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Abstract

Implicit Neural Representation (INR), which utilizes a
neural network to map coordinate inputs to corresponding
attributes, is causing a revolution in the field of signal pro-
cessing. However, current INR techniques suffer from a re-
stricted capability to tune their supported frequency set, re-
sulting in imperfect performance when representing com-
plex signals with multiple frequencies. We have identified
that this frequency-related problem can be greatly allevi-
ated by introducing variable-periodic activation functions,
for which we propose FINER. By initializing the bias of the
neural network within different ranges, sub-functions with
various frequencies in the variable-periodic function are
selected for activation. Consequently, the supported fre-
quency set of FINER can be flexibly tuned, leading to im-
proved performance in signal representation. We demon-
strate the capabilities of FINER in the contexts of 2D image
fitting, 3D signed distance field representation, and 5D neu-
ral radiance fields optimization, and we show that it outper-
forms existing INRs.

1. Introduction
The way a signal is represented is the foundation of all

the following problems and determines the paradigm for

solving them. Traditional representations, such as the

image matrices, point cloud or volumes [35], focus on

recording the elements individually and have offered sig-

nificant contributions in history. However, this representa-

tion is increasingly inadequate for addressing the numer-

ous inverse problems arising in modern times, such as

neural rendering [35], inverse imaging [39] and simula-

tions [14]. On the contrary, the implicit neural representa-

tion (INR) [32], which characterizes a signal by preserving

*The work was supported in part by the National Natural Science Foun-

dation of China (Grants No. 62025108, 12171237).

() ()

SIREN sin FINER sin + 1

(a) Selected activation functions for INR when

(b) Performance comparisons on 2D image representation

= =

Figure 1. Flexible spectral-bias tuning in implicit neural rep-
resentation (FINER). We observe that the supported frequency

set in classical INRs is limited due to the underutilization of acti-

vation functions’ definition domain, i.e., they mainly employ the

central region near the origin point. To overcome this limitation,

we propose a novel variable-periodic activation function for INR.

This innovation allows for tuning the supported frequency set by

adjusting the initialization range of the bias vector in the neu-

ral network. (a) visualizes the selected narrow activation func-

tions in classical periodic activation sin(x) alongside our proposed

variable-periodic one sin((|x| + 1)x) with different bias settings.

(b) plots the training curves of SIREN and FINER, demonstrating

the impact of different initializations applied to the bias vector �b
(see Sec. 5.1.1 for more details).

the mapping function from the coordinates to corresponding

attributes using neural networks, is gaining increasing atten-

tion thanks to the advantages of querying attributes continu-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2713



ously and incorporating the differentiable physical process

seamlessly. As a result, INR has found widespread appli-

cation in solving domain-specific inverse problems [8, 14],

particularly in cases where large-scale paired datasets are

unavailable, and only measurements and forward physical

process are provided.

However, existing INR techniques suffer the well-known

spectral-bias [26, 40], i.e., the low-frequency components

of the signal are more easily learned. To address this bias,

the positional encoding [23, 34] which aims at embedding

multiple orthogonal Fourier or Wavelet bases [6] into the

subsequent network is proposed. However, a significant

challenge arises from the fact that the frequency distribu-

tion of a signal to be inversely solved is often unknown.

This can potentially lead to a mismatch between the pre-

defined bases’ frequency set and the characteristics of the

signal itself, resulting in an imperfect representation [38].

Apart from the pre-defined frequency set, there is a grow-

ing focus within the research community on automatic fre-

quency tuning, achieved through the use of periodic [32]

or non-periodic activation [28, 30] functions. Nevertheless,

the supported frequency set is still limited and the represen-

tational accuracy could be further improved.

Such a problem is closely related to the underutilization

of the used activation functions. While activation func-

tions have an infinite domain, practical applications typi-

cally make use of only the regions centered around the ori-

gin. By ‘interspersing’ narrow activation functions with dif-

ferent frequencies along the full definition domain and then

selecting the ideal one by controlling the range of input val-

ues, the supported frequency set could be significantly ex-

panded, resulting in improved expressive power of current

INRs. Following this idea, we propose the FINER, where

variable-periodic functions are applied to activate the neu-

rons within the INR.

