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Abstract

Extensions of Neural Radiance Fields (NeRFs) to model
dynamic scenes have enabled their near photo-realistic,
free-viewpoint rendering. Although these methods have
shown some potential in creating immersive experiences,
two drawbacks limit their ubiquity: (i) a significant re-
duction in reconstruction quality when the computing bud-
get is limited, and (ii) a lack of semantic understanding
of the underlying scenes. To address these issues, we in-
troduce Gear-NeRF, which leverages semantic information
from powerful image segmentation models. Our approach
presents a principled way for learning a spatio-temporal
(4D) semantic embedding, based on which we introduce
the concept of gears to allow for stratified modeling of dy-
namic regions of the scene based on the extent of their mo-
tion. Such differentiation allows us to adjust the spatio-
temporal sampling resolution for each region in propor-
tion to its motion scale, achieving more photo-realistic dy-
namic novel view synthesis. At the same time, almost for
free, our approach enables free-viewpoint tracking of ob-
jects of interest – a functionality not yet achieved by ex-
isting NeRF-based methods. Empirical studies validate
the effectiveness of our method, where we achieve state-
of-the-art rendering and tracking performance on multi-
ple challenging datasets. The project page is available at:
https://merl.com/research/highlights/gear-nerf.

1. Introduction

Reconstructing 3D scenes has a broad range of applications,
including Virtual Reality/Augmented Reality (VR/AR), 3D
animation, game production, and film creation which allow
users to observe scenes from any desired viewpoint. While
it is crucial to reconstruct static scenes, towards which sig-
nificant progress has been made, it is even more crucial to
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Figure 1. (a) Our method takes RGB videos captured from a cam-
era array as input. (b) Trained Gear-NeRF achieves photo-realistic
real-time free-viewpoint rendering of a dynamic scene. (c) With
users giving a single click at any time and from any viewpoint, our
method can perform free-viewpoint tracking of the target object.

reconstruct dynamic scenes, as the world around us is char-
acterized by a constant state of flux, with many objects in it
- in a state of motion.

Recent advances in novel view synthesis, such as Neu-
ral Radiance Fields (NeRFs) [56] have inspired numerous
studies to extend them to dynamic 3D scenes. Existing
approaches either employ a deformation field to map neu-
ral fields from a given time to a canonical space [22, 45,
60, 61, 65, 99], or directly model dynamic scenes as a 4D
space-time grid [1, 6, 26]. Though these methods offer im-
proved rendering quality by utilizing more accessible in-
puts compared to previous solutions [21, 42, 43, 77], they
still struggle to ensure rendering quality in low-resource set-
tings, requiring carefully engineered efforts. Further, most
dynamic radiance field approaches adopt a naive spatio-
temporal sampling strategy, without discerning the different
scales of motion across different regions in the scene.

We propose to fix this issue by leveraging a seman-
tic understanding of dynamic scenes. Intuitively, a recon-
struction system aware of the distinction between static
and dynamic regions in a scene can perform more focused

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19667



Free-viewpoint 
Rendering & Tracking

Volume
Rendering

Input Multi-view Videos Gear-NeRF Representation

Radience Field Optimization
& Gear Assignment Update (𝑥, 𝑦, 𝑧, 𝑡) (𝜎, 𝒄, 𝒔)

Click

Rendered Image & 
SAM Embedding

(𝜃, 𝜑)

Gear 2

Gear 1

Gear 4

Figure 2. Pipeline of Gear-NeRF: Gear-NeRF takes multi-view videos as input. After optimizing the serial 4D feature volumes (Sec-
tion 4.1), it maps space-time coordinates to a 4D semantic embedding (Section 4.2), in addition to the volume density and view-dependent
radiance color. Regions with larger motion are automatically assigned higher gear levels (Section 4.3) and as a result, receive higher-
resolution spatio-temporal sampling (Section 4.4). Furthermore, Gear-NeRF is capable of performing free-viewpoint tracking of a target
object with prompts as simple as a user click (Section 4.5).

sampling in the dynamic regions, which inherently require
more resources per unit volume than static regions, due to
their time-evolving nature. Accordingly, dynamic regions
can be further stratified according to their scale of mo-
tion. To this end, this paper presents Gear-NeRF, a frame-
work that leverages semantic embedding from powerful im-
age segmentation models [38] for stratified modeling of 4D
scenes. Gear-NeRF optimizes for a 4D semantic embed-
ding, based on which we introduce the concept of gear
to smartly determine the appropriate region-specific reso-
lution of spatio-temporal sampling in the NeRF. Regions
with larger motion scales are assigned higher gears, through
our gear determination scheme and we accordingly per-
form higher-resolution spatio-temporal sampling. Empiri-
cal studies reveal that this motion-aware sampling strategy
improves the quality of synthesized images, over competing
approaches.As a by-product of our semantically embedded
representation, we achieve free-viewpoint object tracking,
given user prompts. Figure 1 presents an overview of the
capabilities of our method.

