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Abstract

Recently, infrared small target detection (IRSTD) has
been dominated by deep-learning-based methods. How-
ever, these methods mainly focus on the design of complex
model structures to extract discriminative features, leav-
ing the loss functions for IRSTD under-explored. For ex-
ample, the widely used Intersection over Union (IoU) and
Dice losses lack sensitivity to the scales and locations of
targets, limiting the detection performance of detectors. In
this paper, we focus on boosting detection performance with
a more effective loss but a simpler model structure. Specif-
ically, we first propose a novel Scale and Location Sensi-
tive (SLS) loss to handle the limitations of existing losses:
1) for scale sensitivity, we compute a weight for the IoU
loss based on target scales to help the detector distinguish
targets with different scales: 2) for location sensitivity, we
introduce a penalty term based on the center points of tar-
gets to help the detector localize targets more precisely.
Then, we design a simple Multi-Scale Head to the plain U-
Net (MSHNet). By applying SLS loss to each scale of the
predictions, our MSHNet outperforms existing state-of-the-
art methods by a large margin. In addition, the detection
performance of existing detectors can be further improved
when trained with our SLS loss, demonstrating the effective-
ness and generalization of our SLS loss. The code is avail-
able at https://github.com/ying-fu/MSHNet.

1. Introduction

Infrared small target detection (IRSTD) is an important
computer vision task, which has a wide range of applica-
tions, such as maritime surveillance [20, 34], traffic man-
agement [26, 27, 30] and so on. However, due to the long-
distance camera capture, and the noise and clutter interfer-
ence, infrared targets are often small and dim, making it
difficult to detect infrared small targets effectively.

To enhance the detection performance of infrared small
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Figure 1. Visualization of the detection performance (IoU), in-
ference time consumption (Images/second) as well as the num-
ber of floating point of operations (area of circles) of some deep-
learning-based methods. It can be seen that our MSHNet achieves
a better balance between these three metrics than other methods.
Results are evaluated on IRSTD-1k [30].

targets, numerous methods have been proposed. Early tradi-
tional methods can be divided into filtering-based methods
[5, 17], local-contrast-based methods [9, 10], and low-rank-
based methods [2, 28, 29, 31]. However, these traditional
methods rely on manually designed features, and thus can
not generalize well to environment changes. Recently, with
the development of Deep Learning (DL), IRSTD has been
dominated by DL-based methods [1, 15, 21, 24]. Different
from traditional methods, DL-based methods can automati-
cally learn useful features through a gradient descent algo-
rithm with the constraints of loss functions, making them
more robust to various scenarios.

However, existing DL-based methods primarily focus on
designing complex model structures for feature extraction,
leaving the loss functions for IRSTD under-explored. For
instance, Li et.al. [14] customize a dense nested interactive
module to achieve multi-layer feature fusion, and Wu et.al.
[25] nest the U-Net structure to achieve feature aggrega-
tion. Although discriminative features can be extracted by
the complex model structures, the detection performance is
still limited by the under-explored loss functions. For ex-
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ample, the widely used Intersection over Union (IoU) loss
and Dice loss [18] lack sensitivity to the scales and loca-
tions of targets. As shown in Fig. 2, targets with different
scales (top row) and locations (bottom row) may share the
same IoU loss or Dice loss. This insensitivity to scales and
locations makes it challenging for detectors to distinguish
targets of different scales and locations, which ultimately
limits the detection performance.

