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Abstract

Leveraging vast training data, multimodal large lan-
guage models (MLLMs) have demonstrated formidable gen-
eral visual comprehension capabilities and achieved re-
markable performance across various tasks. However, their
performance in visual document understanding still leaves
much room for improvement. This discrepancy is primarily
attributed to the fact that visual document understanding
is a fine-grained prediction task. In natural scenes, MLLMs
typically use low-resolution images, leading to a substantial
loss of visual information. Furthermore, general-purpose
MLLMs do not excel in handling document-oriented in-
structions. In this paper, we propose a High-Resolution
Visual Document Assistant (HRVDA), which bridges the
gap between MLLMs and visual document understanding.
This model employs a content filtering mechanism and
an instruction filtering module to separately filter out the
content-agnostic visual tokens and instruction-agnostic vi-
sual tokens, thereby achieving efficient model training and
inference for high-resolution images. In addition, we con-
struct a document-oriented visual instruction tuning dataset
and apply a multi-stage training strategy to enhance the
model’s document modeling capabilities. Extensive exper-
iments demonstrate that our model achieves state-of-the-
art performance across multiple document understanding
datasets, while maintaining training efficiency and infer-
ence speed comparable to low-resolution models.

1. Introduction
Large Language Models (LLMs), such as ChatGPT [47],
LLaMA [61, 62], have taken a significant stride towards
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Figure 1. Comparison of the visual processing workflow between
HRVDA and previous methods. Previous methods generally em-
ploy a low-resolution image encoder to extract features. In con-
trast, HRVDA utilizes a content filtering mechanism and an in-
struction filtering module to selectively filter out content-agnostic
and instruction-agnostic visual tokens, making high-resolution im-
age processing computationally feasible.

general artificial intelligence. By leveraging massive
amounts of data, they have developed powerful reason-
ing and instruction understanding capabilities. The pro-
liferation of LLMs has also faciliated the development of
Multimodal Large Language Models (MLLMs), which can
perceive and analyze information from images and other
sources [14, 39, 40, 48, 70, 77]. Some existing works have
demonstrated that MLLMs exhibit preliminary visual doc-
ument understanding capabilities, as they can extract and
comprehend information from complex documents contain-
ing textual and visual elements, such as tables, charts, and
graphics [4, 65, 68, 69]. Given their ability to capture the
relationships between textual and visual information, em-
ploying MLLMs for visual document understanding tasks
shows great potential.

However, the document image processing capabilities
of MLLMs are restricted in real-world scenarios, primarily
due to two reasons: the limitations posed by low-resolution
image inputs and the lack of document-oriented visual in-
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struction tuning [71].
The restriction of low-resolution image inputs is a preva-

lent challenge in the multimodal community. Current mod-
els usually handle images with relatively low resolutions,
typically 224 ⇥ 224 pixels [4, 14, 40]. While this resolu-
tion is sufficient for the majority of natural images, it can
result in extensive text distortion when it comes to process-
ing document images. As illustrated in Figure 1, clear text
in high-resolution images becomes blurred when resized to
a lower resolution.

Directly increasing the image resolution generates a
large number of visual tokens, which will occupy the lim-
ited input capacity of LLMs, and induce considerable train-
ing costs and inference latency [17]. Taking CLIP’s image
encoder [23, 51] as an example, a 1536 ⇥ 1536 image par-
titioned into 16 ⇥ 16 patches results in 9216 visual tokens,
which exceeds the context length of many existing open-
source LLMs, such as LLaMA-2 [62] with a context length
of 4096. In addition, they exhibit quadratic computational
complexity with respect to the length of the patch sequence.

On the other hand, general-purpose MLLMs suffer from
a lack of document-oriented visual instruction tuning [40],
leading to an incomplete understanding of document im-
ages. Unlike ordinary images, document images possess
distinct layout and structural information, where the font,
style, and color hold significant importance for compre-
hending the content [45, 56].

To tackle these challenges, we propose a novel mul-
timodal large language model called HRVDA (High-
Resolution Visual Document Assistant), which employs a
content filtering mechanism and an instruction filtering
module designed to filter out content-agnostic visual tokens
and instruction-agnostic visual tokens, respectively.