Gear-NeRF makes two primary advancements: (i) en-
hanced dynamic novel view synthesis by resorting to
smarter spatio-temporal sampling, and (ii) the ability for
free-viewpoint tracking of objects of interest. The latter
is a capability not yet realized by existing NeRF methods
for dynamic scenes. We perform extensive experiments on
multiple datasets to validate the generalizability and robust-
ness of our method, which shows state-of-the-art perfor-
mances for both tasks across all datasets.

2. Related Work

Neural Radiance Fields: NeRF [56] is a recent break-
through among novel view synthesis methods that uses mul-
tilayer perceptrons (MLPs) to parameterize the appearance

and density for each point in 3D space, given any viewing
direction of the scene. Researchers have extended NeRF
along various dimensions [78], including improving ren-
dering quality [2–4, 12, 18, 31], handling challenging con-
ditions such as large scenes [55, 68, 75], view-dependent
appearances [30, 52, 80], and sparse inputs [34, 51, 59,
86, 87, 93]. NeRF-like neural representations have also
found applications in semantic segmentation [40, 50, 102]
and 3D content generation [9, 10, 49, 64]. Recent work
has shown that replacing the deep MLPs with a feature
voxel grid can significantly improve training and inference
speed [11, 25, 58, 74]. On the other hand, a more recent
approach to further improve visual quality, rendering time,
and performance entails representing the scene with 3D
Gaussians [36]. Our approach, while drawing upon many
of these approaches, deals with dynamic scenes which is
beyond the scope of these methods.
Neural Representations for Dynamic Scenes: NeRF-like
representations have recently been extended to model dy-
namic scenes in high fidelity [17, 28, 33, 39, 46–48, 53,
63, 66, 84, 89, 90, 97]. One straightforward approach
to do this is to directly condition the radiance field on
time [27, 44, 45, 88]. Alternatively, several methods model
a deformation field to map coordinates from different time
stamps to a common canonical space [22, 24, 60, 61, 65,
79, 98, 99]. Some recent approaches [6, 26, 71, 81] rep-
resent the scene using a 4D space-time grid, which is de-
composed into sets of planar representations for training
efficiency. Other techniques for improving rendering fi-
delity and frame rate include Fourier PlenOctrees [82], ray-
conditioned sample prediction networks [1], 4D space de-
composition (static/dynamic/newly appeared regions) [73],
and explicit voxel grids [24]. 3D Gaussians have also been
adapted to model dynamic scenes [54, 85, 95, 96]. While
these approaches paved the initial path for rendering dy-
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namic scenes, semantically aware modeling of the scene is
absent, a caveat that our proposed method seeks to address.
Segment Anything Model (SAM): SAM [38] is a pow-
erful promptable image segmentation model, which show-
cases remarkable zero-shot generalization abilities and can
produce semantically consistent masks, given a single fore-
ground point on the image. HQ-SAM [35] is an improve-
ment on SAM that enhances the quality of masks, espe-
cially on objects with intricate boundaries and structures.
Recent works [20, 92] have extended SAM to perform in-
teractive video object segmentation. These methods utilize
SAM for mask initialization or correction and then employ
state-of-the-art mask trackers [19, 94] for mask tracking and
prediction [14]. Recent methods have also leveraged SAM
for tracking multiple reference objects in a video [13, 101].
This work uses SAM to profile the scene into semantic re-
gions, which are then grouped based on motion scales.
3D Semantic Understanding: Existing methods for
3D visual understanding [15, 32, 76, 91] mainly focus
on closed set segmentation of point clouds or voxels.
NeRF’s ability to integrate information across multiple
views has led to its applications in 3D semantic segmen-
tation [102], object segmentation [23, 50, 57], panoptic
segmentation [72], and interactive segmentation [29, 69].
Kobayashi et al. [40] explored the effectiveness of embed-
ding pixel-aligned features [7, 41] into NeRFs for 3D ma-
nipulations. LERF [37] fuses CLIP embeddings [67] and
NeRFs to enable language-based localization in 3D NeRF
scenes. Recent work has enabled click/text-based 3D seg-
mentation by learning a 3D SAM embedding [16] or in-
verse rendering of SAM-generated masks [8]. We, on the
other hand, seek to utilize the synergy of dynamic NeRFs
and SAM segments to derive a semantic understanding of a
dynamic 3D scene for tracking objects of interest in novel
views – a first of its kind effort.

