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Abstract

Generalizable NeRF aims to synthesize novel views for
unseen scenes. Common practices involve constructing
variance-based cost volumes for geometry reconstruction
and encoding 3D descriptors for decoding novel views.
However, existing methods show limited generalization
ability in challenging conditions due to inaccurate geome-
try, sub-optimal descriptors, and decoding strategies. We
address these issues point by point. First, we find the
variance-based cost volume exhibits failure patterns as the
features of pixels corresponding to the same point can
be inconsistent across different views due to occlusions
or reflections. We introduce an Adaptive Cost Aggrega-
tion (ACA) approach to amplify the contribution of con-
sistent pixel pairs and suppress inconsistent ones. Un-
like previous methods that solely fuse 2D features into
descriptors, our approach introduces a Spatial-View Ag-
gregator (SVA) to incorporate 3D context into descriptors
through spatial and inter-view interaction. When decod-
ing the descriptors, we observe the two existing decoding
strategies excel in different areas, which are complemen-
tary. A Consistency-Aware Fusion (CAF) strategy is pro-
posed to leverage the advantages of both. We incorporate
the above ACA, SVA, and CAF into a coarse-to-fine frame-
work, termed Geometry-aware Reconstruction and Fusion-
refined Rendering (GeFu). GeFu attains state-of-the-art
performance across multiple datasets. Code is available at
https://github.com/TQTQliu/GeFu.

1. Introduction
Novel view synthesis (NVS) aims to generate realistic im-
ages at novel viewpoints given a set of posed images. By en-
coding the density and radiance fields of scenes into implicit
representations, Neural Radiance Field (NeRF) [21] has
shown impressive performance in NVS. However, NeRF re-
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Figure 1. Comparison with existing methods. (a) With three in-
put source views, our generalizable model synthesizes novel views
with higher quality than existing methods [4, 16] in the severe oc-
cluded area. (b) Circle area represents inference time. The X-axis
represents the PSNR on the DTU dataset [1] and the Y-axis rep-
resents the PSNR on the Real Forward-facing dataset [20]. Our
method attains state-of-the-art performance.

quires a lengthy optimization with densely captured images
for each scene, which limits its applications.

To address this issue, some recent methods [4, 6, 8, 13,
15, 16, 19, 26–28, 34, 40] generalize NeRFs to unseen
scenes. Instead of overfitting the scene, they extract fea-
ture descriptors for 3D points in a scene-agnostic manner,
which are then decoded for rendering novel views. Pio-
neer methods [28, 40] utilize 2D features warped from the
source images. As this practice avoids explicit modeling of
3D geometric constraints, its generalization capability for
geometry reasoning and view synthesis in new scenes is
limited. Hence, subsequent methods [4, 16] introduce ex-
plicit geometry-aware cost volume from multi-view stereo
(MVS) to model geometry at the novel view. Despite signif-
icant progress achieved by these methods, synthesis results
remain unsatisfactory, especially in challenging areas, such
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as the occluded area illustrated in Fig. 1 (a). The model
struggles to accurately infer the geometry of these regions,
as variance-based cost volumes cannot perceive occlusions.

Generalizable NeRFs’ pipeline consists of two phases:
radiance field reconstruction and rendering. The reconstruc-
tion phase aims to recover scene geometry and encode 3D-
aware features for rendering, i.e., creating descriptors for
3D points. For geometry reasoning, similar to MVS, if the
geometry (i.e., depth) is accurate, features across various
views are supposed to be similar with low variance. How-
ever, this variance-based cost metric is not universal, espe-
cially in occluded and reflective regions. Due to inconsis-
tent features in these regions, equally considering the con-
tributions of different views is unreasonable, leading to mis-
leading variance values. Inspired by MVS methods [29, 31],
we propose an Adaptive Cost Aggregation (ACA) mod-
ule. ACA adaptively reweights the contributions of different
views based on the similarity between source views and the
novel view. Since the novel view is unavailable, we employ
a coarse-to-fine framework and transfer the rendering view
from the coarse stage into the fine stage to learn adaptive
weights for the cost volume construction.

