Deep Learning. Scaling up model and
data has been a prevalent strategy across both computer vi-
sion and natural language processing fields to achieve su-
perior performance. The GPT series [5, 39, 41, 42] has
consistently demonstrated that larger models pretrained on
extensive datasets yield significant gains in language under-
standing capabilities. Analogously, in the realms of image
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Figure 2. Comparative illustration of our proposed TAD framework versus popular and widely used alternatives. (a) represents the
typical offline method. (b) is the traditional end-to-end method using full fine-tuning. (c) Tailored for the TAD task, our AdaTAD uses a
lightweight temporal-informative adapter inside the backbone to achieve efficient transfer learning. (d) To further reduce memory usage
and scale up the model/data, AdaTAD† uses an alternative placement for adapters outside the backbone.

and video understanding, architectures such as ViT [14] and
MViT [16], have also witnessed the effectiveness of this
scaling strategy. Alabdulmohsin et al.[1] present a recipe
for estimating scaling law parameters reliably from learn-
ing curves in computer vision. To attain even greater per-
formance, several studies have also scaled up image reso-
lution [35] or video clip length [56]. In this paper, we suc-
cessfully apply this principle within the domain of temporal
action detection and achieve state-of-the-art results.

Efficient Transfer Learning. Transfer learning aims to
adapt a pretrained model to a new domain. In TAD, typi-
cally off-the-shelf action recognition models are employed
as the backbone, such as SlowFast [17]. Traditional transfer
learning adopts full fine-tuning, meaning that all parame-
ters of the pretrained model are updated. However, studies
by [43, 63] have noted that full fine-tuning may harm the
pre-learned knowledge, particularly when the downstream
dataset is small and less comprehensive. Moreover, as mod-
els increase in size, the computational and storage demands
of full fine-tuning proportionally increase.

In response to these challenges, several works have in-
vestigated parameter-efficient tuning (PEFT) strategies that
involve fine-tuning only a fraction of the network. For in-
stance, Adapter [22] inserts lightweight modules analogous
to feedforward networks in transformers, and only tunes
these elements. LoRA [23] employs low-rank matrices
in each transformer layer. Prefix-tuning [28] and prompt-
tuning [27] attach learnable prompt tokens at the input stage
or within each layer. In computer vision, many PEFT meth-
ods [6, 7, 24, 63] have also been explored across various
tasks to optimize transfer learning efficiency. Our work rep-
resents the first effort to examine the potential of the PEFT
mechanism in TAD.

Although PEFT effectively reduces the number of learn-
able parameters, data-intensive and computationally heavy

tasks like video understanding require more memory-
efficient techniques. To this end, several works try to exter-
nalize the trainable components from the backbone, elimi-
nating the need for backpropagation through the extensive
original model. For example, LST [49] introduces a supple-
mentary lightweight network that operates in parallel with
the main model. Similarly, E3VA [65] leverages intermedi-
ate features with adapters to enable efficient transfer learn-
ing while minimizing memory usage. Our work is inspired
by these methods yet with a streamlined and simple design.

3. Methodology
In this section, we introduce our AdaTAD step-by-step. We
first introduce notations and study the efficient video rep-
resentation to establish an end-to-end TAD baseline. Next,
we introduce a temporal-informative adapter designed for
efficient TAD. Finally, we propose an alternative placement
for adapters to further alleviate computational demands.

3.1. Notations

Temporal action detection can be formulated as follows:
given an untrimmed video X ∈ R3×H×W×T , where H and
W are the height and width of each frame, and T is the
frame number, its temporal action annotations can be de-
noted as Ψg = {φi=(ts, te, c)}Ni=1, where ts, te, c are the
start, end time and category of action instance φi, and N
is the number of ground truth actions. TAD aims to pre-
dict candidate proposal set Ψp =

{
φ̂i=(t̂s, t̂e, ĉ, s)

}M

i=1
to

cover Ψg , and s is the confidence score.