3. Preliminaries

Neural Radiance Fields (NeRFs): Vanilla NeRFs [56]
employ a multi-layer perceptron (MLP) with sinusoidal
positional encoding to map a 3D-spatial coordinate x =
(x, y, z) and a viewing direction d = (θ, ϕ) to a volume
density σ ∈ [0, 1] and an emitted RGB, c ∈ R3. Rendering
each image pixel involves casting a ray r(t) = o+ td from
the camera center o through the pixel along direction d. The
predicted color for the corresponding pixel is computed as:

Ĉ(r) =

N∑
i=1

Tiαici, (1)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
, αi = 1 − exp(−σiδi),

and δj = tj+1 − tj . A vanilla NeRF is trained by min-
imizing the mean squared error between the input images
and the predicted images, obtained by rendering the scene
from the viewpoints from which the input images have been

captured, with the training loss given by:

Lpho =
∑
r∈R
∥Ĉ(r)−C(r)∥22. (2)

whereR is the set of all rays projected from the input image.
Planar-Factorized 4D Volumes: A recent emerging trend
of handling dynamics using radiance field representations is
to directly adapt them to be conditioned on a frame index t
(denoting time) in addition to x and d. This can be accom-
plished by learning a mapping from (x,d, t) to (σ, c) using
planar-factorized 4D volumes [1, 6, 26, 71]. These meth-
ods attempt to learn a 4D feature vector for every (x, t), by
projecting it to a set of 2D-planes. Embeddings of these
projections on these planes can then be integrated to obtain
the embedding for the 4D point. This can be mathematically
represented as follows:

f(x, t) = B1(h1(x, y)⊙ k1(z, t))

+B2(h2(x, z)⊙ k2(y, t))

+B3(h3(y, z)⊙ k3(x, t)). (3)

where hi(·, ·) and ki(·, ·) are functions (evaluated by bilin-
ear interpolation on regularly spaced 2D feature grids) em-
bedding coordinate tuples to features of dimension M , “⊙”
denotes an element-wise product, and Bi(·) denotes a lin-
ear transform which maps the products to feature vectors.
Subsequently, a tiny MLP can map the feature vector f(·, ·)
to the volume density, σ, and the view-dependent emitted
color, c, given the viewing direction d.

4. Proposed Method
Given a set of W input videos, V = {V1, V2, · · · , VW } of a
dynamic scene, with calibrated camera poses, our approach
represents the scene using a series of 4D feature volumes
(Section 4.1) along with 4D semantic embeddings (Sec-
tion 4.2).

Analogous to multiple gears in motor vehicles for op-
timizing engine performance, Gear-NeRF stratifies this se-
mantically embedded scene representation into Ngear lev-
els, based on the motion scales. Each of these levels is
called a gear. Through our training scheme, regions with
larger motion are assigned higher gear levels (Section 4.3)
and as a result, are more densely sampled (Section 4.4) for
improved dynamic novel view synthesis. Our 4D seman-
tic embedding also enables a new functionality, almost for
free – free-viewpoint tracking of target objects, given sim-
ple user prompts like clicks (Section 4.5). Figure 2 shows
the overall pipeline of Gear-NeRF.

4.1. Serial 4D Feature Volumes

Instead of using a unified 4D volume to represent a dynamic
scene [1, 6, 26, 71], our representation consists of a series
of feature volumes, each corresponding to a gear level, G.
Specifically, for any space-time coordinate (x, t), its feature
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vector corresponding to G is computed as follows:

fG(x, t) = B1(h1(x, y)⊙ kG
1 (z, t))

+B2(h2(x, z)⊙ kG
2 (y, t))

+B3(h3(y, z)⊙ kG
3 (x, t)). (4)

The vector-valued functions hj(·, ·) and linear transforms
Bj(·) are shared by all gears, while each gear has its
own spatio-temporal embedding kG

j (·, ·), in M -dimensional
space. Therefore, each gear describes regions of a certain
scale of motion while the purely spatial features can be
shared among all gears.