With the geometry derived from the cost volume, we can
re-sample 3D points around the surface and encode descrip-
tors for sampled points. For descriptors encoding, previ-
ous methods [6, 16, 28, 40] directly aggregate inter-view
features into descriptors for subsequent rendering. These
descriptors lack 3D context awareness, leading to disconti-
nuities in the descriptor space. To this end, we design the
Spatial-View Aggregator (SVA) to learn 3D context-aware
descriptors. Specifically, we encode spatially context-aware
and smooth features by aggregating 3D spatial informa-
tion. Meanwhile, to preserve geometric details, we utilize
smoothed features as queries to reassemble high-frequency
information across views to create final descriptors.

With the scene geometry and point-wise descriptors, the
subsequent rendering phase aims to decode descriptors into
volume density and radiance for rendering a novel view. For
the radiance prediction, [16, 28] predict blending weights
to combine color values from source views, while [4, 6, 40]
directly regress from features. However, the analysis of
these two approaches has not been conducted in existing
works. In this paper, we observe that the blending approach
performs better in most areas (Fig. 2 (a)), as the color val-
ues from source views provide referential factors. However,
as shown in Fig. 2 (b)&(c), in challenging areas such as re-
flections and boundaries, the regression approach produces
superior results with fewer artifacts, while the blending ap-
proach leads to suboptimal rendering due to unreliable ref-
erential factors. To unify the advantages of both strategies,
we propose to separately predict two intermediate views us-
ing two approaches and design a weighted structure named
Consistency-Aware Fusion (CAF) to dynamically fuse them

(a) Blending (b) Regression (c) Comparison

Error: (a) < (b) Error: (a) > (b)

Figure 2. Comparison of two rendering strategies. (a) The view
obtained using the blending approach that combines color values
from source views. (b) The view obtained using the regression
approach that directly regresses color values from features. (c)
Accuracy comparison between two rendering strategies. The for-
mer strategy performs better in the white regions, while worse in
the green ones.

into the final view. The fusing weights are learned by check-
ing multi-view consistency, following an underlying princi-
ple that if color values are close to the ground truth, the
multi-view features corresponding to the correct depth are
supposed to be similar.

By embedding the above ACA, SVA, and CAF into a
coarse-to-fine framework, we propose GeFu. To demon-
strate the effectiveness, we evaluate GeFu on the widely-
used DTU [1], Real Forward-facing [20], and NeRF Syn-
thetic [21] datasets. Extensive experiments show that
GeFu outperforms other generalizable NeRFs by large mar-
gins without scene-specific fine-tuning as shown in Fig. 1
(a)&(b). After per-scene fine-tuning, GeFu also outper-
forms other generalizable NeRFs and achieves performance
comparable to or even better than NeRF [21]. Additionally,
GeFu is capable of generating reasonable depth maps, sur-
passing other generalization methods.
Our main contributions can be summarized as follows:
• We propose ACA to improve geometry estimation

and SVA to encode 3D context-aware descriptors for
geometry-aware reconstruction.

• We conduct an analysis of two existing color decoding
strategies and propose CAF to unify their advantages for
fusion-refined rendering.

• GeFu achieves state-of-the-art performance across multi-
ple datasets, showing superior generalization.