Different from previous explorations [28, 30, 32] which

focus on optimizing the weight matrix for manipulating

frequency candidates with better matching degree, FINER

opens a novel way to achieve frequency tuning by mod-

ulating the bias vector, or in other words, the phase of

the variable-periodic activation functions. We demonstrate

that both the shift-invariance and eigenvalues distribution

of FINER’s neural tangent kernel (NTK) can be enhanced

(see Figs 1, 4) by increasing the standard deviation during

bias initialization, thus the spectral bias could be flexibly

tuned and the expressive power are significantly improved.

To verify the performance, extensive experiments are con-

ducted on 2D image fitting, 3D signed distance field repre-

sentation and 5D neural radiance field optimization. Specif-

ically, the main contributions of the work include,

1. We introduce a novel implicit neural representation with

flexible spectral-bias tuning for representing and opti-

mizing signals.

2. We propose a novel initialization scheme and prove its

effectiveness and efficiency from both the perspectives

of geometry and neural tangent kernel.

3. We substantiate that FINER surpasses prior INRs ac-

tivated with other functions for 2D image fitting, 3D

signed distance field representation and 5D neural radi-

ance field optimization.

2. Related Work
2.1. Implicit Neural Representation

INRs [32, 34] serve as the foundational building blocks

for neural scene representations. These representations

are designed to learn continuous functions using a multi-

layer perception (MLP) that maps coordinates to visual sig-

nals, such as images [5, 19, 38], videos [3, 15], and 3D

scenes [23, 36]. Neural Radiance Fields or NeRF [23], a

notable breakthrough in this domain, learns a 5D INR to re-

construct the radiance fields (density and view-dependent

color) of a scene. With the widespread application of

NeRF and its variants [2, 24] on realistic view synthesis,

INRs have rapidly expanded into various fields of vision

and signal processing, such as cross-model media represen-

tation/compression [7, 33], neural camera representations

[10, 11], microscopy imaging [20, 41] and partial differen-

tial equations solver [14, 27]. Despite the interest and suc-

cess of these implicit representations, current approaches

often suffer from the well-known spectral-bias problem. As

a result, the INRs may struggle to capture high-fidelity de-

tails of complex signals, leading to suboptimal performance

in fitting functions and ineffectiveness in various applica-

tions.

2.2. Spectral-bias Problem

The issue of spectral-bias in deep learning [26] refers to

the innate propensity of these models to selectively learn

specific patterns or features from input data. In the case

of INR-based methods, this problem manifests as a pref-

erence for learning low-frequency components of a sig-

nal more readily than high-frequency components. To ad-

dress the spectral-bias problem, several innovative strate-

gies have been proposed for INR-based methods. In partic-

ular, spatial encoding is applied to the input data, such as

frequency or polynomial decomposition [25, 31, 34], high-

pass filtering [6, 37], to emphasize high-frequency compo-

nents before feeding into the model. [34] use the Fourier

features mapped from spatial coordinates as the input of

MLPs to improve the performance of INRs in adequately

expressing high-frequency information of signals. Addi-

tionally, various architectural modifications have been in-

tegrated into INRs, including multi-scale or pyramid repre-

sentations [19, 29, 42], which can aid in capturing both low-

frequency and high-frequency components of a scene. [19]
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implement a multi-scale network architecture with a band-

limited Fourier spectrum to minimize artifacts during the

downsampling or upsampling process. However, the fre-

quency distribution of a signal requiring inverse solving is

often unknown, making it difficult to design an appropriate

representation or model for the signal without prior knowl-

edge of its frequency content.

In addition to the positional encoding with pre-defined

frequency bases, there has been a growing interest in the re-

search community for automatic frequency tuning through

the use of nonlinear activation functions [4, 28, 30, 32]. [32]

propose the Sinusoidal Representation Network (SIREN),

a method designed to represent complex signals and func-

tions using periodic activation functions, especially sine

functions. SIREN has demonstrated its effectiveness in

representing intricate details and high-frequency compo-

nents when compared to traditional activation functions like

ReLU or sigmoid. However, it is important to note that

SIREN may necessitate careful initialization and hyperpa-

rameter tuning to achieve optimal performance. The peri-

odic nature of sine functions can lead to oscillations and

slower convergence, posing challenges in the training pro-

cess. Furthermore, the size of the embedding space is lim-

ited, as the frequency distribution bias remains constant for

different inputs, making it difficult to represent the diver-

sity of frequency distributions. As a result, it is crucial to

develop an adaptive periodic function for activating nonlin-

earity and complex frequency distribution.