We obtain the gear level at any spatio-temporal coor-
dinate also from a planar-factorized 4D feature volume.
Specifically, the gear level at (x, t) is computed as:

g(x, t) = 1⊤(h′
1(x, y)⊙ k′

1(z, t))

+ 1⊤(h′
2(x, z)⊙ k′

2(y, t))

+ 1⊤(h′
3(y, z)⊙ k′

3(x, t)), (5)

where 1 is a vector of ones, h′
i(·, ·) and k′

i(·, ·) are M -
dimensional embedding functions. This however defines a
continuous feature volume. To map it to the gear level inte-
gers, we apply the following projection operation:

p(x, t) =


1, if g(x, t) < 1,

Ngear, if g(x, t) ≥ Ngear,

⌈g(x, t)⌉ , otherwise.
(6)

Based on this gear level volume, we define a 4D mask for a
region at gear level G as:

mG(x, t) =

{
1, if p(x, t) = G,
0, otherwise.

(7)

The final feature vector at (x, t) is computed as:

f(x, t) =

Ngear∑
G=1

mG(x, t)f
G(x, t). (8)

Subsequently, a tiny MLP, Fθ, maps these feature vectors
f(·, ·) as well as the viewing direction d to the volume den-
sity σ and radiance color c. This allows us to obtain a pho-
tometric rendering of the scene.

4.2. 4D Semantic Embedding

Gear-NeRF leverages the strong object priors of the
SAM [38] model to acquire a semantic understanding of the
scene, for improved photometric rendering (Section 4.3 and
Section 4.4) as well as free-viewpoint object tracking (Sec-
tion 4.5). Toward this end, we utilize the SAM encoder to
obtain 2D feature maps from the frames of each video. We
then optimize a 4D SAM embedding field by supervising it
with these 2D feature maps. In particular, the MLP above,
Fθ, is configured to output a 4D semantic embedding s for

Rendering Loss MapRendered Image Upshift Mask

1stGear Assignment Update

2nd Gear Assignment Update

3rd Gear Assignment Update

4th Gear Assignment Update

Figure 3. Illustration of Gear Assignment Update: For each
gear assignment update, we calculate the rendering loss map be-
tween the rendered RGB-SAM map and the ground truth and iden-
tify the centers of the patches with the maximum and minimum
losses, marked in red and green (second column). These points are
then fed into the SAM decoder as positive and negative prompts
to generate an upshift mask representing the areas that need to be
shifted to a higher gear (last column). After the first gear assign-
ment update, we see that the next candidate region for upshift is
situated where the horse is located, and so on. Upshift mask colors
imply the gear levels after the update (blue-2, green-3, red-4).

a given space-time coordinate in addition to the density, σ,
and color, c. To render 2D semantic feature maps in a given
view, we compute the semantic feature of a pixel in the fea-
ture map by tracing a ray through it and perform volume
rendering analogous to Equation 1, as follows:

Ŝ(r) =

N∑
i=1

Tiαisi. (9)

This SAM embedding is supervised by minimizing the
mean squared error between the prediction and the ground
truth features (S(r)) from the SAM encoder, as shown:

LSAM =
∑
r∈R
∥Ŝ(r)− S(r)∥22. (10)

4.3. Training Scheme with Gear Assignment

With gear initialization g(x, t) = 1,∀x, t, the (semantically
embedded) radiance field optimization and gear assignment
updating take place in an alternating fashion.
Gear Assignment Update: As illustrated in Figure 3, when
updating the gear assignment after a period of radiance field
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optimization, we find the regions rendered most poorly from
the rendering loss maps and increment their gears for denser
spatio-temporal sampling. The following steps lay out the
process for updating gear assignments to regions:
• We sample a number of viewpoints and time steps and

render 2D-images/SAM features for it. For every ren-
dered RGB-SAM map, we compute a rendering loss map.
Each pixel of the rendering loss map is computed as:
L(r) := Lpho(r) + λLSAM(r). See Figure 3 for exam-
ple loss maps.

• Next, we patchify each rendering loss map to find patches
with the top-k largest/smallest average loss. The cen-
ter coordinate of these patches serve as positive/negative
prompts for the next step. See Figure 3 for example posi-
tive (red) / negative (green) prompts.

• We then feed the ground truth RGB images together with
positive and negative prompts into the SAM decoder [38]
to estimate an upshift mask. These masks tend to cover
regions that have motions and are not satisfactorily ren-
dered with the current sampling resolution. We have mul-
tiple upshift masks at different viewpoints and time steps.