2. Related Work

Multi-View Stereo. Given multiple calibrated images,
multi-view stereo (MVS) aims to reconstruct a dense 3D
representation. Traditional MVS methods [10, 11, 24, 25]
primarily rely on hand-crafted features and similarity met-
rics, which limits their performance, especially in chal-
lenging regions such as weak-texture and repetitive ar-
eas. Powered by the impressive representation of neu-
ral networks, MVSNet [37] first proposes an end-to-end
cost volume-based pipeline, which quickly becomes the
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mainstream in the MVS community. Following works ex-
plore the potential capacity of this pipeline from various as-
pects. e.g., reducing memory consumption with recurrent
approaches [31, 35, 38] or coarse-to-fine paradigms [7, 12,
36, 41], enhancing feature representations [9, 18] and mod-
eling output formats [23, 39]. Another important line is to
optimize the cost aggregation [29, 31] by adaptively weight-
ing contributions from various views. In this paper, follow-
ing the spirit, we introduce the adaptive cost aggregation
tailored for the NVS task to mitigate the issue of inconsis-
tent features caused by reflections and occlusions.
Generalizable NeRF. With implicit continuous represen-
tation and differentiable volume rendering, NeRF [21]
achieves photo-realistic view synthesis. However, NeRF
and its downstream expansion works [2, 3, 5, 22, 32, 33]
require an expensive per-scene optimization process. To
address this issue, some generalizable NeRF methods have
been proposed, following a reconstruction-and-rendering
pipeline. In the reconstruction phase, each sampled point
is assigned a feature descriptor. Specifically, according to
the descriptors, generalizable NeRF methods can be catego-
rized into the following types: appearance descriptors [40],
aggregated multi-view descriptors [16, 26, 28], cost vol-
ume interpolated descriptors [4, 16, 19], and correspon-
dence matching descriptors [6]. Despite different forms,
these descriptors only aggregate inter-view information or
are interpolated from the low-resolution cost volume, lack-
ing the ability to effectively perceive 3D spatial context. To
remedy the issue, we utilize a proposed aggregator to facil-
itate the interaction of spatial information. In the rendering
phase, volume density is obtained by decoding descriptors.
For radiance, [16, 28] predict blending weights to combine
color from source views, while [4, 6, 19, 26, 40] directly
regress features. In this paper, we observe that these two
strategies benefit different regions and thus propose a uni-
fied structure to integrate their advantages.

3. Preliminaries
Learning-based MVS. Given a target image and N source
images, MVS aims to recover the geometry, such as the
depth map of the target image. The key idea of MVS is
to construct the cost volume from multi-view inputs, aggre-
gating 2D information into 3D geometry-aware representa-
tion. Specifically, each voxel-aligned feature vector fc of
cost volume can be computed as:

fc = Ω(ft, f
1
s , ..., f

N
s ) , (1)

where ft and f i
s represent the target feature vector and the

warped source feature vector, respectively. And Ω denotes a
consistency metric, such as variance. The underlying prin-
ciple is that if a sampled depth is close to the actual depth,
the multi-view features of the sampled point are supposed

to be similar, which naturally performs multi-view corre-
spondence matching and geometry reasoning, facilitating
the generalization to unseen scenes.
Generalizable NeRF. In generalizable NeRFs, each sam-
pled point is assigned a geometry-aware feature descriptor
fp, as (x, d, fp) −→ (σ, r), where x and d represent the
coordinate and view direction used by NeRF [21]. σ and
r denote the volume density and radiance for the sampled
point, respectively. Specifically, the volume density σ can
be obtained from the descriptor via σ = MLP(x, fp). For
the radiance r, one approach [16, 28] is to predict blending
weights to combine color values from source views, as:

r =

N∑
i=1

exp(wi)ci∑N
j=1 exp(wj)

,where wi = MLP(x, d, fp, f i
s) , (2)

where {ci}Ni=1 are color values from source views. These
colors provide referential factors, facilitating convergence
and better performance in most areas. However, in oc-
cluded and reflective regions, these colors introduce mis-
leading bias to the combination, resulting in distorted col-
ors. Besides, for pixels on object boundaries, it is hard
to accurately locate reference points for blending, result-
ing in oscillated colors between the foreground and back-
ground. Another approach [4, 6, 40] is to directly regress
the radiance from the feature per r = MLP(x, d, fp). As
fewer inductive biases are imposed on the output space, the
model can learn to predict fewer artifacts in challenging ar-
eas (Fig. 2). With the volume density and radiance of sam-
pled points, the color values c of each pixel can be computed
by volume rendering, given by:

c =
∑
k

τk(1− exp(−σk))rk ,where τk = exp(−
k−1∑
j=1

σj) , (3)

where τ represents the volume transmittance.