In this paper, we focus on boosting detection perfor-
mance with a more effective loss function but a simpler
model structure. Specifically, we first propose a novel Scale
and Location Sensitive (SLS) loss to handle the limitations
of existing losses. The merits of the proposed SLS loss in-
clude: (1) Scale sensitivity. We compute a weight for the
IoU loss based on the predicted and ground-truth scales of
targets. The larger the gap between predicted and ground-
truth scales is, the more attention will be paid by the detec-
tor. (2) Location Sensitivity. We design a location penalty
based on the predicted and ground-truth center points of tar-
gets. Compared with traditional L1 and L2 distances, the
designed location penalty produces the same value for fewer
different location errors, making the detector locate targets
more precisely. Then, we introduce a simple Multi-Scale
Head to the plain U-Net (MSHNet), which produces multi-
scale predictions for each input. Through leveraging SLS
loss at different scales, our MSHNet outperforms existing
state-of-the-art (SOTA) methods by a large margin. With
the absence of complex structures, our detector achieves
a better balance between detection performance, floating
point of operations (FLOPs) and inference time consump-
tion, as shown in Fig. 1. Moreover, we further train differ-
ent existing detectors with our SLS loss and achieve better
detection performance, demonstrating the effectiveness and
generalization of our SLS loss.

In summary, our main contributions are:

• We propose a novel scale and location sensitive loss for
infrared small target detection, which helps detectors dis-
tinguish objects with different scales and locations.

• We propose a simple but effective detector by introduc-
ing a multi-scale head to the plain U-Net, which achieves
SOTA performance without bells and whistles.

• We apply our loss to existing detectors and show that
the detection performance can be further boosted, demon-
strating the effectiveness and generalization of our loss.

2. Related Work

In this section, we first make a brief introduction to existing
methods for IRSTD. Then we provide a review of related
works from the perspectives of loss functions and model
structures for IRSTD.

ℒ&%& = 0.94 ℒ&%& = 0.92

ℒ&%& = 0.62 ℒ&%& = 0.64 ℒ&%& = 0.59

ℒ&%& = 0.97

Figure 2. Top row: our SLS loss for the targets of different scales,
where IoU loss (=0.4) and Dice loss (=0.57) have the same values
for different cases. Bottom row: our SLS loss for the targets of
different locations, where IoU loss (=0.3) and Dice loss (=0.43)
have the same values for different cases.

2.1. Infrared Small Target Detection

Existing IRSTD methods can be roughly divided into tradi-
tional methods and Deep-Learning-based (DL-based) meth-
ods. Among them, traditional methods depend on the hand-
crafted priors and can be further divided into filtering-based
methods [5, 17], local-contrast-based methods [9, 10, 12],
and low-rank-based methods [2, 6, 8, 19, 28, 29, 32]. To get
useful features with such hand-crafted priors, lots of hyper-
parameters need to be manually fine-tuned, making them
less robust to the interference of noises and clutters. Dif-
ferently, DL-based methods [3, 7, 14, 15, 21, 25, 30, 33]
can automatically learn useful features with the help of loss
functions and gradient descent algorithms. Though impres-
sive detection performance has been achieved, existing DL-
based methods mainly focus on the design of model struc-
tures for the pursuit of more effective features, leaving the
loss functions for IRSTD under-explored.

Different from existing DL-based methods, we focus on
boosting detection performance with a more effective loss
function but a simpler model structure. A better balance
between detection performance, FLOPs and inference time
consumption can be achieved.

2.2. Loss Functions for IRSTD

As one of the components in DL-based methods, the loss
function plays a critical role in the learning process of deep
models by quantifying the disparity between predictions
and ground-truths. The commonly adopted IoU loss and
Dice loss [18] suffer from insensitivity to the scales and lo-
cations of targets, rendering the detectors for distinguishing
the targets of different scales and locations accurately.

In order to achieve better detection performance, re-
searchers have developed several loss functions. For ex-
ample, the loss for adversarial training [21], edge loss for
the detecting of target edges [30] and the likelihood loss be-
tween target and background maps [11]. However, these
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Figure 3. Left: the value of weight w in scale sensitive loss with
respect to the number of predicted pixels and ground-truth pixels
(i.e., predicted and ground-truth scales). Right: the normalized
location sensitive loss with respect to the location error between
the predicted center point and ground-truth center point. The range
of [0, 100] pixels is shown for illustration.

losses are tailored for specific network architectures, lim-
iting their broader utility. Different from these dedicated
losses, the generalized IoU (GIoU) [16] and complete IoU
(CIoU) [35] losses have been adopted for box-level IRSTD
[13, 23]. However, these IoU variant losses still lack the
sensitivity of scales and locations.