• For every pixel of an upshift mask, we trace a ray and
sample points along it and update the gear assignment by
pushing g(x, t) towards incremented values.
In particular, in the last step, for each pixel within an

upshift mask, a corresponding ray is traced that connects
it with the camera center o, along direction d. Next, a
set of points are sampled along this ray. The collection
of sampled points, that lie on the rays emanating from
within the masked region constitutes the set Supshift =

{(xupshift
i , tupshift

i )}Nupshift
i=1 , where Nupshift represents the total

count of points sampled from rays pertaining to the masked
region. We then follow a similar procedure to sample a set
of points pertaining to the unmasked region. We denote this
set as: Sstay = {(xstay

i , tstay
i )}Nstay

i=1 , with Nstay indicating the
total number of points sampled from rays that pertain to
the unmasked area. Next, for each sample point in each
of Supshift and Sstay, we query its current gear level p(x, t).
In order to assign new gear levels, we need to update the
gear assignment function g(·, ·), which proceeds with the
objective function:

Lupshift =
1

Nupshift

∑
(x,t)∈Supshift

∥g(x, t;Θ)− (p(x, t) + 1)∥22

+
λstay

Nstay

∑
(x,t)∈Sstay

∥g(x, t;Θ)− p(x, t)∥22,

(11)
where Θ denotes the set of optimizable parameters for
g(·, ·). The minimization of the first term encourages sam-
ple points within the masked region Supshift to have a gear
level equal to their current gear incremented by one, re-
sulting in an upshift of gear. Conversely, minimizing the
second term encourages the points in Sstay to maintain their
gear values, thereby encouraging the remaining regions to
keep their current gear levels and avoiding unwanted up-

shifts. We update Θ via a single step of gradient descent as
follows:

Θ← Θ− α∇ΘLupshift, (12)

where α is the learning rate. Since, g(·, ·) is essentially
derived from the embedding functions, h′

i(·, ·) and k′
i(·, ·)

for i ∈ {1, 2, 3}, the aforementioned optimization step
amounts to updating these embedding functions. Once up-
dated, we proceed with a fresh round of gear assignment
to increase the spatio-temporal sampling resolution for the
regions that end up at a higher gear level than before.
Radiance Field Optimization: With the updated gear as-
signment, we increase the resolution of spatio-temporal
sampling for the gear-shifted regions (Section 4.4) and then
resume optimizing the radiance field. We alternate between
the two processes: radiance field optimization (each time
for L epochs), and gear assignment updates until the aver-
age variance of each rendering loss map is below a predeter-
mined threshold. After this, we optimize the radiance field
for an additional L′ epochs without further gear assignment
updates.

4.4. Motion-aware Spatio-Temporal Sampling

In this subsection, we explain our motion-aware spatio-
temporal sampling strategy based on assigned gears, per-
mitting differential processing of regions at different gear
levels. By temporal sampling, we imply the choice of tem-
poral resolution for planar-factorized 4D feature volumes,
and by spatial sampling, we mean the strategy used to
choose sampling points along each ray for volume render-
ing.
Motion-aware Temporal Sampling: To handle the in-
creasing intensity of object motion, as reflected by their
growing gear levels, we increment the temporal resolution
for voxel grids. Specifically, kG

j in Equation 4 has increas-
ing resolution along the time axis, thereby empowering the
4D feature volumes to better model the dynamics along the
temporal axis. This ensures fast-moving objects can be
more faithfully modeled without unsightly blurring. The
temporal resolution for each gear’s feature volume is deter-
mined by linear interpolation between 1 (for G = 1) and the
total number of frames (for G = Ngear).
Motion-aware Spatial Sampling: While denser sampling
of points can improve reconstruction accuracy, increasing
the number of sampling points throughout the scene can
lead to prohibitive computational costs. Therefore, we pro-
pose a 3D point-splitting strategy as illustrated in Figure 4.
We begin by sampling a relatively small number, n, of sam-
ples along each ray, assuming it is at the lowest gear level.
If a sampled point belongs to a region with a higher gear, as
determined by p(x, t), we then sample more densely in that
region. For every sampled point in that region, we split it
into 2p(x,t)−1 points, equally spaced within the correspond-
ing ray segment (at that gear level).
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low-gear medium-gear high-gear low-gear

Figure 4. Motion-aware Spatial Sampling: We split each sam-
pled point into 2p(x,t) points, equally spaced within the corre-
sponding ray segment. The top row shows the vanilla uniformly
sampled points, while the bottom one shows the densely sampled
points after splitting using our strategy.