Specifically, content-agnostic visual tokens contribute a
significant amount of redundant information, while the re-
gions in document images that contain text, tables, charts,
and other document content frequently provide the most
valuable information. As shown in Figure 1, the pixels
within these regions constitute only a small proportion of
the entire image [45]. To reduce the number of blank back-
ground tokens, our proposed content filtering mechanism,
based on a content detector, can extract key features from
document images. Conservatively estimated, this approach
filters out approximately 50% of content-agnostic tokens
in practice, resulting in a substantial reduction of 30% in
training and inference latency without compromising per-
formance.

Meanwhile, instruction-agnostic visual tokens refer to
the parts that are not within the instruction attention region.
In conventional document understanding tasks, such as in-
formation extraction, document-oriented instructions often
rely on localized areas to generate answers [30, 49]. There-
fore, we design the instruction filtering module to further

filter instruction-agnostic visual tokens and significantly re-
duce the workload of the LLM.

To improve the document understanding capabilities of
HDVDA, we construct a document-oriented visual instruc-
tion tuning dataset. This dataset covers an extensive array
of tasks within the document domain, including information
extraction, text recognition, and visual question answering.
It also incorporates a variety of scenarios, such as tables,
charts, natural images, and webpage screenshots. Further-
more, we employ ChatGPT [47] to generate a diverse col-
lection of instruction templates, thereby strengthening the
generalization capabilities of the model.

Our experimental results on multiple document-oriented
datasets demonstrate that HRVDA’s OCR-free document
comprehension capabilities surpass current state-of-the-art
MLLMs such as mPLUG-DocOwl [68], UReader [69].

In summary, our main contributionsare as follows:
• We present HRVDA (High-Resolution Visual Document

Assistant), which, to the best of our knowledge, is the
first large multimodal model designed to directly accept
high-resolution image inputs.

• We propose a content filtering mechanism and an instruc-
tion filtering module to prune visual tokens, which signifi-
cantly accelerate the model’s training and inference, mak-
ing the processing of high-resolution image inputs com-
putationally feasible.

• We construct an extensive document-oriented visual in-
struction tuning dataset to enhance the model’s document
analysis capabilities.

• Experimental results on a series of document-oriented
datasets demonstrate that HRVDA achieves state-of-the-
art performance.

2. Related Work
2.1. Visual Document Understanding
Visual Document Understanding (VDU) refers to the auto-
mated process of analyzing, comprehending, and process-
ing document images [3, 8, 22, 25]. Existing methods can
be broadly categorized into two groups, OCR-dependent
methods and OCR-free methods.

OCR-dependent methods typically rely on an external
OCR interface to extract text content and coordinate infor-
mation from document images [19, 32, 50, 72]. For in-
stance, the LayoutLM family [29, 66, 67] leverages multi-
modal pre-training to combine image layout features with
textual features. DocFormer [2] undergoes unsupervised
pre-training through carefully designed tasks to encourage
multimodal interactions. UDOP [60] harmonizes image,
text, and layout modalities into a unified and cohesive rep-
resentation by leveraging the spatial relationships within the
document. These methods typically face issues such as in-
creased computational costs and error accumulation [8].
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Figure 2. The overall architecture of our proposed HRVDA. After partitioning the document image into visual tokens, a pluggable content
detector identifies whether tokens contain document content information, and then a content filtering mechanism is employed to perform
token pruning. Encoded visual tokens are then processed through an MLP to maintain consistency with the LLM’s embedding space
dimensions. The pruned token sequence is fused with the instruction features, further filtering out tokens irrelevant to the instructions.
Ultimately, a streamlined set of visual tokens and instructions are fed into the LLM, generating corresponding responses.

OCR-free methods aim to extract structured text di-
rectly from images in an end-to-end manner. This approach
simplifies the information processing process, speeds up the
reasoning and has gained significant attention in the VDU
community recently [18, 38]. For example, both Donut [33]
and Dessurt [21] utilize Swin Transformer to extract image
features, followed by cross-attention operations between
decoder models like BART and image features to generate
text in an auto-regressive manner. SeRum [9] goes a step
further by employing selective region concentration to en-
hance the precision and speed of generation.

