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Figure 1. We introduce GenN2N, a unified framework for NeRF-to-NeRF translation, enabling a range of 3D NeRF editing tasks, including

text-driven editing, colorization, super-resolution, inpainting, etc. We show at least two rendering views of edited NeRF scenes at inference

time. Given a 3D NeRF scene, GenN2N can produce high-quality editing results with suitable multi-view consistency.

Abstract

We present GenN2N, a unified NeRF-to-NeRF transla-
tion framework for various NeRF translation tasks such as
text-driven NeRF editing, colorization, super-resolution, in-
painting, etc. Unlike previous methods designed for individ-
ual translation tasks with task-specific schemes, GenN2N
achieves all these NeRF editing tasks by employing a plug-
and-play image-to-image translator to perform editing in
the 2D domain and lifting 2D edits into the 3D NeRF space.
Since the 3D consistency of 2D edits may not be assured,
we propose to model the distribution of the underlying 3D
edits through a generative model that can cover all possi-
ble edited NeRFs. To model the distribution of 3D edited
NeRFs from 2D edited images, we carefully design a VAE-
GAN that encodes images while decoding NeRFs. The la-

†Corresponding authors.

tent space is trained to align with a Gaussian distribution
and the NeRFs are supervised through an adversarial loss
on its renderings. To ensure the latent code does not de-
pend on 2D viewpoints but truly reflects the 3D edits, we
also regularize the latent code through a contrastive learn-
ing scheme. Extensive experiments on various editing tasks
show GenN2N, as a universal framework, performs as well
or better than task-specific specialists while possessing flex-
ible generative power. More results on our project page:
https://xiangyueliu.github.io/GenN2N/.

1. Introduction

Over the past few years, Neural radiance fields

(NeRFs) [23] have brought a promising paradigm in

the realm of 3D reconstruction, 3D generation, and novel

view synthesis due to their unparalleled compactness,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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high quality, and versatility. Extensive research efforts

have been devoted to creating NeRF scenes from 2D im-

ages [4, 20, 22, 36, 38] or just text [13, 26] input. However,

once the NeRF scenes have been created, these methods

often lack further control over the generated geometry and

appearance. NeRF editing has therefore become a notable

research focus recently.

Existing NeRF editing schemes are usually task-specific.

For example, researchers have developed NeRF-SR [34],

NeRF-In [19], PaletteNeRF [16] for NeRF super-resolution,

inpainting, and color-editing respectively. These designs re-

quire a significant amount of domain knowledge for each

specific task. On the other hand, in the field of 2D image

editing, a growing trend is to develop universal image-to-

image translation methods to support versatile image edit-

ing [25, 29, 43]. By leveraging foundational 2D generative

models, e.g., stable diffusion [28], these methods achieve

impressive editing results without task-specific customiza-

tion or tuning. We then ask the question: can we conduct

universal NeRF editing leveraging foundational 2D genera-

tive models as well?

The first challenge is the representation gap between

NeRFs and 2D images. It is not intuitive how to leverage

image editing tools to edit NeRFs. A recent text-driven

NeRF editing method [9] has shed some light on this. The

method adopts a “render-edit-aggregate” pipeline. Specif-

ically, it gradually updates a NeRF scene by iteratively

rendering multi-view images, conducting text-driven visual

editing on these images, and finally aggregating the edits

in the NeRF scene. It seems that replacing the image edit-

ing tool with a universal image-to-image translator could

lead to a universal NeRF editing method. However, the sec-

ond challenge would then come. Image-to-image transla-

tors usually generate diverse and inconsistent edits for dif-

ferent views, e.g. turning a man into an elf might or might

not put a hat on his head, making edits aggregation intri-

cate. Regarding this challenge, Instruct-NeRF2NeRF [9]

presents a complex optimization technique to pursue un-

blurred NeRF with inconsistent multi-view edits. Due to its

complexity, the optimization cannot ensure the robustness

of the outcomes. Additionally, the unique optimization out-

come fails to reflect the stochastic nature of NeRF editing.