4.5. Free-Viewpoint Tracking with User Prompts

Our 4D SAM embedding enables another useful functional-
ity, almost for free – free-viewpoint object tracking, where
the user only needs to provide as few as one click to extract
the target object based on the 4D embedding. Next, we de-
scribe how, given a user-supplied point click at any arbitrary
viewpoint and time step, we obtain the corresponding object
mask at a novel viewpoint and time step.
Masks for Novel Viewpoints: The first step for this task
entails finding the 3D correspondence of the user click. We
trace a ray through the selected pixel, and by utilizing the
volume density, we determine the depth at which the ray
intersects with the first object surface it encounters. This
yields the 3D coordinates of the point of intersection. Sub-
sequently, the 3D coordinates of this intersection can be eas-
ily mapped into a 2D coordinate within any novel viewpoint
image, using the camera pose of the new viewpoint. Along-
side the rendered SAM feature map of the novel view, we
feed this coordinate into the SAM decoder to generate the
object mask for the novel view.
Masks for Novel Time Steps: For this task, we propagate
an object mask to its neighboring time step. Specifically,
with an object mask for a specific frame t, we calculate the
bounding box of this mask and use this bounding box as
a prompt to SAM for neighboring frames t′ = t + 1 or
t′ = t−1. By inputting this prompt along with the rendered
SAM feature map at t′ into the SAM decoder, we can obtain
the object mask for t′. Combining the above two processes,
we can start from a single click and get the object mask in
any viewpoint and time step.

5. Experiments

We assess the performance of our proposed Gear-NeRF
for dynamic novel view synthesis and free-viewpoint ob-
ject tracking across a range of challenging datasets, com-
paring it with state-of-the-art methods. Through ablation
studies, we provide empirical evidence of the effectiveness
of its fundamental components. We kindly refer the reader
to our supplementary material for additional experimental
details and results, including videos for free-viewpoint ren-
dering and tracking.

5.1. Experimental Setup

Implementation Details: We implement our method using
PyTorch [62] and conduct experiments on an NVIDIA RTX
4090 GPU with 24 GB RAM. We divide each input video
into chunks of 100 frames. For every chunk, we train a
model for approximately 2.5 hours. Our 4D feature volumes
yield embeddings with a dimension of M = 32. We set the
gear number Ngear to 4. We find patches with top-k = 3
largest/smallest average loss for gear assignment updates to
obtain prompts. The rendering loss map is computed with
λ = 0.01. For the optimization of radiance fields, L = 3
and L′ = 10. In our motion-aware spatial sampling, each
ray initially has n = 64 sampling points. We use an initial
learning rate of 0.02 for all the parameters. For Equation 12,
we use α = 0.02.
Datasets: (i) The Technicolor light field dataset [70]
includes diverse indoor environment videos captured by a
4×4 camera rig. We evaluate on 4 sequences (Train, The-
ater, Painter, Birthday) at the original 2048×1088 reso-
lution, holding out the same view as prior work [1] (the
second row and second column) for evaluation. (ii) The
Neural 3D Video dataset [44] includes indoor multi-view
video sequences captured by 20 cameras at a resolution of
2704×2028 pixels. We experiment on 6 sequences (Cut
Roasted Beef, Flame Steak, Coffee Martini, Cook Spinach,
Flame Salmon, Sear Steak), downsampling by a factor of 2
and holding out the central view (akin to prior work [1]) for
evaluation. (iii) The Google Immersive dataset[5] con-
tains light field videos of indoor and outdoor scenes cap-
tured by a time-synchronized 46-fisheye camera rig, with
a resolution of 2560×1920 pixels. We experiment with 9
sequences from it (Flames, Truck, Horse, Car, Welder, Ex-
hibit, Face Paint 1, Face Paint 2, Cave). We downsample
the video resolution by a factor of 2 and hold out the central
view (like prior work [1]) for evaluation. For our experi-
ments, we adopted the same resolution and held-out view
selection as prior work [1].
Evaluation Metrics: For the task of novel view synthesis
of dynamic scenes, we evaluate using the following stan-
dard metrics: (i) Peak Signal-to-Noise Ratio (PSNR), (ii)
Structural Similarity Index Measure (SSIM) [83] and (iii)
Learned Perceptual Image Patch Similarity (LPIPS) [100],
by comparing the reconstructed frames against ground truth
images. These metrics are computed on the held-out view
and averaged across all frames. For the free-viewpoint ob-
ject tracking task, we designate a specific viewpoint and
time step for the user to give prompting clicks. Subse-
quently, we assess the quality of the predicted object masks
at novel viewpoints. The quality of the object mask is
quantified in terms of the Mean Intersection over Union
(mIoU) and accuracy (Acc.), which are calculated against
the ground truth mask, manually annotated utilizing Adobe
Photoshop. Additionally, we present the same metrics com-
puted for novel time steps, denoted as t-mIoU and t-Acc.
Baselines: We run a comprehensive comparison of our
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Ground Truth HyperReel OursNeural 3D Video