3. FINER: Flexible spectral-bias tuning in Im-
plicit NEural Representation

This section first provides an overview of SIREN, where the

capacity-convergence gap is summarized. Then the FINER

is proposed in detail.

3.1. SIREN and the Capacity-Convergence Gap

Pipeline of SIREN. Given a signal sequence {�xi, �yi}Ni=1,

where �xi and �yi respectively represent the coordinate and

the corresponding attributes of the i-th element, N is the

number of elements in the signal, SIREN focuses on pursu-

ing a neural network f(�x; θ) to characterize them as accu-

rate as possible and could be formulated as follows:

�z 0 = �x

�z l = sin(ω0(W
l�z l−1 +�b l)), l = 1, 2, ..., L− 1,

f(�x; θ) = WL�z L−1 +�b L

(1)

where �z l denotes the output of layer l, θ = {W l,�b l | l =
1, 2, ..., L− 1} refers to the network parameters to be opti-

mized, L is the number of layers, ω0 is an empirical param-

eter for controlling the frequency.

PS
N

R 
(d

B)

Figure 2. Comparisons of SIREN for fitting a 2K image. There is

a performance gap between the results of “Standard initialization

multiply ω0” and “Initialization with a larger range”.

Capacity-Convergence Gap. According to [40], the ca-

pacity of the SIREN is limited by the choice of ω0, i.e.,
the functions that could be represented by f(�x; θ) should be

able to be decomposed by a linear combination of certain

harmonics of ω0, i.e.,

f(�x; θ) ∈
⎧⎨
⎩

∑
ω′∈Fω0

cω′ sin(ω′�x+ φω′) | cω′ , φω′ ∈ Q

⎫⎬
⎭
(2)

where Q is the set of rational number, Fω0
is the supported

frequency set defined by the ω0. Because ω0 only plays the

role of scaling neurons, it could be removed by changing

the initialization range of network parameters {W l,�bl| l =
1, ..., L− 1}. As a result, it is unnecessary to introduce the

parameter ω0 in theory.

On the other hand, since the sin function is non-convex,

the network parameters should be initialized carefully to

guarantee the inputs of sin mainly fall into the range of

[−π, π] [32], otherwise SIREN will not converge well and

does not have a high accuracy for representing signals. For

example, W is often initialized from U(−√
6/n,

√
6/n), n

is the number of inputs for each neuron [32]. As a result,

network parameters {W l,�b l| l = 1, ..., L− 1} could not be

scaled unboundedly considering the convergence. In sum-

mary, there is a capacity-convergence gap in SIREN that,

Proposition 1 The function set that SIREN could be rep-
resented can be enlarged by increasing the initialization
range of network parameters, which violates the rule of
guaranteeing the convergence, resulting in a performance
gap between theory and practice.

A simple example: fitting a high-resolution image. Fig. 2

compares the performance of SIREN with different initial-

ization strategies. The blue line are the results follows the

standard form of SIREN, i.e., W ∼ U(−√
6/n,

√
6/n) and

an additional angular frequency ω0 is applied to multiply the

W�x+�b.
On the contrary, the green line refers to the performance

by removing the angular frequency ω0 in Eqn. 1 and ini-

tializing W ∼ U(−ω0

√
6/n, ω0

√
6/n). Although they are

equivalent in the mathematical form, there is a performance

gap in practice.
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3.2. Variable-periodic Activation Functions

To overcome the capacity-convergence gap, SIREN intro-

duces the parameter ω0 to enlarge the supported frequency

set. However, ω0 is often set manually which poses chal-

lenges for novices and requires additional tuning process

for inverse problems where the frequency distribution of the

signal to be solved is unknown. To address this problem, we

propose the FINER which introduces a variable-periodic ac-

tivation function sin((|x| + 1)x), and the Eqn. 1 could be

rewritten as,

�y l = W l�z l−1 +�b l

�z l = sin(ω0(|�y l|+ 1)�y l), l = 1, 2, ..., L− 1
. (3)