2.2. Multimodal Large Language Models

MLLMs have become a new research focus recently [71].
According to the modality alignment approach, they can be
roughly divided into two categories: query-based methods
and projection-based methods.

Query-based methods involve utilizing a set of learn-
able query tokens to extract information through cross-
attention mechanisms. Flamingo [1] and BLIP-2 [37] are
the first to adopt this approach, which is later inherited by a
series of works [13, 20, 70, 73, 77]. However, this method
essentially introduces a textual supervisory signal to extract
image features and is not suitable for fine-grained predic-
tion tasks. The experimental results are provided in the Ap-
pendix A.

Projection-based methods involve directly mapping vi-
sual tokens with the LLM’s input space [24, 39, 44, 58, 65,
75]. For instance, LLaVA employs a simple linear layer
to project image features [40]. LLaMA-Adapter applies a
lightweight adapter module to align visual tokens and text
tokens [74]. This approach allows the LLM to perceive the

entire image, offering a more promising perspective for ef-
fective multimodal learning.

2.3. Token Pruning
Token pruning is a technique aimed at reducing model pa-
rameters and computational complexity [6, 12, 42, 53]. It
achieves model simplification and compression by remov-
ing certain weights or feature representations. Numerous
methods for pruning vision transformers have been pro-
posed [34]. DynamicViT [52] accelerates model inference
by sparsifying less important tokens using lightweight pre-
diction modules. SparseViT [17] efficiently processes high-
resolution images through sparse activations, enabling effi-
cient dense prediction tasks. STVit [11] achieves efficient
global and local processing in ViTs by removing redundant
image tokens and can serve as a backbone for downstream
tasks. These pruning techniques are designed for natural
images and are not suitable for document images.

3. HRVDA
In this section, we start with the model architecture (in Sec-
tion 3.1), followed with a detailed explanation of the Con-
tent Filtering Mechanism (in Section 3.2) and the Instruc-
tion Filtering Module (in Section 3.3). Finally, we in-
troduce the instruction tuning dataset constructed for doc-
ument understanding (in Section 3.4) and the training strat-
egy (in Section 3.5).

3.1. Overall Architecture
HRVDA is a large multimodal model designed to address
the challenges posed by high-resolution requirements in vi-
sual document understanding tasks. As shown in Figure 2,
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it mainly consists of four modules: a content detector, an
image encoder, an instruction filtering module (IFM), and
an LLM.

The initial step involves partitioning the original image
into a series of patches, which are subsequently converted
into a sequence of visual tokens. These tokens are then
processed by a content detector to assess the probability
of each token containing significant information. Leverag-
ing these probabilities, a content filtering mechanism en-
ables the image encoder to selectively compute visual fea-
tures and eliminate content-agnostic visual tokens. These
encoded visual features are subsequently integrated with the
instruction features using a self-attention mechanism within
the instruction filtering module. A straightforward 2-layer
MLP network is employed to classify these fused features
and further exclude instruction-agnostic visual tokens. Ul-
timately, the highly refined visual tokens are concatenated
with the instruction tokens and fed into the LLM for gen-
erating the anticipated response. This approach ensures a
more efficient and effective representation of the image con-
tent, tailored specifically for the task at hand.

3.2. Content Filtering
In conventional Transformer architectures [63], high-
resolution images are converted into long token sequences,
which poses a substantial demand on computational re-
sources. Moreover, elongated sequences introduce chal-
lenges in capturing long-range dependencies.

A potential solution to these challenges lies in the unique
properties of document images: they typically consist of
extensive areas of blank background, while content-rich re-
gions provide the majority of valuable information [45]. To
leverage the sparse content information effectively and effi-
ciently, we propose a content filtering mechanism, primarily
involving two modules: the content detector and the image
encoder.

Content Detector. A pluggable network is employed to
identify whether each token contains important content. For
document images, such content includes elements such as
text, tables, and charts [45]. The choice of network can be
quite diverse. It could be a simple MLP network for token
classification, a detection network like DETR [10], or a seg-
mentation network like U-Net [54] applied to reshaped fea-
ture maps. In this work, we employ a shallow PSENet [64],
which is designed as a segmentation-based detector capable
of localizing text instances of any shape. The content detec-
tor adopts a high recall rate strategy, ensuring that all visual
tokens containing content are preserved.