In contrast to these losses, we formulate a general loss
function that is better suitable for IRSTD. It can distinguish
targets of different scales and locations, enabling different
detectors to achieve better detection performance.

2.3. Model Structures for IRSTD

The deep model is another key component in DL-based
methods. Liu et al. [15] pioneer the application of deep
learning to IRSTD. The adopted five-layer Multi-Layer Per-
ceptron (MLP) network demonstrates the superiority of DL-
based methods in IRSTD. Recently, lots of works have fo-
cused on the design of model structures to get more effec-
tive features. Li et al. [14] customize a dense nested inter-
active module to achieve multi-layer feature fusion. Zhang
et al. [30] utilize Taylor finite difference and orientation at-
tention strategy to extract edge information of targets. How-
ever, such complex model structures not only bring more
computational cost but still suffer from moderate detection
performance due to the lack of effective loss functions.

Differently we introduce a simple multi-scale head to
the plain U-Net, rather than designing complex structures.
By applying our SLS loss to different scales, SOTA perfor-
mance is achieved with less time consumption.

3. Scale and Location Sensitive Loss
The scale and location sensitive (SLS) loss, denoted as
LSLS , is designed to handle the insensitivity of scales and
locations in existing losses. It consists of a scale sensitive
loss and a location sensitive loss. Formally,

LSLS = LS + LL, (1)

where LS and LL present the scale sensitive loss and loca-
tion sensitive loss, respectively. In the following, we intro-
duce the SLS loss in detail starting from the scale sensitive
loss, which is based on the commonly used IoU loss.

3.1. Scale Sensitive Loss

Let Ap and Agt be the set of predicted pixels and ground-
truth pixels of targets, the IoU loss between them can be
formulated as:

LIoU = 1− |Ap ∩Agt|
|Ap ∪Agt|

. (2)

Though having been widely used in IRSTD, the IoU loss
is insensitive to the scales and locations of targets, as shown
in Fig. 2. The scale sensitive loss is implemented by pro-
viding a weight to the IoU loss:

LS = 1− w
|Ap ∩Agt|
|Ap ∪Agt|

,

s.t. w =
min(|Ap|, |Agt|) + Var(|Ap|, |Agt|)
max(|Ap|, |Agt|) + Var(|Ap|, |Agt|)

,

(3)

where Var(·, ·) is the function that gets the variance of pro-
vided scalars.

On the left of Fig. 3, we visualize the values of w with
respect to the number of pixels in Ap and Agt. It can be
observed that the larger the gap between |Ap| and |Agt| is,
the smaller the w is, which results in a larger scale sensi-
tive loss (on the assumption that the IoU between Ap and
Agt is fixed). The intuition behind the design of w is that
the detector should pay more attention to the target with a
larger loss if the predicted and ground-truth scales (i.e., the
numbers of pixels in Ap and Agt) are quite different.

3.2. Location Sensitive Loss

The location sensitive loss is calculated based on the pre-
dicted and ground-truth center points of targets. Given the
sets of predicted pixels Ap and ground-truth pixels Agt, the
corresponding center points for Ap and Agt are obtained by
averaging the coordinates of all pixels, which are denoted
as cp = (xp, yp) and cgt = (xgt, ygt), respectively. Then,
we convert the coordinates of these two center points into
the polar coordinate system. Take cp for example, the cor-
responding distance dp and angle θp in the polar coordinate
system are:

dp =
√

x2
p + y2p,

θp = arctan(
yp
xp

).
(4)

The location sensitive loss can be obtained by:

LL = (1− min(dp, dgt)

max(dp, dgt)
) +

4

π2
(θp − θgt)

2, (5)
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Figure 4. Overview of the proposed MSHNet. Our MSHNet is implemented based on a plain U-Net without bells and whistles. Only
a simple multi-scale head is introduced. For each scale, the feature map is fed into a dedicated head, producing a prediction with the
same spatial shape as the feature map. Different scales of predictions are upsampled (if needed) and concatenated together to get the final
prediction. In the training stage, our SLS loss is applied to each of these predictions since it is scale sensitive.

where dgt and θgt are the distance and angle of cgt in the
polar coordinate system, respectively.