More utilization of activation function closes the
capacity-convergence gap. We notice that the periodic ac-

tivation function sin(x) has an infinite definition domain

while only the regions centered around the origin point are

used. This underutilization of definition domain is caused

by the periodic behavior of sin. As shown in Fig. 1(a), be-

cause sin(x) has a period 2π, the behavior after activation

will not be changed when shifting the used regions to other

areas, such as orange and purple boxes in Fig. 1(a) where
�b = 0 and 2π, respectively. As a result, it is unnecessary

to increase the utilization rate of the definition domain in

SIREN where only the central region [−2π, 2π] is used [32].

Different from the periodic function sin(x), FINER adopts

a variable-periodic function sin((|x| + 1)x). Because the

scale parameter |x| + 1 increases with the increase of in-

put variable, the frequency of the used activation function

will be changed when the used regions are shifted, i.e., dif-

ferent initialization of network parameters �b. As shown in

Fig. 1(a), sin((|x|+1)x) for�b = 2π has higher frequencies

than itself when �b = 0. Thus the capacity-convergence gap

could be closed by the proposed variable-periodic activation

function.

4. Flexible Spectral-bias Initialization

In this section, we will first give the initialization scheme of

FINER, then the behaviors of FINER’s supported frequency

set and training dynamics under different initialization are

analysed from geometrical and neural tangent kernel per-

spectives, respectively.

4.1. Initialization scheme

As demonstrated in the above section, the supported fre-

quency set of FINER could be manipulated by changing

the bias �b. However, due to the non-convex nature of the

variable-periodic activation function, there are many local

minimums in sin((|x|+ 1)x) and gradient-based optimiza-

tions (e.g., SGD or Adam) could not guarantee moving�b to

(a) = (b) =
+

+

Figure 3. Comparisons of used activation function sin((|x|+1)x)

under different bias �b. More sub-functions with high-frequency

are included when b is set with a larger value.

global optimum if �b is not initialized well. Traditional ini-

tialization strategies, which apply uniform or Gaussian sam-

pling in a narrow region centered at 0, makes the supported

frequency set of FINER be limited by the frequency of the

first cycle in variable-periodic function (i.e., the Fig. 3(a)),

resulting in a waste of other cycles (Fig. 3(b)) in variable-

periodic function which have difference frequencies.

To get rid of the limited supported frequency set using

traditional initialization methods, we derive a novel initial-

ization scheme for �b for tuning the supported frequency set

flexibly, meanwhile the initialization for W follows [32].

We propose to initialize �b following the uniform distribu-

tion U(−k, k) with a larger range k than the default one in

traditional methods,

�b ∼ U(−k, k), k > 0. (4)

4.2. Geometrical Perspective

Supposing the supported frequency set of SIREN and

FINER are Fω0
and Fω0,k, respectively. To analyse their

relationship, let us start from the simplest case.

k is close to the origin point. Because the initialization

for W follows [32], the term W�x has similar distribution

with the one in SIREN, that |W�x| ≤ π. As a result, the

term |(|W�x + �b| + 1)(W�x + �b)| drops into the area of

[−π2 − π, π2 + π]. As shown in Fig. 3(a), the activation

function sin((|W�x+�b|+1)(W�x+�b)) mainly spans two nar-

row sub-functions with different frequencies. For the points

dropped into the first sub-function (i.e., |W�x| ≤
√
4π+1−1

2 ,

the orange areas in Fig. 3(a)), the supported frequency set

F1
ω0,k

is slightly larger than Fω0
, and could be approxi-

mated as

F1
ω0,k ≈

{
2π√

4π + 1− 1
ω | ω ∈ Fω0

}
, (5)

where the term 2π√
4π+1−1

measures the frequency changes

from the standard sin function to the first function in

sin((|x|+ 1)x). Considering the fact that the range [−π, π]
of W�x is continuous, i.e., every value could be produced,

the Fω0 is also a continuous set, as a result,

Fω0
⊂ F1

ω0,k. (6)
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For the points dropped into the second sub-function