Figure 5. Qualitative comparisons for novel view synthesis on the Technicolor dataset [70]: We qualitatively compare our approach
against HyperReel [1] and Neural 3D Video [44]. Our approach better recovers fine details like patterns on the toys or stripes on the shirt.

method against a range of recent NeRF-based baseline
methods: (i) ST-NeRF [99], (ii) HexPlane [6], (iii) Hyper-
Reel [1], and (iv) MixVoxels [81]. As the first method to
enable promptable free-viewpoint object tracking under the
NeRF setting, there is no established direct baseline for this
specific task. However, SA3D [8], a recent method for seg-
menting static scenes, is treated as a baseline for predicting
masks at novel viewpoints corresponding to the prompted
time step.

5.2. Results

Dynamic Novel View Synthesis: As shown in Figure 5,
Gear-NeRF produces high-quality novel view synthesis of
dynamic scenes, accurately modeling real-world scenes
with intricate motions and fine details. For example, pat-
terns on the toys or stripes on the shirt, are faithfully ren-
dered, resulting in more photo-realistic images compared
to all of the baselines. Table 1, presents quantitative com-
parisons of our method against the baselines. While Gear-
NeRF has longer training (Tr. Time) / inference times (FPS)
compared to some baselines, it almost always achieves the
best performance in terms of rendering quality.
Free-Viewpoint Tracking: In Figure 6, we present the
object masks obtained by our method based on the user
prompts provided at a specified viewpoint and time step.
Specifically, the first row displays masked objects at the
prompted viewpoint and time step. The second row shows
novel view masks at the prompted time step. The third row
shows novel view masks at novel time steps. We see that
masks obtained from Gear-NeRF show precise boundaries,

Table 1. Quantitative comparisons for dynamic novel view syn-
thesis: Our method outperforms all baselines across all datasets on
all metrics. We report means over all scenes for each dataset. Best
and second best results are highlighted.
Dataset Method PSNR (↑) SSIM (↑) LPIPS (↓) Tr. Time(↓) FPS(↑)

Technicolor [70]

ST-NeRF [99] 30.86 0.883 0.101 344 min 0.7
HyperReel [1] 31.04 0.887 0.092 97 min 7.7
MixVoxels [81] 28.99 0.842 0.103 14 min 18.9
Ours 32.21 0.919 0.058 148 min 7.9

Google Immersive [5]

HexPlane [6] 27.67 0.808 0.188 527 min 0.9
HyperReel [1] 28.32 0.862 0.145 117 min 7.4
MixVoxels [81] 27.14 0.835 0.209 19 min 16.8
Ours 28.74 0.876 0.122 189 min 7.0

Neural 3D Video [44]

ST-NeRF [99] 31.03 0.890 0.081 367 min 0.7
HyperReel [1] 31.12 0.928 0.065 129 min 6.1
MixVoxels [81] 30.69 0.944 0.139 15 min 16.3
Ours 31.80 0.936 0.058 204 min 6.8

compared to SA3D. Table 2 presents quantitative assess-
ment of the quality of the masks generated of our method
versus SA3D. Our method exceeds 90% across all met-
rics and datasets, demonstrating the effectiveness of our ap-
proach. Our gains over SA3D can be attributed to the fact
that SA3D, as a static scene segmentation method, does not
utilize information across all time frames, whereas our ap-
proach does. SA3D is incapable of predicting masks for
novel time steps, and as such, the corresponding entries are
marked as not applicable, a shortcoming which our method
does not have.