On the right of Fig. 3, we show how the location loss
changes with respect to different location errors between cp
and cgt. As we can see, though some different location er-
rors share the same loss value (these location errors still can
be distinguished with their gradients), the location loss dis-
tinguishes most of the different location errors effectively,
making the detector sensitive to different types of location
errors and locate the targets more accurately.

4. MSHNet Dectector
In this section, we introduce our MSHNet detector, which
is implemented by introducing a simple but effective multi-
scale head to the plain U-Net. The overview of MSHNet
is shown in Fig. 4. We take the commonly used U-Net as
the backbone network. The feature maps that have differ-
ent scales in the decoder are fed into different prediction
heads to get different scales of predictions. All the predic-
tions from different feature maps are finally concatenated
(upsampling before concatenation is adopted if needed) to
get the final prediction. In the training stage, our SLS loss
is applied to each of the predictions. In the following, the
multi-scale head is first described in detail. Then we intro-
duce the utilization of SLS loss in MSHNet.

4.1. Multi-Scale Head

Let xi ∈ RHi×Wi×Ci be the feature map at the i-th scale
in the decoder of U-Net, where Hi ×Wi is the spatial size
and Ci is the number of channels. Following the common
settings within existing works, there are 4 scales in U-Net,
which means that i ∈ {1, 2, 3, 4}. Supposing the input spa-
tial size is H ×W , then Hi =

H
24−i and Wi =

W
24−i .

The i-th prediction pi ∈ RHi×Wi×1 is obtained by the
corresponding prediction head, which is implemented by a
convolution layer and a sigmoid activation function:

pi = Sigmoid(Conv(xi)). (6)

Note that different prediction heads have their own dedi-
cated parameters. The final prediction p ∈ RH×W×1 is
obtained based on all the 4 predictions:

p = Sigmoid(Conv([⇑ (p1, 8),⇑ (p2, 4),⇑ (p3, 2),p4])),
(7)

where ⇑ (·, ·) is the operation that spatially upsamples the
first argument with the second argument as the factor, and
[·, ..., ·] concatenates all the provided arguments along the
channel dimensionality.

4.2. Training MSHNet with SLS Loss

Since our SLS loss is scale sensitive and there are several
scales in the predictions of MSHNet, we apply SLS loss
to all of the predictions. The inspiration is that our SLS
loss produces different loss values for different scales even
if they share the same spatial layout (refer to the first two
cases in the top row, Fig. 2 ). We hypothesize that by apply-
ing our SLS loss to different scales, the targets that are with
different scales can attract different attention from the de-
tector, resulting in an overall better detection performance.

Let pgt ∈ {0, 1}H×W×1 be the ground-truth label. The
final loss for MSHNet is:

L =
1

5
(

4∑
i=1

LSLS(pi,⇓ (pgt, 2
4−i)) + LSLS(p,pgt)),

(8)
where ⇓ (·, ·) is the operation (i.e., max-pooling) that spa-
tially downsamples the first argument with the second argu-
ment as the factor, and LSLS(·, ·) is our SLS loss.

5. Experiments
In this section, the adopted datasets and metrics are firstly
introduced, followed by the implementation details. Then,
we compare the proposed method MSHNet with existing
IRSTD detectors. Finally, discussions are provided to show
the effectiveness of our Scale and Location Sensitive loss
and MHSNet detector.
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Method Description
IRSTD-1k NUDT-SIRST

IoU↑ Pd ↑ Fa ↓ IoU↑ Pd ↑ Fa ↓
Top-Hat [17]

Filtering
10.06 75.11 1432 20.72 78.41 166.7

Max-Median [5] 6.998 65.21 59.73 4.197 58.41 36.89
WSLCM [10]