Image Encoder. A visual backbone network is used to
extract image features. In contrast to most MLLMs that
utilize ViT [23], we adopt the Swin Transformer [43] as
our image encoder, which utilizes a window-based mech-
anism for self-attention computation, mitigating computa-

tional burdens. Moreover, it incorporates a token merge
mechanism to prevent the direct loss of information. The
Swin Transformer’s downsampling of feature maps also
contributes to a further reduction of the number of visual
tokens.

Given an image x 2 RH⇥W⇥C , the patch partition mod-
ule transforms it into a set of visual tokens {zi | zi 2
Rd, 1  i  n}, where n represents the number of image
patches and d is the dimension of the latent vectors of the
encoder. The content detector performs a binary classifica-
tion task on the visual tokens and can obtain the probability
{pi | pi 2 [0, 1], 1  i  n} that each patch contains valu-
able content. Note that the patch partition module employed
by the content detector exhibits a structure similar to that of
the Swin Transformer, yet they do not share parameters.

As shown on the left side of Figure 2, a skip connection
is introduced in each Swin Transformer block to accelerate
computation:

hj+1 = p ⇤ F j(hj) + (1� p) ⇤ hj

h0 =z
(1)

where F j represents the operation in the j-th Swin Trans-
former block, and hj is the hidden state of the visual tokens.

For a well-trained content detector, we employ a thresh-
old ✏c to adjust the probability values in P for tokens con-
taining content:

pi =

⇢
1, pi > ✏c
0, pi < ✏c

(2)

Utilizing these probabilities, if none of the tokens within a
window is considered to contain content, the window by-
passes the attention computation and is directly passed to
the next block, thereby achieving computational accelera-
tion.

It is worth highlighting once again that content-agnostic
tokens are not directly removed, making the four merging
adjacent patches spatially close. The shifted window parti-
tioning approach [43] in the Swin Transformer enables in-
teractions between different tokens, thereby preserving po-
tentially useful layout information and enhancing modeling
capabilities.

The patch merging operation in Swin Transformer con-
solidates adjacent 2⇥2 regions into a single new patch, and
the probability of the merged patch containing content is
set to the maximum value among the probabilities of the 4
original regions:

p0
i
= max(pi, pi+1, pi+2, pi+3) (3)

To further preserve global information, the threshold
value ✏ is progressively increased from shallow to deeper
layers. Preserving more tokens in the shallow layers can
reduce the loss of visual information.
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Task Format

DC Human: What is the category of this image?
AI: {cls}

IE Human: what is the value of the {key}?
AI: {value}

VQA Human: {question}
AI: {answer}

OCR Human: Present all the text in the image.
AI: {all text}

VG Human: Where is the {obj}?
AI: {x, y, x + w, y + h}

IC Human: What is the abstract of the image?
AI: {caption}

TR Human: What is the element in the table?
AI: {element}

Table 1. Illustrative examples of instruction tuning templates cus-
tomized for seven tasks.

3.3. Instruction Filtering
Document-oriented instructions are highly specific, typi-
cally referring only to particular regions within the image,
which necessitates further filtering of visual tokens.

Several existing methods, for instance, the Q-Former
module in BLIP-2 [20, 37] and the Visual Abstractor in
mPLUG-owl [70], employ learnable queries to extract valu-
able information. Nevertheless, this approach inadvertently
leads to a diminished representation of visual information,
making it less suitable for fine-grained prediction tasks.
Moreover, the inclusion of query vectors essentially relies
on text as a supervisory signal, yet the textual descriptions
of images are often insufficient to provide accurate repre-
sentations. On the other hand, we experimentally discover
that for high-resolution images, approximately 500 query
vectors are required to maintain performance without sig-
nificant degradation. This indicates that this approach does
not offer a computational advantage in terms of processing
speed.

In this study, we utilize a more direct instruction filtering
module (IFM) that avoids excessive compression of visual
information, thus preserving its integrity.