4. Method
Given a set of source views {Iis}Ni=1, NVS aims to gener-
ate a target view at a novel camera pose. As illustrated in
Fig. 3, our method consists of an NVS pipeline wrapped in a
coarse-to-fine framework. In the pipeline, we first employ a
feature pyramid network [17] to extract multi-scale features
from the source views. Then, we propose an Adaptive Cost
Aggregation module (Sec. 4.1) to construct a cost volume,
which is further processed by a 3D-CNN to infer the geom-
etry. Guided by the estimated geometry, we re-sample 3D
points around the surface and apply the Spatial-View Ag-
gregator (Sec. 4.2) to encode 3D-aware feature descriptors
fp for sampled points. Finally, we decode fp into two inter-
mediate views using two strategies introduced in Sec. 3 and
fuse them into the final target view through Consistency-
Aware Fusion (Sec. 4.3). This pipeline is iteratively called.
Initially, the low-resolution target view is generated and the
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Figure 3. The overview of GeFu. In the reconstruction phase, we first infer the geometry from the constructed cost volume, and the
geometry guides us to further re-sample 3D points around the surface. For each sampled point, the warped features from source images
are aggregated and then fed into our proposed Spatial-View Aggregator (SVA) to learn spatial and inter-view context-aware descriptors fp.
In the rendering phase, we apply two decoding strategies to obtain two intermediate views and fuse them into the final target view in an
adaptive way, termed Consistency-Aware Fusion (CAF). Our pipeline adopts a coarse-to-fine architecture, the geometry from the coarse
stage (ls = 1) guides the sampling at the fine stage (ls > 1), and the features from the coarse stage are transferred to the fine stage for
ACA to improve geometry estimation. Our network is trained end-to-end using only RGB images.

rough scene geometry is captured. Then, in the subsequent
refining stage, high-resolution results with fine-grained ge-
ometry are obtained.

4.1. Adaptive Cost Aggregation

The core process of geometry reasoning is to construct a
cost volume that encodes the multi-view feature consis-
tency. Previous works [4, 16] treat different views equally
and employ the variance operator to construct a cost vol-
ume. However, due to potential occlusions and varying
lighting conditions among different views, multi-view fea-
tures of the same 3D point may exhibit notable disparities,
thereby resulting in misleading variance values. Inspired
by [31], we propose to adaptively weight the contribution
of different views to the cost volume, termed Adaptive Cost
Aggregation (ACA). ACA will suppress the cost contribu-
tion from features that are inconsistent with the novel views
caused by reflections or occlusions, and enhance the con-
tribution of better-matched pixel pairs. The voxel-aligned
feature fc of cost volume can be computed as:

fc =
1

N

N∑
i=1

(1 + α(f i
c))⊙ f i

c ,where f i
c = (f i

s − ft)
2 , (4)

where ft and f i
s denote the target feature vector and the

warped feature vector of source image Iis, respectively. ⊙
denotes Hadamard multiplication and α(.) represents the
adaptive weight for each view. However, an important chal-
lenge is that the target view is available in MVS, but not for
NVS. To remedy this, we adopt a coarse-to-fine framework

where a coarse novel view is first generated and serves as
the target view in Eq. (4). Specifically, we obtain the coarse-
stage feature fb by accumulating descriptors fp of sampled
points along the ray, as:

fb =
∑
k

τk(1− exp(−σk))f
k
p . (5)

The coarse-stage features are then fed into a 2D U-Net for
spatial aggregation to obtain fr. We replace ft in Eq. (4)
with the feature fr to construct a robust cost volume, bene-
fiting the geometry estimation.