Users typically anticipate a variety of edited NeRFs just like

the diverse edited images.

To tackle the challenges above, we propose GenN2N,

a unified NeRF-to-NeRF translation framework for vari-

ous NeRF editing tasks such as text-driven editing, col-

orization, super-resolution, inpainting (see Fig. 1). In con-

trast to Instruct-NeRF2NeRF which adopts a “render-edit-

aggregate” pipeline, we first render a NeRF scene into

multi-view images, then exploit an image-to-image trans-

lator to edit different views, and finally learn a generative

model to depict the distribution of NeRF edits. Instead of

aggregating all the image edits to form a single NeRF edit,

our key idea is to embrace the stochastic nature of content

editing by modeling the distribution of the edits in the 3D

NeRF space.

Specifically given a NeRF model or its multi-view im-

ages, along with the editing goal, we first generate edited

multi-view images using a plug-and-play image-to-image

translator. Each view corresponds to a unique 3D edit with

some geometry or appearance variations. Conditioned on

the input NeRF, GenN2N trains a conditional 3D genera-

tive model to reflect such content variations. At the core

of GenN2N, we design a 3D VAE-GAN that incorporates

a differentiable volume renderer to connect 3D content cre-

ation with 2D GAN losses, ensuring that the inconsistent

multi-view renderings can still help each other regarding

3D generation. Moreover, we introduce a contrastive learn-

ing loss to ensure that the 3D content variation can be suc-

cessfully understood just from edited 2D images without

being influenced by the camera viewpoints. During infer-

ence, users can simply sample from the conditional gen-

erative model to obtain various 3D editing results aligned

with the editing goal. We have conducted experiments on

human, items, indoor and outdoor scenes for various edit-

ing tasks such as text-driven editing, colorization, super-

resolution and inpainting, demonstrating the effectiveness

of GenN2N in supporting diverse NeRF editing tasks while

keeping the multi-view consistency of the edited NeRF.

We summarize the contribution of this paper as follows,

• A generative NeRF-to-NeRF translation formulation for

the universal NeRF editing task together with a generic

solution;

• a 3D VAE-GAN framework that can learn the distribution

of all possible 3D NeRF edits corresponding to the a set

of input edited 2D images;

• a contrastive learning framework that can disentangle the

3D edits and 2D camera views from edited images;

• extensive experiments demonstrating the superior effi-

ciency, quality, and diversity of the NeRF-to-NeRF trans-

lation results.

2. Related Work
NeRF Editing. Previous works such as EditNeRF [21] pro-

pose a conditional neural field that enables shape and ap-

pearance editing in the latent space. PaletteNeRF [16, 37]

focuses on controlling color palette weights to manipulate

appearance. Other approaches utilize bounding boxes [41],

meshes [39], point clouds [6], key points [45], or feature

volumes [18] to directly manipulate the spatial representa-

tion of NeRF. However, these methods either heavily rely

on user interactions or have limitations in terms of spatial

deformation and color transfer capabilities.

NeRF Stylization. Images-referenced stylization [7, 12,

42] often prioritize capturing texture style rather than de-
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Figure 2. Overview of GenN2N. We first edit the source image set {Ii}N−1
i=0 using 2D image-to-image translation methods, e.g., text-

driven editing, colorization, zoom out, etc. For each view i ∈ [0, N − 1], we generate M edited images, resulting in a group of translated

image set {{Sj
i}M−1

j=0 }N−1
i=0 . Then we use the Latent Distill Module to learn M ×N edit code vectors from the translated image set, which

serve as the input of the translated NeRF. To optimize our GenN2N, we design four loss functions: a KL loss to constrain the latent vectors

to a Gaussian distribution; and Lrecon, Ladv and Lcontr to optimize the appearance and geometry of the translated NeRF. At inference, we

can sample a latent vector z from Gaussian distribution and render a corresponding multi-view consistent 3D scene with high quality.

tailed content, resulting in imprecise editing appearance of

NeRF only. Text-guided works [33, 35], on the other hand,

apply contrastive losses based on CLIP [27] to achieve the

desired edits. While text references usually describe the

global characteristics of the edited results, instructions of-

fer a more convenient and precise expression.