3.2. Frame-level representation

Our end-to-end TAD architecture comprises two main com-
ponents: feature extraction and action detection. Following
previous work [69], we select ActionFormer [66] as our ac-
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tion detection head due to its robust performance across var-
ious datasets without much hyperparameter tuning. Next,
we discuss two ways of encoding raw frames into represen-
tative features (feature extraction): snippet representation
and frame representation.

Snippet Representation. Snippet-based video repre-
sentations are popular choices in offline feature extraction.
The whole video is divided into several short snippets (or
namely clips). Each snippet has a short temporal length,
e.g., 16 frames, and different snippets can have overlapping
frames. Thus, the video can be conceptualized as T snip-
pets, denoted by X ∈ RT×3×16×H×W . Each snippet is
processed through the video backbone, and spatial-temporal
pooling is applied to extract one snippet feature. This pro-
cessing yields the feature representation F ∈ RT×C , where
C denotes the channel dimension of the pooled features.

Frame Representation. In contrast to snippet-based
representations, frame-based video representations consider
the entire video as a singular snippet or clip, represented as
X ∈ R1×3×T×H×W . Then, the whole frame sequence is
fed into the video backbone, and only spatial pooling is em-
ployed to extract features [10, 29, 69]. For attention-based
models such as VideoMAE [54], the video is chunked into
multiple shorter clips to avoid extensive temporal attention.

Although both representations have been employed in
previous studies, a fair comparison between them has not
yet been performed. To address this gap, we conduct a
comparative analysis of the two representations under the
same setting on THUMOS14, measuring their memory us-
age and detection mAP. The results in Table 1 indicate
that frame representation has comparable or even better
performance than snippet representation, yet with much
smaller memory consumption. When the feature extraction
backbones are frozen, frame representation yields superior
results to snippet representation for both VideoMAE [53]
and SlowFast [17] backbones. Only in the end-to-end set-

Table 1. Snippet representation vs frame representation. We
use the end-to-end version of ActionFormer with two representa-
tions for comparison. The snippet input is 768×3×16×160×160,
and the frame input is 1×3×768×160×160. ∗ means activation
checkpointing is utilized to avoid overflowing GPU memory.

Setting Backbone Repr. Avg. mAP Mem (GB)

Frozen
VideoMAE-S

Frame 59.35 1.9
Snippet 57.68 13.2

SlowFast-R101
Frame 61.34 3.6

Snippet 60.24 17.2

End
to

End

VideoMAE-S
Frame 67.15 2.8∗

Snippet 68.46 24.6∗

SlowFast-R101
Frame 65.33 5.5∗

Snippet 66.72 51.6∗

ting can the snippet representation achieve 1% mAP advan-
tage over frame representations; however, it requires 8 times
more memory consumption. Taking into account both per-
formance and memory usage, frame-based representations
could be a better choice for end-to-end TAD development.

Therefore, we use frame representation as the default
baseline to encode videos in our experiments. Following
the previous TALLFormer work [10], we also incorporate
activation checkpointing [8] and mixed precision training
[37] to fully harness the potential of scaling.

3.3. Temporal-Informative Adapter

In Section 3.2, we have built a simple end-to-end baseline
using full fine-tuning. However, the baseline still suffers
from two aspects: 1. Increased computational cost. In Ta-
ble 1, we only use small video backbones like VideoMAE-
S. When scaling VideoMAE-S to larger models, the compu-
tational burden and memory cost will grow rapidly. 2. Infe-
rior transfer learning ability. More critically, the base-
line follows the tradition of full fine-tuning, which may
lead to inferior transfer learning. Pointed out by [50, 63],
full fine-tuning may result in overfitting or forgetting, espe-
cially for large pretrained models. If downstream datasets
are not sufficiently diverse, full fine-tuning can even de-
stroy the powerful features learned from large-scale pre-
training. Motivated by the above two aspects, we apply the
PEFT mechanism and propose to fine-tune a plug-and-play
module named Temporal-Informative Adapter (TIA) to
achieve efficient and effective transfer learning for TAD.