(i.e.,
√
4π+1−1

2 ≤ |W�x| ≤
√
12π+1−1

2 , the purple ar-

eas in Fig. 3(a)), the supported frequency set F2
ω0,k

differs

from F1
ω0,k

since the base frequency of the used activation

changes. Compared with the F1
ω0,k

in the first sub-function,

the F2
ω0,k

in the second one could be approximated as,

F2
ω0,k ≈

{ √
4π + 1− 1√

12π + 1−√
4π + 1

ω | ω ∈ F1
ω0,k

}
, (7)

where
√
4π+1−1√

12π+1−√
4π+1

characterizes the scale of frequency

changes from the first sub-function to the second one. As

a result, the supported frequency set Fω0,k for k is close to

the origin is,

Fω0,k = F1
ω0,k ∪ F2

ω0,k. (8)

k is far away from the origin point. For example, �b is

initialized as 10. Because the frequencies of each sub-

functions are further increased for �b = 10 (in Fig. 3(b),

the frequency is increased from the orange box to purple

box), the supported frequency set Fω0,k is increased a lot

compared with the one in Eqn. 8. In summary,

Proposition 2 The supported frequency set Fω0,k of
FINER increases with the increase of the initialization
range of �b, and the supported frequency set Fω0 of SIREN
is a subset of Fω0,k.

4.3. Neural Tangent Kernel Perspective

Neural tangent kernel (NTK) theory [12] views the training

of neural network as kernel regression, where the conver-

gence of the network on fitting signals could be derived by

analysing the diagonal property of the NTK or the distribu-

tion of NTK’s eigenvalues. Generally speaking, stronger di-

agonal property results in better shift-invariance and better

convergence, larger eigenvalues leads to faster convergence

for high-frequency components [1, 34].

Without loss of generality, we focus on a simple case,

i.e., the signal to be learned has 1D input and 1D output and

FINER has 1 hidden layer with n neurons, such a network

could be written as f(x; θ) =
∑n

k=1 ckσ(wkx+ bk), where

σ(x) = sin((|x|+1)x) is the activation function. According

to the definition, the NTK of FINER could be calculated as1,

K(xi, xj) = Eθ 〈∇θf(xi; θ),∇θf(xj ; θ)〉

=(xixj + 1)Eθ

n∑
k=1

c2k (2|gk(xi)|+ 1)(2|gk(xj)|+ 1)︸ ︷︷ ︸
Scale term

cos ((|gk(xi)|+ 1)gk(xi)) cos ((|gk(xj)|+ 1)gk(xj))︸ ︷︷ ︸
Sign term

where gk(xi) = wkxi + bk.
(9)

1Please refer the supplemental material for details of derivation.

(a) NTK ~ ( 1,1) (b) NTK ~ ( 5,5)

(c) NTK ~ ( 20,20) (d) Eigenvalues

Figure 4. Visualizations of NTKs and the corresponding eigen-

values in FINER. (a)-(c) visualize the NTKs when �b is initialized

following U(−1, 1), U(−5, 5) and U(−20, 20), respectively. (d)

plots the corresponding eigenvalues. Because the max eigenvalue

is much larger than the smallest one, all eigenvalues are processed

by a log function for visualization.

It is observed that, the scale term is approximately propor-

tional to the absolute of bias bk for all nodes of the kernel,

however the change rule of sign term for diagonal elements

differs significantly from non-diagonal elements. Specifi-

cally, the sign term is always a positive value for diagonal

elements while could be either positive or negative for non-

diagonal elements.

As a result, the diagonal elements K(xi, xi) are in-

creased with the increase of |b|, while the non-diagonal el-

ements K(xi, xj) can be very small, appearing as a diag-

onal enhanced kernel. According to [12, 34], NTK with a

stronger diagonal property provides better shift-invariance,

i.e., the coordinates in the training set are little coupled with

each other during the training process, thus the signal could

be better learned.

Figs. 4(a)-(c) visualize the NTKs of FINER for learning

a 1D signal with 1024 coordinates. It is observed that the

diagonal property of NTK is enhanced with the increase of

initialization range of b, verifying the analysis mentioned

above. Fig. 4(d) visualizes the changes of eigenvalue distri-

bution, it is observed that the number of eigenvalues which

are larger than 100 is significantly increased when larger

initialization range is applied to bias. As a result, FINER

provides high capacity for learning high-frequency compo-

nents.