Instruct-driven NeRF editing. Among numerous image-

to-image translation works, InstructPix2Pix [2] stands out

by efficiently editing images following instructions. It

leverages large pre-trained models in the language and im-

age domains [3, 28] to generate paired data (before and af-

ter editing) for training. While editing NeRF solely based

on edited images is problematic due to multi-view inconsis-

tency. To address this, an intuitive yet heavy approach [9] is

to iteratively edit the image and optimize NeRF. In addition,

NeRF-Art [35] and DreamEditor [46] adopt a CLIP-based

contrastive loss [27] and score distillation sampling [26]

separately to supervise the optimization of editing NeRF.

Inspired by Generative Radiance Fields [5, 30], We cap-

ture various possible NeRF editing in the generative space

to solve it.

3. Method

Given a NeRF scene, we present a unified framework

GenN2N to achieve various editing on the 3D scene lever-

aging geometry and texture priors from 2D image editing

methods, such as text-driven editing, colorization, super-

resolution, inpainting, etc. While a universal image-to-

image translator can theoretically accomplish these 2D edit-

ing tasks, we actually use a state-of-the-art translator for

each task. Therefore, we formulate each 2D image edit-

ing method as a plug-and-play image-to-image translator

and all NeRF editing tasks as our universal NeRF-to-NeRF

translation, in which the given NeRF is translated into NeRF

scenes with high rendering quality and 3D geometry con-

sistency according to the user-selected editing target. The

overview of GenN2N is illustrated in Fig. 2, we first per-

form image-to-image translation in the 2D domain and then

lift 2D edits to 3D and achieve NeRF-to-NeRF translation.

Given N multi-view images {Ii}N−1
i=0 of a scene, we first

use Nerfstudio [32] to train the original NeRF. Then we

use a plug-and-play image-to-image translator to edit these

source images. However, the content generated by the 2D

translator may be inconsistent among multi-view images.

For example, using different initial noise, the 2D transla-

tor [1] may generate different content for image editing,

which makes it difficult to ensure the 3D consistency be-

tween different view directions in the 3D scene.

To ensure the 3D consistency and rendering quality, we

propose to model the distribution of the underlying 3D edits

through a generative model that can cover all possible edited

NeRFs, by learning an edit code for each edited image so

that the generated content can be controlled by this edit code

during the NeRF-to-NeRF translation process.

For each view ∈ [0, N − 1], we generate M edited

images, resulting in a group of the translated image set

{{Sj
i}M−1

j=0 }N−1
i=0 . Then we design a Latent Distill Mod-

ule described in Sec. 3.1 to map each translated image Sj
i

into an edit code vector zji and design a KL loss LKL to

constrain those edit code vectors to a Gaussian distribu-

tion. Conditioned on the edit code zji , we perform NeRF-

to-NeRF translation in Sec. 3.2 by rendering multi-view im-

ages {Ci}N−1
i=0 and optimize the translated NeRF by three

loss functions: the reconstruction loss Lrecon, the adversarial
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Figure 3. Illustration of our proposed contrastive loss func-
tions. Regarding the multi-view rendered images Cj

i and Cj
l shar-

ing the same edit code, we resend them to our Latent Distill Mod-

ule to extract zji and zjl , and aggregate them via Latt
contr. In addition,

for Sk
i whose editing style vary from Sj

i , Lrep
contr increase the dis-

tance between edit codes of them.