4.2. Spatial-View Aggregator

With the estimated geometry, 3D points around objects’ sur-
faces can be re-sampled, and the subsequent step is encod-
ing descriptors for these sampled points. Existing meth-
ods [16, 28] aggregate inter-view features with a pooling
network ρ to construct the descriptors fp = ρ({f i

s}Ni=1).
However, these descriptors only encode multi-view infor-
mation and lack the awareness of 3D spatial context, lead-
ing to discontinuities in the descriptor space. To introduce
3D spatial information, a feasible approach is to interpo-
late the low-resolution regularized cost volume, but it lacks
fine-grained details. To address these issues, we design a
3D-aware descriptors encoding approach. We first utilize a
3D U-Net termed ϕsm to aggregate 3D spatial context, as:

fsm = ϕsm(ρ({f i
s}Ni=1)) . (6)

However, this may lead to the smoothing of 3D features
and cause the loss of some high-frequency geometric de-
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tails. Therefore, we use the smoothed features as queries to
re-gather inter-view high-frequency details, as:

fp = ϕd(fsm, {f i
s}Ni=1) , (7)

where ϕd is an attention module. fsm is the input query q,
and {f i

s}Ni=1 are the key sequences k and value sequences
v. The sequence lengths of q, k, and v are 1, N , and N ,
respectively, which results in only a slight increase in com-
putational costs.

4.3. Consistency-Aware Fusion

With the descriptor fp, the volume density σ is first acquired
through an MLP, and color values can be obtained using
two decoding approaches discussed in Sec. 3. We observe
that these two approaches exhibit advantages in different
areas. To combine their strengths, we propose to predict two
intermediate views using these two approaches separately,
and then fuse them into the final target view.

Specifically, for the blending approach, the radiance r of
each sampled point can be computed using Eq. (2). And
then the pixel color cb and feature fb are obtained via the
volume rendering manner per Eq. (3) and Eq. (5), respec-
tively. For another regression approach, one practice is
predicting radiance for sampled points and then accumu-
lating it into pixel color. In contrast, to reduce computa-
tional costs, we accumulate point-wise descriptors into fea-
tures and then decode them into pixel color. Specifically,
we feed the accumulated feature into a 2D U-Net for spa-
tial enhancement to obtain pixel feature fr, followed by an
MLP to yield the pixel color cr.

Since these two approaches excel in different areas, in-
stead of using a fixed operator, such as average, we pro-
pose dynamically fusing them via ct = wbcb+wrcr, where
wb and wr are predicted fusing weights. As the target
view is unavailable, comparing the quality of cb and cr be-
comes a chicken-and-egg problem. A naive practice is to di-
rectly predict fusing weights from features, which is under-
constrained (Sec. 5.5). In contrast, we propose to learn fus-
ing weights by using the multi-view feature consistency as
a hint. The underlying motivation is that if the predicted
colors closely resemble the ground-truth colors, the corre-
sponding features of the predicted view and source views
under the correct depth are supposed to be similar.

Specifically, we first obtain the final predicted depth
df in a volume rendering-like way per df =

∑
k τk(1 −

exp(−σk))dk, where dk represents the depth of sampled
point. With the depth df , we can obtain the warped features
{f i

s}Ni=1 from source views, and the multi-view consistency
can be computed using variance:

f [b,r]
w = var(f[b,r], f

1
s , ..., f

N
s ) . (8)

We then feed the consistency f
[b,r]
w into an MLP to obtain

the fusing weight w[b,r], followed by a softmax operator for

normalization. The final target view can be represented in
matrix form as It = WbIb +WrIr.

4.4. Loss Function

Our model is trained end-to-end only using the RGB image
as supervision. Following [16], we use the mean squared
error loss as:

Lmse =
1

Np

Np∑
i=1

||ĉi − ci||22 , (9)

where Np is the number of pixels and ĉi and ci are the
ground-truth and predicted pixel color, respectively. In ad-
dition, the perceptual loss [42] and ssim loss [30] can be
applied, as:

Lperc = ||h(Î)− h(I)||,
Lssim = 1− ssim(Î , I) ,

(10)

where h is the perceptual function (a VGG16 network). Î
and I are the ground-truth and predicted image patches, re-
spectively. The loss at the kth stage is as follows:

Lk = Lmse + λpLperc + λsLssim , (11)

where λp and λs refer to loss weights. The overall loss is:

L =

Ns∑
k=1

λkLk (12)

where Ns refers to the number of coarse-to-fine stages and
λk represents the loss weight of the kth stage.