5. Experiments
To verify the behaviors and performance of FINER, three

experiments are conducted, including the 2D image fitting,

3D signed distance field representation and the 5D neural
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GT SIREN ~ ( , ) FINER ~ ( , ) FINER ~ ( 5,5) FINER ~ ( 10,10) FINER ~ ( 20,20)
Figure 5. Comparisons of SIREN and FINER with different initializations applied to bias vector �b. For each image, the right-top box

visualizes its Fourier spectrum.

FINERSIREN

Figure 6. Comparisons of the first layer outputs between SIREN

and FINER. For each method, the first row demonstrates 4 neurons

with smallest frequencies of the first layer, and the second row

refers to 4 neurons with largest frequencies.

radiance fields optimization, where the ω0 is equal to the

one in SIREN and k is set as 1√
2

, 1 and 1√
3

, respectively.

5.1. 2D Image Fitting

For the task of 2D image representation, the INR aims at

learning a 2D function f : R
2 → R

3 with 2D pixel lo-

cation input and 3D RGB color output, the loss function is

designed as the L2 distance between the network output and

the ground truth. To evaluate the performance of INR, the

widely used natural dataset [34] which contains 16 images

with 512× 512 resolution is adopted.

5.1.1 FINER behaviors under different initializations

To compare the performance of FINER under different ini-

tializations better, the pre-set parameter ω0 is set as 1 here.

According to the analysis in Sec. 4, the supported frequency

set of FINER increases with the initialization range of �b.
Different curves in Fig. 1(b) reflect this behavior. Fig. 5 vi-

sualizes the learned images after 5000 training epochs. In

the 3rd column, because the initialization range of�b follows

the standard method [32], FINER has a small supported fre-

quency set, as a result, high-frequency components in the

image are lost. With the increase of the initialization range,

Table 1. Quantitative comparisons on image fitting. We color code

each cell as best , second best , and third best .

Metrics PEMLP Gauss SIREN WIRE FINER

PSNR ↑ 29.60 35.39 38.52 31.31 40.76

SSIM ↑ 0.8484 0.9455 0.9724 0.8738 0.9790

LPIPS ↓ 1.21e-1 1.91e-2 5.52e-3 6.45e-2 2.56e-3

the supported frequency set of FINER increases and more

high-frequency details are provided from the 3rd column to

the last one in Fig. 5. Additionally, as analysed by Eqn. 6,

the supported frequency set of SIREN is a subset of the

one in FINER, thus FINER provides more clear details than

SIREN when same initializations are applied, i.e., the 2nd

column vs the 3rd column in Fig. 5.

According to [40], the first layer of SIREN or FINER

plays the role of frequency encoding. We visualize 8 neu-

rons outputs from total 256 neurons in first layer from

SIREN and FINER for comparison, where 4 neurons in the

1st row have the smallest frequencies and the last 4 neu-

rons have the largest frequencies (see Fig. 6). It is observed

that different neurons in SIREN encode similar frequencies,

resulting in a waste of neurons. On the contrary, different

neurons in FINER focus on different frequencies, therefore,

better representational ability is achieved in FINER.

5.1.2 Comparisons with the State-of-the-arts

We compare FINER with four classical INRs, i.e., the

Fourier feature embedding (PEMLP) [23], INR with pe-

riodic activation functions (SIREN) [32], Gaussian activa-

tion functions (Gauss) [28] and wavelet activation functions

(WIRE) [30]. For a fair comparison, all INRs are set with

a same network configuration (3 hidden layers with 256

neurons per layer) and trained with the same Adam opti-

mizer [16] and L2 loss function between the network out-

2718



GT FINER  WIRE PEMLPSIREN Gauss

42.27dB 39.78dB 31.32dB 30.90dB 35.11dB

Figure 7. Qualitative comparisons between the FINER and baselines on fitting images.