Figure 4. Illustration of our proposed conditional adversarial
loss functions. Our conditional discriminator distinguishes arti-

facts such as blur and distortion in novel-view rendered image Cj
l

compared with target image Sj
l . Sj

l and Sk
l are edited with same

view but various styles, the latter serves as the condition to con-

catenate with Cj
l and Sj

l and manufacture fake and real pairs.

loss LAD, and the contrastive loss Lcontr. After the optimiza-

tion of the translated NeRF, as described in Sec. 3.3, we can

sample an edit code z from Gaussian distribution and ren-

der the corresponding edited 3D scene with high quality and

multi-view consistency in the inference stage.

3.1. Latent Distill Module

Image Translation. As illustrated in Fig. 2, GenN2N is a

unified framework for NeRF-to-NeRF translation, in which

the core is to perform a 2D image-to-image translation and

lift 2D edits into universal 3D NeRF-to-NeRF translation.

Given the source multi-view image set {Ii}N−1
i=0 of a NeRF

scene, we first perform image editing M times for each view

using a plug-and-play 2D image-to-image translator, pro-

ducing a group of translated image set {{Sj
i}M−1

j=0 }N−1
i=0 .

In this paper, we use several 2D translation tasks to show

the adaptability of our GenN2N: text-driven editing, super-

resolution, colorization and inpainting. For more details

about those 2D image editing methods, please refer to the

supplementary materials.

Edit Code. Since 2D image-to-image translation may gen-

erate different content even with the same editing target,

causing the inconsistency problem in the 3D scene. We pro-

pose to map each edited image Sj
i into a latent feature vec-

tor named edit code to characterize these diverse editings.

We employ the off-the-shelf VAE encoder from stable diffu-

sion [28] to extract the feature from Sj
i and then apply a tiny

MLP network to produce this edit code zji ∈ R
64. During

the training process, we keep the pre-trained encoder fixed

and only optimize the parameters of the tiny MLP network.

This mapping process can be formulated as follows:

zji = D(Sj
i ) = M(E(Sj

i )), (1)

where D represent this mapping process, E is the fixed en-

coder, and M is the learnable tiny MLP.

KL loss. In order to facilitate effective sampling of the edit

code so as to control the editing diversity of our NeRF-to-

NeRF translation, we need to constrain the edit code to a

well-defined distribution. Thus we design a KL loss to en-

courage zji to approximate a Gaussian distribution:

LKL = ES∈{{Sj
i}M−1

j=0 }N−1
i=0

[P (znormal)log(
P (znormal)

P (D(S))
)],

(2)

where P(znormal) denotes probability distribution of the

standard Gaussian distribution in R
64 and P(D(S)) means

probability distribution of the extracted edit codes.

Contrastive loss. It is not assured that edit codes z obtained

from the Latent Distill Module contain only the editing in-

formation while excluding viewpoint-related effects. How-

ever, since the translated NeRF utilizes z to edit scenes, it

yields instability if z violently changes given images that

are similar in appearance but different in viewpoints. To

ensure the latent code does not depend on 2D viewpoints

but truly reflects the 3D edits, we regularize the latent code

through a contrastive learning scheme. Specifically, we re-

duce the distance between edit codes of different-view ren-

dered images from a translated NeRF that share the same

edit code, while increasing the distance between same-view

images that are multi-time edited by the 2D image-to-image

translator. As illustrated in Fig. 3, given an edit code zji
extracted from the i-th input view at the j-th edited im-

age Sj
i , we render multi-view images {Cj

l }N−1
l=0 using the

translated NeRF conditioned on zji . Then we employ con-

trastive learning to encourage the edit code zji to be close

to {zjl }N−1
l=0 extracted from {Cj

l }N−1
l=0 , while being distinct

from the edit codes {zki }M−1
k=0 extracted from {Sk

i }M−1
k=0 ,

where k �= j.
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“What would he look like as a bearded man”

Original NeRF Inference 1 Inference 2 Inference 3 Inference 4

Figure 5. Text-Driven Editing. We sample 4 inference results for both text-driven editing tasks. The diversity of geometry and appearance

showcases awesome generative ability of GenN2N, on the premise of maintaining the 3D consistency between different viewpoints.