Formally, the visual vectors obtained from the image en-
coder and the instruction vectors are concatenated and then
fed into the instruction filtering module for further process-
ing. Then, a Transformer layer is employed to facilitate the
fusion of these feature vectors:

[V 0, I 0] = FFN(SA([V, I])) (4)

where SA stands for the self-attention layer, FFN repre-
sents the feedforward layer, and V , I denote the visual vec-
tors and instruction vectors, respectively. The fused visual
features V 0 are then sent to a 2-layer MLP for binary clas-
sification to filter out visual tokens that are irrelevant to the
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Figure 3. The training pipeline of our HRVDA model.

instructions [42]. Similar to the content detector, the in-
struction filtering module also adopts a filtering threshold
✏i, as in Equation 3, to increase the classification recall rate,
ensuring that visual tokens related to instructions are not
discarded.

Ultimately, following content-agnostic and instruction-
agnostic filtering, the visual token sequences are fed into
the LLM.

3.4. Visual Instruction Tuning

In this section, we primarily introduce the task of visual
instruction tuning and the data sources.

Tuning Tasks. To enhance HRVDA’s generalization in
visual document understanding, we organize a wide range
of document tasks into an instruction format. In this work,
we primarily focus on tasks such as document classifica-
tion (DC), information extraction (IE), visual question an-
swering (VQA), optical character recognition (OCR), visual
grounding (VG), image captioning (IC), and table recon-
struction (TR). Table 1 presents some fundamental exam-
ples.

To diversify the range of prompts, we first manually craft
10 prompt templates for each task. Subsequently, we em-
ploy ChatGPT [47] to generate 50 similar prompts, which
are then reviewed by human experts to ensure their align-
ment with the intended meaning. Additional templates can
be found in the Appendix B.1.

Instruction Data Resources. A large number of real-
world and synthetic datasets are collected. The real-
world datasets used in this study include IIT-CDIP [27],
CORD [49], SROIE [30], DocVQA [45], Infograph-
icsVQA [46], DeepForm [7], Kleister Charity [57],
WikiTableQuestions [5], TabFact [16], ChartQA [15],
TextVQA [56], TextCaps [55], VisualMRC [59], PubTab-
Net [76], etc. Given the limited availability of open
source data, in this work a significant amount of data
synthesis methods are applied, such as SynthText [26],
Synth90K [31] and SynthDoG [33]. Due to space con-
straints, more details can be seen in the Appendix B.2.
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Model Res. CORD SROIE Doc Info Deep KLC WTQ Tab Chart Text Visual Text
VQA VQA Form Fact QA VQA MRC Caps

Donut⇤ 1280 84.1 83.2 67.5 11.6 61.6 30.0 18.8 54.6 41.8 43.5 93.9 74.4
SeRum⇤ 1280 84.9 85.8 71.9 13.5 50.7 31.3 25.5 58.3 47.9 66.3 98.6 101.4
Pix2Struct 1024 - - 76.6 40.0 - - - - 58.6 - - -
CogVLM 490 - - - - - - - - - 69.7 - 144.9
Qwen-VL† 448 - - 65.1 29.9 2.2 8.9 16.1 52.5 66.3 63.8 76.5 20.25
mPLUG-Doc 224 - - 62.2 38.2 42.6 30.3 26.9 60.2 57.4 52.6 188.8 111.9
UReader 224 - - 65.4 42.2 49.5 32.8 29.4 67.6 59.3 57.6 221.7 118.4
HRVDA 1536 89.3 91.0 72.1 43.5 63.2 37.5 31.2 72.3 67.6 73.3 211.5 125.3

Table 2. Comparison of HRVDA with OCR-free models across 12 document domain datasets. For consistent comparison, ⇤ denotes results
obtained after fine-tuning, while † indicates results evaluated based on open-source models. The best results are marked in bold.

Settings Res. Encoder Decoder All

Qwen-VL 448 1.67 7.8 9.47
HRVDA(0.25, 0.25) 1536 0.92 6.33 7.25
HRVDA(0.25, 0.5) 1536 0.89 4.68 5.57
HRVDA(0.5, 0.25) 1536 0.75 4.05 4.80
HRVDA(0.5, 0.5) 1536 0.76 2.88 3.64

Table 3. Comparison of forward-inference efficiency between
HRVDA and Qwen-VL. HRVDA is configured with four sets of
filtering thresholds for content and instruction.