GT FINER SIREN WIRE PEMLP Gauss
Figure 8. Qualitative comparisons on representing the signed distance field of Armadillo.

put and the ground truth, other parameters are set accord-

ing to the open-source codes released by authors. Tab. 1

compares FINER with others quantitatively. FINER out-

performs other method in all three metrics. Fig. 7 demon-

strates the details of different methods. Among all 5 meth-

ods, FINER provides more clear results such as the texts

‘67’ and ‘SBS’ in the cyan and green boxes, respectively.

On the contrary, these texts are over-smoothed in the results

of SIREN and PEMLP. Although WIRE and Gauss could

also provide clear texts here, unwelcome serious artefacts

also appear in the smooth backgrounds, such as white and

red billboards.

5.2. 3D Shape Representation

Signed distance field (SDF) is one of the most commonly

used implicit surface representations in the computer graph-

ics [13]. As the name implies, SDF characterizes the dis-

tance from the given 3D point to the closest surface using

a continuous function, and the sign of the distance is used

to denote whether the point is inside (negative) or outside

(positive) the surface. Recently, representing the SDF using

INR is drawing more and more attention [18]. Given a 3D

point �x, INR learns a 3D mapping function f : R3 → R
1

to output the signed distance field values s. We apply the

FINER to this task and compare to four classical INRs

mentioned above. In the experiment, 5 shapes from pub-

lic dataset [17, 24] are used for evaluation. For a fair com-

Table 2. Quantitative comparisons on representing signed distance

field.

Methods Armadillo Dragon Lucy Thai Statue BeardedMan Avg.

C
h
am

fe
r
↓ PEMLP 3.559e-6 2.081e-6 2.224e-6 5.284e-6 4.058e-6 3.441e-6

Gauss 1.778e-5 7.427e-6 5.494e-6 1.618e-5 1.620e-5 1.262e-5
SIREN 3.505e-6 2.759e-6 2.493e-6 4.481e-6 3.952e-6 3.438e-6
WIRE 3.346e-6 2.101e-6 2.238e-6 3.979e-6 4.597e-6 3.252e-6
FINER 3.348e-6 2.364e-6 2.119e-6 3.580e-6 4.023e-6 3.087e-6

IO
U
↑

PEMLP 9.870e-1 9.750e-1 9.760e-1 9.526e-1 9.939e-1 9.769e-1
Gauss 9.768e-1 9.679e-1 9.601e-1 9.481e-1 9.932e-1 9.692e-1
SIREN 9.895e-1 9.666e-1 9.721e-1 9.514e-1 9.948e-1 9.749e-1
WIRE 9.893e-1 9.723e-1 9.707e-1 9.565e-1 9.911e-1 9.760e-1
FINER 9.899e-1 9.725e-1 9.756e-1 9.625e-1 9.943e-1 9.790e-1

parison, all methods use a same network configuration, i.e.,
3 layers with 256 neurons per layer, additionally, the same

coarse-to-fine loss function is used according to [19]. In the

training stage, 10k points are randomly sampled in each it-

eration and is repeated 200k iterations. In the testing stage,

a 5123 grid is extracted for evaluation and visualization.

Tab. 2 provides quantitative comparisons between the

proposed FINER and four baselines. Because FINER pro-

vides more freedom for tuning the supported frequency set,

best results are achieved among all methods. Fig. 8 com-

pares the reconstructed details visually on the Armadillo

rendered using Marching Cubes [21]. Two representative

regions, i.e., the low-frequency smooth pectoral and the

high-frequency rough shank, are zoomed-in for compar-

isons. SIREN represents the smooth pectoral well but loses
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Figure 9. Qualitative comparisons between the FINER and baselines on NeRF.

the details of the shank, WIRE overcomes the limitation of

SIREN for representing high-frequency shank at the cost

of rough pectoral. For PEMLP, because the pre-defined fre-

quency may not match the frequency distribution in the SDF

of Armadillo, both the smooth pectoral and rough shank

are not well represented. Gauss could not provide stable

representation for all shapes (Tab. 2) and there are obvi-

ous artefacts in the reconstructed SDF such as the noise

outside the shape in Fig. 8. Compared with these base-

lines, FINER could provide consistent performance for re-

constructing both the low- and high-frequency components.