Inference 1 Inference 2 Inference 3 Inference 4 Inference 5Original NeRF

Figure 6. Colorization. Our method colorizes the gray-scale 3D scene consistently across views. By changing the edit code during

inference, diverse colorized scenes can be rendered with satisfying photorealism and reasonably rich colors.

Specifically, our contrastive loss is designed as follows:

Lcontr = Latt
contr + Lrep

contr

=

N−1∑

l=0

||zji − zjl ||22 +
M−1∑

k=0

max(0, α− ||zji − zki ||22),
(3)

where α represents the margin that encourages the differ-

ence in features, and k �= j.

3.2. NeRF-to-NeRF translation

Translated NeRF. After 2D image-to-image translation, we

need to lift these 2D edits to the 3D NeRF. For this pur-

pose, we propose to modify the original NeRF as a trans-

lated NeRF that takes the edit code z as input and generates

the translated 3D scene according to the edit code. We re-

fer readers to the supplementary for more details about the

network architecture.

Reconstruction loss. Given an edit code zji extracted from

the edited image Sj
i , we can generate a translated NeRF to

render Cj
i from the same viewpoint. Then we define the re-

construction loss as the L1 normalization and Learned Per-

ceptual Image Patch Similarity (LPIPS) [44] between the

rendered image Cj
i and the edited image Sj

i as follows:

Lrecon = LL1 + LLPIPS

=
∥∥∥Cj

i − Sj
i

∥∥∥
1
+ LPIPS[P(Cj

i )− P(Sj
i )],

(4)

where P means a patch sampled from the image. Note

that due to the lack of 3D consistency of the edited multi-

view image, the supervision of the edited image from other

viewpoints {Sj
l }l �=i will lead to conflicts in pixel-space op-

timization. Therefore, we only employ reconstruction loss

on the same view image Sj
i to optimize the translated NeRF.

Adversarial loss. Since the 3D consistency of edited multi-

view images is not assured, relying solely on the reconstruc-

tion loss on the same view often leads to blurry or distorted
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Original NeRF Instruct-NeRF2NeRF 1

Ours inference 1 Ours inference 2 Ours inference 3

Instruct-NeRF2NeRF 2

Figure 7. Comparisons with baselines of text-driven NeRF edit-
ing. We compare our method with Instruct-NeRF2NeRF [9] in the

editing by using the text prompt “Make it Spring”.

Method
CLIP Text-Image CLIP Direction

FID ↓
Direction Similarity↑ Consistency ↑

InstructPix2Pix [2]+NeRF 0.1669 0.8475 270.542

Instruct-NeRF2NeRF 0.2021 0.9828 148.021

Ours w/o Ladv 0.1920 0.9657 162.275

Ours w/o Lcontr 0.2007 0.9749 156.524

Ours 0.2089 0.9864 137.740

Table 1. Quantitative results on text-driven editing. We com-

pare our method with the naive method of directly combining

InstractPix2Pix [2] with NeRF and the state-of-the-art method

Instruct-NeRF2NeRF [9].

artifacts on novel views. Previous research demonstrates

the effectiveness of conditional adversarial training in pre-

venting the production of blurry rendered images result-

ing from conflicts that arise from noise in the camera ex-

trinsic when performing image supervision from different

viewpoints [11]. The function of the condition is to guide

discriminator with fine-grained information from the same

viewpoint, thus preventing GAN mode collapse.

It inspires us to incorporate conditional adversarial loss

on rendered images from the translated NeRF, which is con-

ducive to distinguish artifacts in rendered images. As illus-

trated in Fig.4, the discriminator D takes into real pairs and

fake pairs. Each real pair R consists of Sj and Sj − Sk

where Sj ∈ {Sj
i}N−1

i=0 and Sk ∈ {Sk
i }N−1

i=0 are from two

sets of edited images from the image translation. Simi-

larly, each fake pair F consists of Cj and Cj − Sk in which

Cj ∈ {Cj
i}N−1

i=0 is generated by translated NeRF. Note that

the images in the same pair come from the same viewpoint.