We first review the architecture of the standard adapter
proposed by [22]. As formulated in Equation 1, the stan-
dard adapter includes a down-projection fully connected
(FC) layer with parameter Wdown ∈ Rd× d

γ , where d
γ repre-

sents the intermediate dimension and satisfies γ > 1. Then,
an up-projection layer Wup ∈ R

d
γ ×d is employed to re-

store the channel dimension. Between these two FC lay-
ers, a non-linear activation function σ is inserted, such as
GELU [21]. Afterward, a residual connection is added to
the output of the projection layer. Note that x and x′ are the
input and output features with the same shape Rd×t×h×w.

x′ = W⊤
up · σ(W⊤

down · x) + x. (1)

Although the adapter has achieved great success in nat-
ural language processing and computer vision, the stan-
dard adapter only focuses on adapting channel informa-
tion, which neglects the temporal context vital for the TAD
task. To address this limitation, we introduce the temporal-
informative adapter, as depicted in Fig. 3(b).

The architecture of TIA follows the general bottleneck
design of the standard adapter, while we integrate the tem-
poral depth-wise convolution layers, as described in Equa-
tion 2. The temporal convolution with a kernel size of k is
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Figure 3. Architecture of (a) standard adapter and (b) our
temporal-informative adapter. We incorporate temporal depth-
wise convolution to aggregate context from adjacent frames.

designed to aggregate local informative context from adja-
cent frames and to enrich the representation of the current
time step. Practically, this is achieved through the applica-
tion of a 3D convolution with kernel size (k, 1, 1) and group
size d

γ for depth-wise processing. Additionally, an FC layer

with weight Wmid ∈ R
d
γ × d

γ is employed to facilitate infor-
mation exchange across channels. At last, a learnable scalar
α is introduced to adjust the amplitude of adapter’s output.

x̄ = σ(W⊤
down · x),

x̂ = W⊤
mid · DWConvk(x̄) + x̄,

x′ = α ·W⊤
up · x̂+ x.

(2)

As shown in Fig. 2(c), TIA is designed to be inserted
between different backbone layers, e.g. between each ViT
block of VideoMAE or each bottleneck block of SlowFast.
To ensure the newly added connection does not affect the
original network at the beginning of transfer learning, the
weight and bias of the adapter’s last projection layer Wup

are initialized to 0. The learnable coefficient α is initialized
to 1. The temporal kernel size k is set to 3, and the channel
downsampling ratio γ is set to 4 by default. Under these set-
tings, the additional trainable parameters coming from TIA
only account for 4.7% of the total parameters of the origi-
nal backbone. Since this backbone is frozen when TIA is
used, our proposed strategy constitutes a massive reduction
in trainable parameters as compared to full fine-tuning. Our
experiments show that TIA can achieve better performance
than full fine-tuning with less memory usage.

3.4. Alternative Placement for Adapter

Although the previously described PEFT approach can re-
duce tunable parameters and memory usage, the gradient
still needs to backpropagate over the entire backbone during
training. This requirement limits our ability to scale-up the
model size or input data size further. As highlighted in prior

works [49, 65], if we can stop the gradient backpropagation
within the original backbone, additional computational sav-
ings can be achieved.

Inspired by this insight, we propose a placement strat-
egy for adapters that position them externally to the back-
bone, rather than inserting them inside. As illustrated in
Fig. 2(d), we utilize the previously introduced TIA mod-
ule, but its output does not feed back into the middle of the
original backbone. It is directly added to the backbone’s
final layer. This configuration eliminates the need for back-
propagation through the original network, as gradients are
only tracked to the shallow lightweight adapter. To further
diminish computation, we observe that adapting only the
last half of backbone layers yields comparable performance
while reducing half of the adaptation cost.