5.3. Neural Radiance Fields Optimization

Novel view synthesis, which aims at rendering realistic im-

ages at uncaptured poses from a set of images captured at

different positions, is one of the key problems in both com-

munities of computer vision and graphics. Recently, rep-

resenting scenes as neural radiance fields (NeRF) [23] us-

ing INR dominates this task due to the advantages of real-

ism and scalability for embedding different rendering pro-

cesses [35]. Given a 3D point �x and a 2D observed direc-

tion �d, NeRF focuses on learning a 5D mapping function

f : R5 → R
4 with 5D (�x, �d) to its 3D color c and 1D opac-

ity σ. For any pixel p in novel view images, its ray function

in 3D space is firstly calculated using the in/extrinsic ma-

trices of camera [9], then N points are sampled along the

ray within a predefined depth range, furthermore the direc-

tion and position coordinates of these N points are fed into

the INR for querying the radiance value (c, σ), finally the

color C(p) of the pixel is calculated using the differentiable

volume rendering technique [22, 23],

C(p) =

N∑
i=1

Ti (1− exp (−σiδi)) ci

Ti = exp

⎛
⎝−

i−1∑
j=1

σjδj

⎞
⎠ ,

(10)

where δi represents the distance between the neighbors in

the sampled N points.

We evaluate the FINER for this task and compare to four

classical methods mentioned above. To better verify the ad-

vantages of FINER for representing high-frequency compo-

Table 3. Quantitative comparisons on novel view synthesis.

Methods Chair Drums Ficus Hotdog Lego Materials Mic Ship

P
S

N
R
↑ PEMLP 31.32 20.18 24.49 30.59 25.90 25.16 26.38 21.46

Gauss 32.68 23.16 26.10 32.17 28.29 26.19 33.59 22.28
SIREN 33.31 24.89 27.26 32.85 29.60 27.13 33.28 22.25
WIRE 29.31 22.22 25.91 30.11 25.76 25.05 32.35 21.15
FINER 33.90 24.90 28.70 33.05 30.04 27.05 33.96 22.47

S
S

IM
↑

PEMLP 0.960 0.814 0.914 0.945 0.904 0.909 0.960 0.754
Gauss 0.967 0.883 0.933 0.956 0.932 0.916 0.980 0.782
SIREN 0.971 0.912 0.947 0.960 0.948 0.932 0.979 0.788
WIRE 0.938 0.858 0.931 0.938 0.886 0.898 0.978 0.734
FINER 0.973 0.911 0.958 0.959 0.951 0.928 0.981 0.792

L
P

IP
S
↓ PEMLP 0.026 0.185 0.056 0.037 0.070 0.050 0.057 0.190

Gauss 0.019 0.082 0.055 0.032 0.040 0.037 0.013 0.136
SIREN 0.017 0.051 0.033 0.032 0.030 0.028 0.014 0.116
WIRE 0.035 0.106 0.045 0.048 0.075 0.058 0.014 0.172
FINER 0.015 0.052 0.024 0.033 0.025 0.032 0.010 0.108

nents, we follow the experimental setting of WIRE that only

25 images are used for training instead of commonly used

100 images, additionally the same ω0 is set in both FINER

and SIREN. Tab. 3 and Fig. 9 provide quantitative and qual-

itative comparisons of FINER against different methods on

the Blender dataset [23]. FINER achieves the best per-

formance in almost all 8 scenes. Fig. 9 demonstrates the

advantage of FINER for representing high-frequency com-

ponents visually. For example, the holes (red boxes) and

the highlights (green boxes) in the frame of the truck are

over-smoothed in the reconstructions of all baselines, only

FINER could provide clear details here.

6. Conclusion
We have proposed and verified the FINER which uses

variable-periodic functions for activating the INR. We have

pointed out that current INRs suffer from a limited sup-

ported frequency set due to the under-utilization of the defi-

nition domain of activation functions. The proposed FINER

overcomes this problem by introducing variable-periodic

activation function and initializing the bias vector to differ-

ent ranges, where different sub-functions with different fre-

quencies along the definition domain will be selected for ac-

tivation. As a result, the supported frequency set of FINER

could be flexibly tuned, and the capacity of INR could be

significantly enlarged. We have demonstrated the advan-

tages of FINER over other INRs in image fitting, 3D shape

representation and neural rendering.
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