5. Experiments
5.1. Settings

Datasets. Following MVSNeRF [4], we divide the DTU [1]
dataset into 88 training scenes and 16 test scenes. We first
train our generalizable model on the 88 training scenes of
the DTU dataset and then evaluate the trained model on
the 16 test scenes. To further demonstrate the general-
ization capability of our method, we also test the trained
model (without any fine-tuning) on 8 scenes from the Real
Forward-facing [20] dataset and 8 scenes from the NeRF
Synthetic [21] dataset, both of which have significant dif-
ferences in view distribution and scene content compared to
the DTU dataset. The image resolutions of the DTU, the
Real Forward-facing, and the NeRF Synthetic datasets are
512 × 640, 640 × 960, and 800 × 800, respectively. The
quality of synthesized novel views is measured by PSNR,
SSIM [30], and LPIPS [42] metrics.
Baselines. We compare our methods with state-of-the-art
generalizable NeRF methods [4, 6, 16, 19, 26, 28, 40]. For
generalization with three views and per-scene optimization,
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Method Settings DTU [1] Real Forward-facing [20] NeRF Synthetic [21]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PixelNeRF [40]

3-view

19.31 0.789 0.382 11.24 0.486 0.671 7.39 0.658 0.411
IBRNet [28] 26.04 0.917 0.191 21.79 0.786 0.279 22.44 0.874 0.195
MVSNeRF [4] 26.63 0.931 0.1 68 21.93 0.795 0.252 23.62 0.897 0.176
NeuRay [19] 25.81 0.868 0.160 23.39 0.744 0.217 24.58 0.892 0.163
ENeRF [16] 27.61 0.957 0.089 23.63 0.843 0.182 26.17 0.943 0.085
GNT [26] 26.39 0.923 0.156 22.98 0.761 0.221 25.80 0.905 0.104
MatchNeRF [6] 26.91 0.934 0.159 22.43 0.805 0.244 23.20 0.897 0.164
Ours 29.36 0.969 0.064 24.28 0.863 0.162 26.99 0.952 0.070

MVSNeRF [4]

2-view

24.03 0.914 0.192 20.22 0.763 0.287 20.56 0.856 0.243
NeuRay [19] 24.51 0.825 0.203 22.73 0.720 0.236 22.42 0.865 0.228
ENeRF [16] 25.48 0.942 0.107 22.78 0.821 0.191 24.83 0.931 0.117
GNT [26] 24.32 0.903 0.201 20.91 0.683 0.293 23.47 0.877 0.151
MatchNeRF [6] 25.03 0.919 0.181 20.59 0.775 0.276 20.57 0.864 0.200
Ours 26.98 0.955 0.081 23.39 0.839 0.176 25.30 0.939 0.082

Table 1. Quantitative results under the generalization setting. We show the average results of PSNRs, SSIMs, and LPIPSs on three
datasets under two settings for the number of input views. The comparison methods are organized based on the year of publication.

Method DTU [1] Real Forward-facing [20] NeRF Synthetic [21]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF10.2h [21] 27.01 0.902 0.263 25.97 0.870 0.236 30.63 0.962 0.093
IBRNetft−1.0h [28] 31.35 0.956 0.131 24.88 0.861 0.189 25.62 0.939 0.111
MVSNeRFft−15min [4] 28.51 0.933 0.179 25.45 0.877 0.192 27.07 0.931 0.168
NeuRayft−1.0h [19] 26.96 0.847 0.174 24.34 0.781 0.205 25.91 0.896 0.115
ENeRFft−1.0h [16] 28.87 0.957 0.090 24.89 0.865 0.159 27.57 0.954 0.063
Oursft−15min 30.10 0.966 0.069 26.62 0.903 0.110 28.57 0.958 0.060
Oursft−1.0h 30.18 0.966 0.068 26.76 0.905 0.106 28.81 0.960 0.058

Table 2. Quantitative results under the per-scene optimization setting. The best result is in bold, and the second-best is underlined.

we follow the same setting as [4, 6, 16] and borrow the re-
sults of [4, 6, 21, 28, 40] from [4, 6]. We evaluate [16]
using the official code and trained models. To keep consis-
tent with the same settings for a fair comparison, such as
the number of input views, dataset splitting, view selection,
and image resolution, we use the released code and trained
model of [19] and retrain [26] with the released code, and
evaluate them under our test settings. For generalization
with two views, we borrow the results of [4, 6] from [6].
For other baselines [16, 19, 26], we evaluate them using the
released model [16, 19] or the retrained model [26].