To distinguish the different variants, we name the stan-
dard adaption design as AdaTAD, and the alternative place-
ment as AdaTAD†. The latter can be considered as a
lite version of the former. Compared to directly injecting
adapters into the backbone, AdaTAD† may lead to a slight
performance drop. However, it enables us to leverage richer
models and more data, which should effectively counter this
possible drop.

4. Experiments
4.1. Datasets and Metrics

We choose ActivityNet-1.3 [20], THUMOS14 [25], and
Epic-Kitchens 100 [13] to evaluate our proposed approach.
ActivityNet-1.3 and THUMOS14 are web-collected third-
person untrimmed videos, consisting of 19,994 and 413
videos, respectively. EPIC-Kitchens 100 is collected from
700 egocentric videos. Since the action categories of EPIC-
Kitchens 100 are more domain-specific and different from
common pretraining data, achieving higher performance on
this dataset is more challenging. Moreover, we also evaluate
our method on the Ego4D-MQ [18] dataset, and the results
can be found in the appendix.

Following common practice, we report the mean Av-
erage Precision (mAP) at certain IoU thresholds and av-
erage mAP as the evaluation metrics. On ActivityNet-
1.3, the IoU thresholds are chosen from 0.5 to 0.95 with
10 steps. On THUMOS14, the threshold is chosen from
{0.3,0.4,0.5,0.6,0.7}. On EPIC-Kitchens 100, the threshold
is set to {0.1,0.2,0.3,0.4,0.5}.

4.2. Implementation Details

We implement our method with PyTorch 2.0 and MMAc-
tion2 [12] with 4 A100 GPUs. By default, mixed-precision
training and activation checkpointing are adopted to save
memory. We use ActionFormer [66] as our detection head,
and keep the hyper-parameters unchanged on each dataset.
The learning rate for the adapter in the backbone is grid-
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Table 2. Results on ActivityNet-1.3 and THUMOS14, measured by mAP (%) at different tIoU thresholds. E2E refers to end-to-end
training, and Mem refers to memory usage (GB) per video. On ActivityNet-1.3, our prediction is combined with CUHK [72] classification
results. Specifically, ∗ means we employ stronger video-level classification results used in InternVideo [57] for a fair comparison. We
report our best results in bold, and the previous best results in underline, which was achieved by the feature-based method. The last row is
achieved when only the last half of backbone layers are adapted; otherwise, full-layer adaptation will lead to out-of-memory on A100-80G.

Method Backbone E2E Flow Mem ActivityNet-1.3 THUMOS14
0.5 0.75 0.95 Avg. 0.3 0.4 0.5 0.6 0.7 Avg.

BMN [30] TSN ✗ ✓ - 50.07 34.78 8.29 33.85 56.0 47.4 38.8 29.7 20.5 38.5
TadTR [34] I3D ✗ ✓ - 49.10 32.60 8.50 32.30 62.4 57.4 49.2 37.8 26.3 46.6
ActionFormer [66] SlowFast-R50 ✗ ✗ - 54.26 37.04 8.13 36.02 78.7 73.3 65.2 54.6 39.7 62.3
ActionFormer [66] I3D ✗ ✓ - 53.50 36.20 8.20 35.60 82.1 77.8 71.0 59.4 43.9 66.8
ASL [45] I3D ✗ ✓ - 54.10 67.40 8.00 36.20 83.1 79.0 71.7 59.7 45.8 67.9
TriDet [47] I3D ✗ ✓ - 54.70 38.00 8.40 36.80 83.6 80.1 72.9 62.4 47.4 69.3
VideoMAEv2 [56] VideoMAEv2-g ✗ ✗ - - - - - - - - - - 69.6
InternVideo [57] VideoMAE-H+UniformerV2 ✗ ✗ - - - - 39.00∗ - - - - - 71.5