3.5. Training Strategies

In order to achieve visual token filtering and enhance the
model’s document-oriented instruction understanding capa-
bilities, a multi-stage training strategy is adopted in this
work as shown in Figure 3.

Stage 1 focuses on training the content detector. We em-
ploy external OCR tools and detection networks to obtain
the coordinates of various elements, including text, charts,
tables, etc. These coordinates can be used to provide su-
pervised signals for the PSENet, determining whether each
visual token contains content or not. Stage 2 concentrates
on the pretraining of the image encoder. Our encoder is inte-
grated with m-BART [41] via cross-attention to perform the
task of recognizing all text within the images [33]. Stage
3 involves the training of the instruction filtering module.
For data with fixed layouts, a high filtering threshold is
used. Conversely, we utilize a low filtering threshold for
data characterized by variable layouts. Stage 4 entails im-
plementing low-rank adaptation techniques to preserve the
general conversational capabilities of the LLM [28]. Addi-
tional training details can be found in the Appendix C.

4. Experiments

In this section, we conduct experiments on numerous pub-
licly available document-oriented datasets to validate the ef-
fectiveness of our proposed HRVDA model.

4.1. Tasks and Datasets

In visual document understanding, information extraction
and text-oriented visual question answering are challenging
tasks, which also have widespread applications in practice.
Information Extraction involves extracting structured
key-value pair data from documents. In this study, we
use the two most commonly used datasets for evaluation,
CORD [49] and SROIE [30]. They are all scanned receipt
images and have good image quality. The F1 score is re-
ported, which is the weighted harmonic mean of Precision
and Recall.
Text-oriented Visual Question Answering is a highly
generalizable task, capable of addressing various prob-
lems through appropriate prompts. We evaluate HRVDA
on a wide range of publicly available datasets, in-
cluding DocVQA [45], InfoVQA [46], TextVQA [56],
ChartQA [15], DeepForm [7], KLC [57], WTQ [5], Table-
Fact [16], VisualMRC [59], and TextCaps [55]. Differ-
ent metrics, including ANLS, CIDEr, Accuracy, and F1
Score are reported in accordance with the methodologies
employed in previous works. A detailed description can be
found in the Appendix B.2.

4.2. Implementation Details

Model Architecture. Our HRVDA model employs Swin-
L [43] as the image encoder. Its layer and window sizes
are set to 2, 2, 18, 2, and 10, respectively, with a patch
size of 4 ⇥ 4. Additionally, the image resolution is set to
1536 ⇥ 1536. In this study, we conduct experiments based
on LLaMA-2-7B [62], which has a context length of 4096.
Training Details. We employ the Adam optimizer for each
stage of training, with an initial learning rate of 1e-4. The
learning rate schedule uses a linear warmup during the first
20% of steps. For LoRA, we set the rank to 8. Unless other-
wise specified, the detection thresholds for content filtering
in the Swin Transformer are set to ✏c = [0.25, 0.25, 0.5, 0.5]
in 4 stages, while the threshold for instruction filtering is set
to ✏i = 0.5. The batch size is set at 128. All training is con-
ducted on 128 Tesla V100 GPUs for 10 epochs.
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Figure 4. Visualization of the visual token filtering. The first row displays the original images, while the following three rows show the
effects of visual token filtering. The Pruning 1 and Pruning 2 occur in the first two stages and the last two stages of the Swin Transformer,
respectively, while Pruning 3 takes place in the instruction filtering module.

Figure 5. The impact of filtering thresholds on the DocVQA
dataset. Best viewed in color.

4.3. Comparisons with Previous Approaches
We conduct a comparative analysis of HRVDA against
OCR-free models, including Donut [33], SeRum [9],
Pix2Struct [35], Qwen-VL [4], mPLUG-Doc [68], and
UReader [69], utilizing 12 publicly available datasets for
evaluation.

These models can be broadly categorized into two
classes: encoder-decoder models and MLLMs. The first
class utilizes a cross-attention mechanism [63] to fuse
image and text, resulting in computational efficiency for

high-resolution image inputs while simultaneously requir-
ing task-specific fine-tuning. The second class leverages
LLMs, offering exceptional understanding capabilities, but
often unable to directly process high-resolution inputs.