The pairs are concatenated in RGB channels and fed into the

discriminator. We optimize the discriminator D and trans-

lated NeRF with the objective functions below:

LAD-D = ER[−log(D(R))] + EF[−log(1−D(F))],

LAD-G = EF[−log(D(F))].
(5)

Optimization. During the training process, we jointly op-

timize the loss functions mentioned above: LKL and Lcontr

Original NeRF Instruct-NeRF2NeRF PaletteNeRF

Ours inference 1 Ours inference 2 Ours inference 3

Figure 8. Comparisons with baselines of NeRF colorization.
We compare with PaletteNeRF[16] in colorization.

Method CF ↑ FID ↓
DDColor [14]+NeRF 40.435 148.957

Instruct-NeRF2NeRF 45.599 201.456

PaletteNeRF [16] 39.654 –

Ours w/o Ladv 35.031 137.740

Ours w/o Lcontr 34.829 105.750

Ours 65.099 35.041

Table 2. Quantitative results on colorization. We colorize im-

ages with the translator, DDcolor [14], and edit NeRF by directly

optimizing NeRF, Instruct-NeRF2NeRF [9] and our NeRF trans-

lation method. The quantitative comparison is conducted between

these methods as well as PaletteNeRF [16].

for the edit code, Lrecon and LAD-G for the translated NeRF,

and LAD-D for the discriminator. The total loss formula is

expressed as follows:

L = LKL + Lrecon + LAD-G + LAD-D + Lcontr. (6)

where we assign each regularization term the weight of 1.0,

1.0, 0.1, 0.1, 0.1 in all of our experiments. The weights

can be adjusted to prioritize different aspects of the train-

ing objective, such as reconstruction accuracy, adversarial

training, and perceptual quality.

3.3. Inference

After the optimization of our GenN2N, the translated NeRF

is optimized to be able to render the target scene conditioned

on the edit code. As shown in Fig. 1, users can simply sam-

ple an edit code from the Gaussian distribution and use the

translated NeRF to render the 3D scene with high-quality

and multi-view 3D consistency.

4. Experiments
Our proposed GenN2N is a unified NeRF-to-NeRF trans-

lation framework which can support various NeRF editing

tasks. In this paper, we demonstrate the effectiveness of

GenN2N by a suite of challenging tasks:
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NeRF-SR

Original NeRF

Ours

Instruct-NeRF2NeRF

Figure 9. Comparisons with baselines of NeRF super-
resolution. We compare with NeRF-SR [34] in super-resolution.

Method PSNR ↑ SSIM ↑ LPIPS ↓
ResShift [40]+NeRF 19.978 0.535 0.1156

Instruct-NeRF2NeRF 20.299 0.642 0.2732

NeRF-SR [34] 27.957 0.897 0.0937

Ours w/o Ladv 12.555 0.663 0.2001

Ours w/o Lcontr 15.372 0.662 0.1834

Ours 28.501 0.913 0.0748

Table 3. Quantitative results on super-resolution. We improve

image resolution with ResShift [40] and edit NeRF by directly op-

timizing NeRF, Instruct-NeRF2NeRF [9] and our NeRF transla-

tion method. The quantitative comparison is conducted between

these methods as well as NeRF-SR [34].

(1) Text-driven Editing edits the given NeRF scene to a

set of NeRF scenes according to the text instruction.

(2) Colorization transforms a gray-scale NeRF scene to a

set of plausible color NeRF scenes.

(3) Super-resolution enhances the resolution of NeRF

and enables multiple plausible outcomes.

(4) Inpainting fills in user-specified masked regions in the

NeRF scene with realistic content.