AFSD [29] I3D ✓ ✓ 12 52.40 35.30 6.50 34.40 67.3 62.4 55.5 43.7 31.1 52.0
E2E-TAD [33] SlowFast-R50 ✓ ✗ 12 50.47 35.99 10.33 35.10 69.4 64.3 56.0 46.4 34.9 54.2
BasicTAD [62] SlowOnly-R50 ✓ ✗ 12 51.20 33.41 7.57 33.12 75.5 70.8 63.5 50.9 37.4 59.6
TALLFormer [10] VideoSwin-B ✓ ✗ 29 54.10 36.20 7.90 35.60 76.0 - 63.2 - 34.5 59.2
Re2TAL [69] Re2VideoSwin-T ✓ ✗ 24 54.75 37.81 9.03 36.80 77.0 71.5 62.4 49.7 36.3 59.4
AdaTAD SlowFast-R50 ✓ ✗ 4.3 55.28 38.11 8.87 37.11 81.0 76.2 69.4 59.0 44.5 66.0
AdaTAD VideoMAE-S ✓ ✗ 2.5 56.15 38.99 9.07 37.85 84.5 80.2 71.6 60.9 46.9 68.8
AdaTAD VideoMAE-B ✓ ✗ 4.9 56.77 39.35 9.71 38.39 87.0 82.4 75.3 63.8 49.2 71.5
AdaTAD VideoMAE-L ✓ ✗ 11.0 57.69 40.56 10.13 39.22 87.7 84.1 76.7 66.4 52.4 73.5
AdaTAD VideoMAE-H ✓ ✗ 19.2 58.04 40.55 9.75 39.37 88.9 85.3 78.6 66.9 52.5 74.4
AdaTAD VideoMAEv2-g ✓ ✗ 29.9 58.45 41.16 10.45 39.79 89.5 85.8 78.9 67.3 52.6 74.8
AdaTAD† (1536×2242) VideoMAEv2-g ✓ ✗ 43.6 60.82 42.69 9.84 41.15∗ 89.6 85.9 79.4 67.6 53.8 75.4
AdaTAD (1536×2242) VideoMAEv2-g ✓ ✗ 50.6 61.72 43.35 10.85 41.93∗ 89.7 86.7 80.9 71.0 56.1 76.9

searched from 5e-4 to 5e-5, and other parameters inside
the backbone are frozen. On ActivityNet-1.3, we resize the
video into a fixed length of 768 frames. On THUMOS14,
we randomly truncate a window with 768 frames with a
temporal stride of 4. On EPIC-Kitchens 100, we randomly
truncate a window with 6144 frames with a temporal stride
of 2. After the video encoder, the feature is resized to fixed
lengths of 192, 768, and 768, respectively, for the three
datasets. Frame resolution is set to 1602 by default. In all
experiments, we report the training memory usage. More
implementation details can be found in the appendix.

4.3. Comparison with SoTA Methods

Table 2 compares our AdaTAD with other state-of-the-
art (SoTA) methods on ActivityNet-1.3 and THUMOS14
datasets. Initially, we use SlowFast-R50 as the backbone.
For comparison, we also extract corresponding offline fea-
tures, utilizing the snippet representation where each snip-
pet comprises 32 frames with 2242 resolution. We ob-
serve that end-to-end training enhances performance from
62.3% to 66.0% on THUMOS14. Notably, this architec-
ture has also been used in E2E-TAD [33]. However, our
method consumes less memory while achieving superior
performance. This apple-to-apple comparison underscores
the benefits of adapter tuning and the scaling-up principle.

Table 3. Results on EPIC-Kitchens 100 validation set. For com-
parison, the feature-based methods use the same SlowFast-R50.

Method E2E 0.1 0.2 0.3 0.4 0.5 Avg.