As demonstrated in Table 2, HRVDA achieves the best
results across the 9 datasets. In information extraction tasks,
our model significantly surpasses current state-of-the-art
performance, owing to our robust visual pretraining (Stage
2). In visual question answering tasks, understanding the
question becomes crucial, particularly in datasets with a
high prevalence of elements from natural scene [56]. The
semantic analysis capabilities of the decoder in the first cat-
egory are limited, which prevents them from achieving op-
timal performance. Previous MLLMs are constrained by
the visual information distortion caused by low-resolution
image input, which also prevents them from achieving de-
sirable results. Consequently, our HRVDA model directly
processes high-resolution image inputs, minimizing the loss
of visual information and thereby delivering substantial per-
formance enhancements.

In terms of efficiency evaluation, we use Qwen-VL as
our baseline and evaluate the forward-inference latency on
a Tesla V100 GPU. The results reveal that HRVDA’s speed
is significantly faster than Qwen-VL’s across various filter-
ing thresholds, as illustrated in Table 3. Remarkably, when
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Human: How many stores did Saint Laurent 
operate in Western Europe in 2020 ?
HRVDA: In this chart, "Western Europe" is 
colored by the  blue, so in the year 2020, its value 
is 47.

Human: What is said on the right boy shirt in the 
green symbol?
HRVDA: in2

Human: What function does the grey key to the 
left do?
HRVDA: The grey key is select.

Human: where is the 
value of company?
HRVDA: 
98, 23, 321,  67

Human: What is 
the abstract of 
the image?
HRVDA:A bottle 
that has the word 
milan on it.

Human: What word is on the 
bottom-right button on keypad?
HRVDA: Menu

(a) (b) (c)

(d) (e) (f)

Figure 6. Qualitative examples generated by HRVDA. For better clarity, key regions are magnified and cropped.

both thresholds are set to 0.5, HRVDA reduces the runtime
by 61%. However, due to the constraints of GPU memory
usage, we do not further increase the resolution.

4.4. Ablation Study
In this section, we separately explore the impact of filtering
thresholds in the visual filtering mechanism and instruction
filtering module.

Figure 4 showcases several examples of token pruning.
It can be observed that for text-dense images, the proportion
of filtered pixels is considerably high. In contrast, for im-
ages containing charts and natural elements, the filtering ra-
tio is lower, as more visual semantic information is required
for these types of images. On the other hand, we quan-
titatively evaluate the impact of filtering thresholds in the
content filtering mechanism and instruction filtering mod-
ule on prediction accuracy and inference latency, as shown
in Figure 5. As the threshold increases, the accuracy of
the prediction gradually improves, reaching its peak at 50%
and then experiencing a decline. The inference latency de-
creases almost linearly with the filtering threshold. These
results indicate that appropriate token pruning not only ac-
celerates computation but also improves performance, as re-
moving redundant information can reduce the difficulty for
the model to extract key information.

4.5. Qualitative Analyzes
As shown in Figure 6, HRVDA can recognize text in spe-
cific areas based on location hints. This is extremely use-

ful in practical applications, as people often describe vague
locations to obtain information. HRVDA also successfully
identifies the highly blurred text Menu, which may be due to
the influence of visual semantic cues. Utilizing comprehen-
sive document-oriented visual instruction tuning, HRVDA
exhibits outstanding capabilities in following document in-
structions. More cases can be found in the Appendix D.

5. Conclusion
In this work, we propose a new OCR-free multimodal large
language model, HRVDA, which can directly accept high-
resolution image inputs and is suitable for fine-grained pre-
diction tasks. To the best of our knowledge, HRVDA is
the first MLLM to utilize the Swin Transformer as an en-
coder. Additionally, we employ a content filtering mech-
anism and an instruction filtering module to alleviate the
computational challenges brought about by high-resolution
inputs. Experimental results demonstrate that our HRVDA
model achieves state-of-the-art results on a series of pub-
lic datasets, while also exhibiting significantly faster speeds
compared to previous MLLMs. In the future, we will con-
tinue to investigate high-resolution challenges.
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