5.3. Evaluations

To verify the effectiveness of the design choices of Gear-
NeRF, we perform extensive ablation studies on the Truck
scene of the Google Immersive dataset [5].
Motion-aware Temporal Sampling: An intuitive strategy
for adjusting the temporal sampling is to directly modify
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Figure 6. Qualitative comparisons of free-viewpoint object tracking on Technicolor [70] and Neural 3D Video [44] datasets: Our
method can obtain desirable object masks, with clear edges, from prompting points provided by users at desired time steps and viewpoints.

Table 2. Quantitative comparisons for free-viewpoint track-
ing: t-mIoU and t-Acc are metrics used for evaluating novel view
masks at novel time steps, not applicable to SA3D. Reported met-
rics are averages over all scenes for each dataset.
Dataset Method mIoU (↑) Acc. (↑) t-mIoU (↑) t-Acc. (↑)

Technicolor [70] SA3D [8] 96.4 97.1 N/A N/A
Ours 97.4 97.6 92.1 93.3

Google Immersive [5] SA3D [8] 94.1 94.8 N/A N/A
Ours 94.3 95.0 91.5 92.8

Neural 3D Video [44] SA3D [8] 93.1 94.0 N/A N/A
Ours 93.4 94.3 90.6 92.3

the temporal resolution of the 4D feature volume and make
it uniform across all regions of the scene. In Table 3, we
demonstrate the performance of this naive temporal sam-
pling strategy using medium (25) or dense (100) temporal
resolutions on 100-frame input videos. The results show
that increasing the temporal resolution universally does not
necessarily yield better performance. In contrast, our pro-
posed method, which utilizes motion-aware temporal sam-
pling, achieves the best results. We surmise that this may
be attributed to the model distributing the volume’s capac-
ity sparsely across a large number of time steps, which is
not the case for our method.
Motion-aware Spatial Sampling: To validate the effec-
tiveness of our motion-aware spatial sampling strategy, we
compare it against other sampling strategies. The first vari-
ant involves uniform sampling along the ray, and the second
uses a sample prediction network (SPN) like Attal et al. [1]
for sampling. These variants sample 128 points on each
ray. Results in Table 3 show that our full model employing
motion-aware spatial sampling outperforms these variants,
perhaps by having a better sense of where to sample more
from, derived from its semantic-aware embedding.
SAM embedding: To verify that introducing SAM embed-
ding can improve rendering quality (rather than just en-
abling segmentation or tracking), we tested a variant of
Gear-NeRF without SAM embedding (it instead thresh-
olds loss maps of rendered RGB frames to obtain upshift
masks). As shown in Table 3, the absence of SAM em-

Table 3. Ablation Study: Ablations on our spatio-temporal sam-
pling strategy and the number of gears (Truck/Google Immersive).
Best and second best results are highlighted.

Method PSNR (↑) SSIM (↑) LPIPS (↓)

Naive temporal sampling (medium) 26.93 0.778 0.144
Naive temporal sampling (dense) 26.85 0.760 0.161

Naive spatial sampling 24.80 0.734 0.222
SPN spatial sampling 26.54 0.787 0.162

Ours (w/o embedding) 27.10 0.831 0.177

Ours (Ngear = 2) 26.93 0.785 0.166
Ours (Ngear = 3) 27.14 0.875 0.145
Ours (Ngear = 4) 27.49 0.892 0.136
Ours (Ngear = 5) 27.46 0.901 0.131

bedding for guiding gear assignment reduces the model’s
rendering quality.
Number of Gears: We ablate on the numbers of gears. In-
creasing the number of gears allows for more fine-grained
motion-aware spatio-temporal sampling, while increasing
the computational cost. As shown in Table 3, a choice of up
to 4 gear levels seems optimal, further increasing the num-
ber of gears does not result in significant improvements.

6. Conclusions
In this work, we introduced Gear-NeRF, an extension
of dynamic NeRFs that leverages semantic information
from powerful segmentation models for stratified model-
ing of dynamic scenes. Our approach learns a 4D (spatio-
temporal) semantic embedding and introduces the con-
cept of “gears” for differentiated modeling of scene re-
gions based on their motion intensity. With determined
gear assignments, Gear-NeRF adaptively adjusts its spatio-
temporal sampling resolution to improve the photo-realism
of rendered views. At the same time, Gear-NeRF provides
the new functionality of free-viewpoint object tracking with
user prompts as simple as a click. Our empirical studies un-
derscore the effectiveness of Gear-NeRF, showcasing state-
of-the-art performance in both rendering quality and object
tracking across multiple challenging datasets.
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