Verb Task
BMN [30] ✗ 10.8 8.8 8.4 7.1 5.6 8.4
G-TAD [60] ✗ 12.1 11.0 9.4 8.1 6.5 9.4
ActionFormer [66] ✗ 26.6 25.4 24.2 22.3 19.1 23.5
ASL [45] ✗ 27.9 - 25.5 - 19.8 24.6
TriDet [47] ✗ 28.6 27.4 26.1 24.2 20.8 25.4
AdaTAD (SlowFast-R50) ✓ 26.5 25.7 23.9 21.7 17.6 23.1
ActionFormer (VideoMAE-L) ✗ 32.7 31.6 29.1 26.7 23.6 28.7
AdaTAD (VideoMAE-L) ✓ 33.1 32.2 30.4 27.5 23.1 29.3
Noun Task
BMN [30] ✗ 10.3 8.3 6.2 4.5 3.4 6.5
G-TAD [60] ✗ 11.0 10.0 8.6 7.0 5.4 8.4
ActionFormer [66] ✗ 25.2 24.1 22.7 20.5 17.0 21.9
ASL [45] ✗ 26.0 - 23.4 - 17.7 22.6
TriDet [47] ✗ 27.4 26.3 24.6 22.2 18.3 23.8
AdaTAD (SlowFast-R50) ✓ 24.5 23.6 22.3 20.0 16.5 21.4
ActionFormer (VideoMAE-L) ✗ 31.3 29.7 27.2 25.3 21.3 26.9
AdaTAD (VideoMAE-L) ✓ 32.4 31.6 30.1 27.4 24.6 29.3

Furthermore, when adopting the VideoMAE [53] fam-
ily as our backbone and progressively scaling up the model
size, the performance of AdaTAD consistently improves.
Using the largest model, i.e., VideoMAEv2-giant with 1.01
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Table 4. Compared to full fine-tuning, our adapter tuning can
achieve better performance with less memory. Param. is the
number of tunable parameters in the backbone. ∗ means out of
memory on A100-80GB, and we report the estimated number.

Model Setting E2E Param. Mem. mAP

VideoMAE-S

Feature ✗ 0 - 57.6
Snippet Full FT ✓ 22M 24.6G 68.4
Frame Full FT ✓ 22M 2.8G 67.1
AdaTAD ✓ 1M 2.5G 68.8

VideoMAE-B

Feature ✗ 0 - 64.7
Snippet Full FT ✓ 86M 87.4G∗ -
Frame Full FT ✓ 86M 5.6G 70.1
AdaTAD ✓ 4M 4.9G 71.5

VideoMAE-L

Feature ✗ 0 - 66.5
Snippet Full FT ✓ 304M 193G∗ -
Frame Full FT ✓ 304M 13.1G 73.0
AdaTAD ✓ 14M 11.0G 73.5

billion parameters, and larger input data, i.e., 1536 frames
with 2242 resolution, we attain an impressive 41.9% mAP
on ActivityNet-1.3 and 76.9% mAP on THUMOS14. It is
noteworthy that the previous SoTA was achieved by Video-
MAEv2 [56] and InternVideo [57], which utilize the same
detector head as ours but with offline snippet features. Our
method surpasses these in detection performance by a large
margin, marking the first instance where an end-to-end TAD
method can outperform SoTA feature-based results.

We also present our results on EPIC-Kitchens 100 in
Table 3. Since videos in this dataset have a longer dura-
tion, all previous methods rely solely on pre-extracted fea-
tures [47, 52, 66]. Our approach is the first to adopt end-
to-end training on this dataset. For fair comparison, we
first utilize the same backbone as used in previous meth-
ods, i.e., SlowFast-R50 pretrained on EPIC, and we achieve
comparable performance to ActionFormer [66]. Moreover,
when we scale up the backbone to VideoMAE-L (it is
also trained on EPIC-Kitchens 100 classification task), we
achieve SoTA performance of 29.3%.