We achieve those tasks by simply changing the plug-and-

play 2D image translator in our framework, without any ad-

ditional task-specific design. Previous studies have exten-

sively explored some of these issues like text-driven edit-

ing, colorization, super-resolution, and inpainting. How-

ever, there is rarely a unified framework that can achieve

all these tasks with strong performance, high quality, and

plausible multi-view consistent 3D structure. Furthermore,

GenN2N can also perform zooming out and text-driven in-

painting in NeRF-to-NeRF translation, which were not ex-

plored in prior research. We refer readers to the supple-

mentary materials for detailed experiment settings, dataset

settings and implementation details.

4.1. Comparisons

Text-driven Editing. We achieve text-driven editing of the

given NeRF by using InstructPix2Pix [2] as the 2D image-

to-image translator in our framework. We compared our

approach to a naive solution, which involves optimizing a

NeRF with edited images via InstructPix2Pix. However,

this naive approach leads to a 3D inconsistency problem

among different edits. While Instruct-NeRF2NeRF [9] pro-

posed an iterative updating mechanism to address this is-

sue, it falls short in capturing the diversity of different ed-

its, making it challenging to ensure the quality of the out-

comes. To evaluate our method, we conducted experiments

on the Face [9] and Fangzhou [35] self-portrait datasets, and

Farm [9] dataset, comparing GenN2N with the state-of-the-

art NeRF editing method Instruct-NeRF2NeRF [9].

Quantitative results are presented in Table 1, where we

employed CLIP Text-Image Direction Similarity [9], CLIP

Direction Consistency [9], and Fréchet Inception Distance

(FID) [10] as evaluation metrics. The results highlight

the superior performance of GenN2N over other meth-

ods, demonstrating its effectiveness in producing high-

quality 3D text-driven editing results. Furthermore, we

provide a qualitative comparison between GenN2N and

Instruct-NeRF2NeRF [9] in Figure 7. Notably, Instruct-

NeRF2NeRF was trained twice, but the results are nearly

identical. In contrast, GenN2N can render edited scenes

with various effects, consistent with the input text instruc-

tion, by inferring with different edit codes sampled from a

Gaussian distribution. To further illustrate the generative

capability of GenN2N, we showcase additional results of

our inference renderings in Figure 5, demonstrating its di-

verse generative ability in terms of appearance and geome-

try.

Colorization. For NeRF colorization, GenN2N uses DD-

Color [14] as the 2D image-to-image translator. CoRF [8]

and Palette-NeRF [16] do a similar task and we compare

with Palette-NeRF in Table 2. The Fréchet Inception Dis-

tance (FID) [10] and colorfulness score (CF) [17] are used

to measure the distribution similarity and vividness of gen-

erated images. We show visual comparison results in Fig. 6

and Fig. 8. We can find that with different edit codes, the

scene can be rendered in different color styles. It is notice-

able that with the same edit code, the color rendered from

different views is consistent. This strongly demonstrates

the effectiveness of our method in translating NeRF while

keeping the 3D consistency of the scene.

Super-resolution. When only low-resolution images are

available, our methods can boost NeRF in reconstructing

scenes at higher resolution, while keeping view consis-

tency and avoiding blurry outputs. We achieve this by em-

ploying ResShift [40] as the 2D image-to-image transla-

tor in GenN2N. Following state-of-the-art method NeRF-

SR [34], we conduct experiments on LLFF dataset [23],

using PSNR, SSIM, and LPIPS as evaluation metrics. As

shown in Table 3, GenN2N obtains NeRF-to-NeRF transla-

tion with higher performance than NeRF-SR [34]. More-

over, we also provide qualitative comparison results in

Fig. 9, where GenN2N produces clearer and more realistic

rendering results than previous methods.
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SPin-NeRF

Original NeRF

Ours

Instruct-NeRF2NeRF

Figure 10. Comparisons with baselines of NeRF inpainting. We

compare with SPIn-NeRF [24] in inpainting.

Method PSNR ↑ SSIM ↑ LPIPS ↓
LaMa [31]+NeRF 18.983 0.3706 0.1730

Instruct-NeRF2NeRF 16.734 0.3088 0.2750

SPin-NeRF [24] 24.369 0.7217 0.1754

Ours 26.868 0.8137 0.1284

Table 4. Quantitative results on NeRF inpainting.