Implementation Details. Following [16], the number of
coarse-to-fine stages Ns is set to 2. In our coarse-to-fine
framework, we sample 64 and 8 depth planes for the coarse-
level and fine-level cost volumes, respectively. And we
sample 8 and 2 points per ray for the coarse-level and fine-
level view rendering, respectively. We set λp = 0.1 and
λs = 0.1 in Eq. (11), while λ1 = 0.5 and λ2 = 1 in
Eq. (12). We train our model on four RTX 3090 GPUs us-

ing the Adam [14] optimizer. Refer to the supplementary
material for more implementation and network details.

5.2. Generalization Results

We report quantitative results on DTU, Real Forward-
facing, and NeRF Synthetic datasets in Table 1 under gen-
eralization settings. PixelNeRF [40], which applies ap-
pearance descriptors, has reasonable results on the DTU
test set, but insufficient generalization on the other two
datasets. Other methods [4, 6, 16, 19, 26, 28] that model
the scene geometry implicitly or explicitly by aggregat-
ing multi-view features can maintain relatively good gen-
eralization. Thanks to our proposed modules tailored for
both the reconstruction and rendering phases, our method
achieves significantly better generalizability. As shown in
Fig. 4, the views produced by our method preserve more
scene details and contain fewer artifacts. In challenging ar-
eas, such as occluded regions, object boundaries, and re-
gions with complex geometry, our method significantly out-
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Figure 4. Qualitative comparison of rendering quality with state-of-the-art methods [4, 6, 16] under generalization and three input
views settings.
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Figure 5. Qualitative comparison of depth maps with [16].

performs other methods. Refer to the supplementary mate-
rial for more qualitative comparisons.

5.3. Per-scene Fine-tuning Results

The quantitative results after per-scene optimization are
shown in Table 2 and we report the results of our method
after 15 minutes and 1 hour of fine-tuning. Due to the ex-
cellent initialization provided by our generalization model,
only a short period of fine-tuning is needed to achieve good
results. Our results after 15 minutes of fine-tuning are com-
parable to or even superior to those of NeRF [21] optimized
for substantially longer time (10.2 hours), and also outper-
form the results of other generalization methods after fine-
tuning. With a longer fine-tuning duration, such as 1 hour,
the rendering quality can be further improved. Qualitative

Method Reference view Novel view

Abs err ↓ Acc(2)↑ Acc(10)↑ Abs err ↓ Acc(2)↑ Acc(10)↑
MVSNet [37] 3.60 0.603 0.955 - - -
PixelNeRF [40] 49 0.037 0.176 47.8 0.039 0.187
IBRNet [28] 338 0.000 0.913 324 0.000 0.866
MVSNeRF [4] 4.60 0.746 0.913 7.00 0.717 0.866
ENeRF [16] 3.80 0.837 0.939 4.60 0.792 0.917
Ours 2.47 0.900 0.971 2.83 0.879 0.961

Table 3. Quantitative results of depth reconstruction on the
DTU test set. MVSNet is trained with depth supervision while
other methods are trained with only RGB image supervision. “Abs
err” represents the average absolute error and “Acc(X)” means the
percentage of pixels with an error less than X mm.

results can be found in the supplementary material.

5.4. Depth Reconstruction Results

Following [4, 16], we report the performance of depth re-
construction in Table 3. Our method can achieve higher
depth accuracy than other methods, even including the
MVS method MVSNet [37] that is trained with depth su-
pervision. As shown in Fig. 5, the depth map produced by
our method is more refined, such as sharper object edges.