4.4. Ablation and Analysis

In this section, we present a series of analyses to evaluate
our proposed method and affirm the benefits of scaling up
in TAD. Unless otherwise stated, our experiments utilize a
standard input of 768 frames per video on THUMOS14.
The advantage of adapter tuning. In Table 4, we com-
pare conventional full fine-tuning with our proposed design.
It is evident that end-to-end approaches significantly out-
perform pre-extracted features. Moreover, with full fine-
tuning, the snippet representation slightly advances over
frame representation but incurs tremendous memory costs,
which aligns with our analysis in Section 3.2. However,
AdaTAD uses less memory and still achieves better perfor-
mance than conventional full fine-tuning. This also veri-

Table 5. When scaling up the input data, AdaTAD’s perfor-
mance consistently increases. ∗ means snippet representation is
used in offline feature extraction, and each snippet has 16 frames.

Setting Model Resolution Frames Mem. mAP

Feature VideoMAEv2-g 2242 768x16∗ - 69.6

AdaTAD VideoMAE-S

1602 768 2.5G 68.8
1602 1536 3.8G 69.7
1602 3072 6.5G 70.6

2242 768 3.8G 70.7
2242 1536 6.4G 71.0
2242 3072 11.6G 71.5

Table 6. AdaTAD† can further push the boundaries of scaling
up. OOM means out of memory on A100-80GB.

Setting Model Resolution Frame Mem. mAP

AdaTAD
VideoMAE-L 1602 768 11.0G 73.5
VideoMAEv2-g 1602 768 29.9G 74.8
VideoMAEv2-g 2242 1536 OOM -

AdaTAD†
VideoMAEv2-g 1602 768 22.8G 73.7
VideoMAEv2-g 2242 768 30.0G 74.6
VideoMAEv2-g 2242 1536 43.6G 75.4

fies the limitations of full fine-tuning, as discussed in Sec-
tion 3.3. Specifically, our method enhances VideoMAE-S
backbone with an 11.2% gain using only 1M trainable pa-
rameters. Additionally, Table 4 also demonstrates that scal-
ing up the model size of the video backbone is an effective
way to improve TAD performance.
The advantage of scaling up the data. In addition to
model scaling, Table 5 verifies the effectiveness of data scal-
ing, which involves two aspects: frame number and frame
resolution. Firstly, given the same video duration, increas-
ing the frame number from 768 to 3072 can raise the mAP
from 68.8% to 70.6%. In the meantime, the memory us-
age is nearly three times larger. Secondly, increasing the
frame resolution from 1602 to 2242 also improves the mAP.
In the end, by only scaling up the data, we elevate the mAP
from 68.8% to 71.5%, already surpassing the current SoTA
feature-based approach with a giant backbone model [57].

Moreover, increasing the frame resolution from 1602 to
2242 or increasing the frame number from 768 to 1536
results in the same memory usage of 3.8G. However, the
former achieves 70.7% mAP while the latter only reaches
69.7%. This suggests that frame resolution may be priori-
tized under the same memory budget, for the TAD task.
The advantage of AdaTAD†. Given the effectiveness of
scaling up the model or data, we further explore combin-
ing these approaches. In Table 6, using 768 frames while
scaling up the model to VideoMAEv2-giant results in mem-
ory usage escalating to 29.9G. In such a scenario, further
increasing the data could easily lead to memory overflow,
even with the A100-80GB GPU. This indicates that adapta-
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tion tuning reached its limit under this extreme case. There-
fore, to utilize both the largest models with larger data si-
multaneously, AdaTAD† shows its advantage.

Concretely, when switching from AdaTAD to AdaTAD†,
the memory usage of the VideoMAEv2-giant model is re-
duced from 29.9G to 22.8G. Although a slight performance
drop is observed, its reduced memory footprint enables scal-
ing up data from 768 frames to as much as 1536 frames with
a high resolution of 2242. This scalability helps mitigate the
performance drop and achieves a higher mAP of 75.4%.
The ablation of the adapter design. Detailed in Table 7,
we compare different adapter architectural designs. The
baseline, i.e., offline snippet feature, achieves 64.7% mAP.
End-to-end learning in all designs yields at least a 5% im-
provement. Our AdaTAD achieves 71.5% in the end. Com-
pared to standard adapter [22], ours consumes similar mem-
ory but achieves higher mAP. This verifies that local tempo-
ral context is vital for the TAD task. In contrast to full fine-
tuning (FT), we tune only 4M parameters using less mem-
ory. In our design, we find that removing the residual con-
nection of the depth-wise convolution drops performance by
0.7%, and training becomes unstable. We also implement
an adaptation design proposed in LongLoRA [9], which ef-
ficiently computes long-range attention and shows decent
performance but requires more parameters and memory.