Inpainting. The goal of NeRF Inpainting is to fill the

3D content of regions specified by users. SPIn-NeRF [24]

achieves this through a multi-step process: it employs

SAM [15] for object segmentation, utilizes LaMa [31] to

paint the background content in multi-view images, and

subsequently trains the NeRF model with color, depth, and

perceptual cues. In our experiments, we use SAM and

LaMa as the 2D image-to-image translator in our GenN2N,

which is the same setting as SPin-NeRF [24]. Quantitative

comparisons on statue dataset [24] are shown in Table 4,

where GenN2N achieves superior PSNR and SSIM scores

than SPin-NeRF [24], highlighting the effectiveness of our

GenN2N framework. In addition, qualitative results are

showcased in Fig. 10 revealing that while SPin-NeRF [24]

fails to generate reasonable content behind the masked ob-

ject, our GenN2N produces realistic content in the same re-

gion with fine multi-view consistency.

4.2. Ablation Studies

We conduct comprehensive ablation experiments to validate

the designs of each component in GenN2N. Due to space

limitations, we only highlight the essential aspects below.

Please refer to supplementary for more details.

The Contrastive Loss. We demonstrate the advantages of

incorporating our proposed contrastive loss in Table 1, 2,

3. The motivation is to disentangle the camera view and

edit information present in the latent space. We achieve this

by reducing the distance between edit codes of different-

view rendered images from a translated NeRF that shares

the same edit code, while increasing the distance between

same-view images that are edited by the 2D translator with

diverse edit styles. As demonstrated in Tables, the absence

of contrastive loss leads to the generation of blurry areas

in the rendered images, resulting in a decrease in the met-

ric scores. This blurriness can be attributed to the inclusion

of pose information within the edit code z. By incorporat-

ing the contrastive loss, our method successfully achieves

a uniform appearance with different observing views under

the same style latent z.

Discriminator for Novel Views. We demonstrate the effec-

tiveness of employing a conditional discriminator to address

artifacts caused by inconsistent cross-view edited images

and to enhance the quality of novel view rendering images,

as depicted in Table 1, 2, 3. The removal of this conditional

discriminator results in blurry novel view images with arti-

facts in the background region. We attribute these undesir-

able effects to the inability of current image-to-image trans-

lation methods, such as InstructPix2Pix [2], to produce im-

age editing consistently across multi-view images. To mit-

igate these issues, we introduce a conditional discrimina-

tor between rendered images from the translated NeRF and

edited images from the 2D image-to-image translator. This

inclusion successfully eliminates artifacts and enhances the

image quality of rendered images from the translated NeRF.

4.3. Applications

We demonstrate the versatility and robustness of GenN2N

by exploring two translation applications: Zoom Out and

Text-Driven Inpainting. While existing 2D translators [1,

29] can complete these tasks, 3D editing has not been ex-

plored. We achieve these tasks by incorporating Blended

Latent Diffusion [1] as the 2D image-to-image translator,

enabling us to generate diverse and high-quality content

with multi-view consistency. Please refer to our supple-

mentary materials for the results of these applications due

to space constraints.

5. Conclusions

We introduce GenN2N, a unified NeRF-to-NeRF transla-

tion framework that can handle various NeRF editing tasks.

Unlike previous task-specific approaches, our framework

uses an image-to-image translator for 2D editing and in-

tegrates the results into 3D NeRF space. To address the

challenge of ensuring 3D consistency, we propose model-

ing the distribution of 3D edited NeRFs from 2D edited im-

ages using our novel techniques. After optimization, users

can sample from the conditional generative model to ob-

tain diverse 3D editing results with high rendering quality

and multi-view consistency. Our experiments demonstrate

that GenN2N outperforms existing task-specific methods

on various editing tasks, including text-driven editing, col-

orization, super-resolution, and inpainting, in terms of effi-

ciency, quality, and diversity.
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