5.5. Ablations and Analysis

Ablation studies. As shown in Table 4, we conduct abla-
tion studies to investigate the contribution of each proposed
module. Each individual component can benefit the base-
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Figure 6. Visualization of Fusion Weights. Wb and Wr rep-
resent the weight maps of the blending approach and regression
approach, respectively.
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Figure 7. Quantitative analysis of difficult areas. The X-axis
difficult areas (X%) represents considering the area with the top
X% of values in Wr as a difficult area. A smaller threshold X
indicates a more challenging area.

line model in both view quality and depth accuracy, with
CAF having the highest gain. An interesting phenomenon is
that CAF greatly improves depth accuracy, indicating that a
well-designed view decoding approach also facilitates depth
prediction. Combining all components results in the great-
est gain, with a 5.9% increase in PSNR and a 34.5% im-
provement in depth error compared to the baseline model.
CAF working mechanism. As shown in Fig. 6, we visu-
alize the fusion weights of two decoding approaches. The
regression approach exhibits higher confidence in challeng-
ing areas such as object edges and reflections, while the
blending approach shows higher confidence in most other
areas, which is consistent with the observation in Fig. 2.
As shown in Fig. 7, we define challenging areas as those
with high confidence in Wr and divide them by a series of
thresholds. A smaller threshold X indicates a more diffi-
cult region. When X = 5%, our method improves PSNR
by 2.55db and “Abs err” by 3.47mm. When the threshold
increases, such as X = 50%, our method improves PSNR
by 1.97db and “Abs err” by 1.54mm, which further demon-
strates the superiority of our method in challenging areas.
Fusion strategy. As shown in Table 5, we investigate the
performance of different fusion strategies. Comparing No.1
and No.2, the result of using the blending approach alone
is better than that of using the regression approach alone.
For No.4, the DWF represents fusion weights derived di-
rectly from features of the two intermediate views, which

ACA SVAsm SVAd CAF PSNR ↑ Abs err ↓
✗ ✗ ✗ ✗ 27.73 4.32
" ✗ ✗ ✗ 28.35 3.85
✗ " ✗ ✗ 28.30 3.53
✗ ✗ " ✗ 27.89 3.94
✗ ✗ ✗ " 28.85 3.36
" " ✗ ✗ 28.53 3.54
" " " ✗ 28.64 3.06
" " " " 29.36 2.83

Table 4. Ablation studies on the DTU dataset. We report the
image quality (PSNR) and depth accuracy (Abs err) metrics with-
out per-scene fine-tuning under three input views settings. SVAsm

and SVAd represent ϕsm and ϕd of SVA, respectively.

Blending Regression Fusion PSNR ↑ SSIM ↑ LPIPS ↓

No.1 " ✗ ✗ 27.73 0.956 0.088
No.2 ✗ " ✗ 26.83 0.955 0.091
No.3 " ✗ AE 27.89 0.959 0.081
No.4 " " DWF 28.10 0.963 0.075
No.5 " " CAF 28.85 0.966 0.070

Table 5. Comparison of different fusion strategies. The AE
represents the refinement by an autoencoder. The DWF represents
direct weighted fusion. The CAF is our proposed Consistency-
Aware Fusion.

greatly degrades performance compared to our proposed
way of checking the multi-view consistency (No.5). Our
fusion approach utilizes the advantages of the two decoding
approaches to refine the synthesized view. In No.3, we re-
fine the synthesized view decoded in a single way, where the
synthesized view is fed into an auto-encoder for refinement,
which has limited improvement.

6. Conclusion

In this paper, we present a generalizable NeRF method ca-
pable of achieving high-fidelity view synthesis. Specifi-
cally, during the reconstruction phase, we propose Adaptive
Cost Aggregation (ACA) to improve geometry estimation
and Spatial-View Aggregator (SVA) to encode 3D context-
aware descriptors. In the rendering phase, we conduct an
analysis of two existing color decoding strategies and in-
troduce the Consistency-Aware Fusion (CAF) module to
unify their advantages to refine the synthesized view qual-
ity. We integrate these modules into a coarse-to-fine frame-
work, termed GeFu. Extensive evaluations and ablations
demonstrate the effectiveness of our proposed modules.
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