Table 7. Ablation of different adapter architectural designs.
VideoMAE-B is used to conduct the following experiments.

Setting E2E Param. Mem. mAP gains

Snippet Feature ✗ 0 - 64.7

+ Full FT ✓ 86M 5.6G 70.1 + 5.1
+ LongLoRA [9] ✓ 28M 6.2G 71.1 + 6.1
+ Standard Adapter [22] ✓ 3.6M 4.8G 70.2 + 5.2
+ AdaTAD (w/o residual ) ✓ 4.0M 4.9G 70.8 + 5.8
+ AdaTAD ✓ 4.0M 4.9G 71.5 + 6.5

The necessity of end-to-end training for TAD. As previ-
ously discussed, end-to-end training can address discrep-
ancies between the pretraining and fine-tuning stages in
terms of training data and learning tasks. To corroborate
this, we employ models pretrained on different datasets
for the EPIC-Kitchens TAD task in Table 8. Kinetics-400
(K400) [26] represents commonly collected third-person
web data and exhibits a large domain gap compared to
EPIC-Kitchens 100. Using K400 for pretraining, we ob-
serve that end-to-end TAD training allows for +5.56 gain.
Conversely, using a model already finetuned on EPIC-
Kitchens still yields a +2.32 improvement. Unlike K400
pretraining, since this model has already adapted to the data
discrepancy, we can infer that this gain leverages differ-
ences between the classification task in pretraining and the
detection task in fine-tuning. Such improvements further
underscore the significance of end-to-end training in TAD.

Table 8. End-to-end TAD can alleviate the discrepancies be-
tween pretraining and finetuning. VideoMAE-L with different
pretrained weights are used on the EPIC-Kitchens 100 Noun task.

Pretrain Dataset E2E 0.1 0.3 0.5 mAP gain

K400 [26] ✗ 18.69 16.35 11.52 15.77
K400 [26] ✓ 24.33 22.14 16.87 21.33 + 5.56

K400 [26] + EPIC [13] ✗ 31.32 27.25 21.33 26.98
K400 [26] + EPIC [13] ✓ 32.41 30.13 24.59 29.30 + 2.32

4.5. Error Analyses

We also conduct false positive analysis at tIoU=0.5 in Fig. 4.
Compared to feature-based training, learning from raw
frames produces more helpful positive detections. More im-
portantly, the percentage of wrong label error is reduced af-
ter end-to-end training, suggesting its unique advantage in
classifying accurate action labels.
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Figure 4. False Positive Profiling on THUMOS14 using [2]. We
use VideoMAEv2-giant as the backbone, and compare end-to-end
training with pre-extracted feature-based training.

5. Conclusions
This work introduces a memory-efficient and parameter-
efficient end-to-end method named AdaTAD. Our key in-
novation lies in the proposed temporal-informative adapter,
which is tailored for TAD with low computation costs. Fur-
thermore, we design an alternative placement for adapters to
minimize memory usage. By demonstrating the feasibility
and effectiveness of scaling up end-to-end TAD, our work
achieves new SoTA performance across multiple datasets.
Particularly, this is the first instance of an end-to-end TAD
method that surpasses the current best feature-based mod-
els. In fact, AdaTAD achieves a groundbreaking 75.4%
mAP on THUMOS14. We believe our work underscores
the possible paradigm shift in TAD, advocating a move
away from the traditional methodology of separate feature
extraction and offline detection towards a more integrated
approach of scaling up end-to-end TAD training.
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