Local Contrast
3.452 72.44 6619 2.283 56.82 1309

TLLCM [9] 3.311 77.39 6738 2.176 62.01 1608
IPI [8]

Low Rank

27.92 81.37 16.18 17.76 74.49 41.23
NRAM [29] 15.25 70.68 16.93 6.927 56.40 19.27

RIPT [2] 14.11 77.55 28.31 29.44 91.85 344.3
PSTNN [28] 24.57 71.99 35.26 14.85 66.13 44.17

MSLSTIPT [19] 11.43 79.03 1524 8.342 47.40 888.1
MDvsFA [21]

Deep Learning

37.34 83.71 88.52 35.86 85.22 95.37
ALCNet [4] 65.68 89.25 27.71 72.89 96.19 30.40
ISNet [30] 62.88 92.59 27.92 67.86 92.59 34.65

DNANet [14] 65.71 91.84 17.61 79.98 96.93 12.78
MSHNet (Ours) 67.16 93.88 15.03 80.55 97.99 11.77

Table 1. Quantitative results of different methods. Results for the metrics of IoU(%), Pd(%) and Fa(10−6) are presented. The best values
are highlighted with bold. It can be seen that our MSHNet achieves the best results on different metrics and datasets.

5.1. Datasets and Metrics

Datasets. The experiments are conducted on two datasets
i.e., IRSD-1k [30] and NUDT-SIRST [14]. There are 1,001
and 1,327 infrared images in IRSTD-1k and NUDT-SIRST,
respectively. Following existing works [14, 30], the images
in IRSTD-1k are divided into the training and testing splits
with a ratio of 4:1, while the images in NUDT-SIRST are
equally divided into the training and testing splits.

Evaluation Metrics. We use IoU and false alarm rate
(Fa) as the pixel-level evaluation metric and assess target-
level performance using the probability of detection (Pd).
Different metrics reveal the performance of the detector
from different aspects. Fa and Pd focus on recall and false
alarms, while IoU takes both into consideration.

Formally, The false alarm rate is:

Fa =
Pfalse

Pall
, (9)

where Pfalse is the number of false positive pixels and Pall

is the number of all pixels in the image.
The probability of detection is:

Pd =
Npred

Nall
, (10)

where Npred is the number of correctly predicted targets
and Nall is the number of all targets.

5.2. Implementation Details

The proposed method is implemented with PyTorch frame-
work. Following existing works, the input size of the de-
tector is set to 256 × 256. We train different models using

AdaGrad on 2 RTX3090 GPUs. The batch size is set to 4
and the learning rate is set to 0.05.

5.3. Comparison to Existing Methods

We first compare the proposed MSHNet with existing meth-
ods. Different types of methods are evaluated, includ-
ing traditional methods and deep-learning-based methods.
The evaluated traditional methods are the filtering-based
Top-Hat [17] and Max-Median [5], local-contrast-based
WSLCM [10] and TLLCM [9], low-rank-based IPI [8],
NRAM [29], RIPT [2], PSTNN [28] and MSLSTIPT [19].
The deep-learning-based methods are MDvsFA [21], AL-
CNet [4], ISNet [30], and DNANet [14]. For a fair com-
parison, all the evaluated deep-learning-based models are
retrained with their official codes to their convergence on
NUDT-SIRST [14] and IRSTD-1k [30] datasets.

Quantitative Results. The quantitative results of differ-
ent methods are presented in Tab. 1. Overall, our MSHNet
performs the best on all metrics and all datasets.

As expected, traditional methods perform poorly on
these challenging datasets due to the limitations of manu-
ally designed priors for feature extraction. In contrast, DL-
based methods can automatically learn useful features and
yield better results than traditional methods. Nevertheless,
existing DL-based methods lack the consideration of dif-
ferent scales and locations of targets in the training stage.
The predictions of existing DL-based methods suffer from
the incomplete shape and missed detection of valid pixels,
e.g., lower IoU and Pd. Compared with DNANet, which is
one of the existing SOTA DL-based methods, our MSHNet
achieves 1.45% and 0.57% higher IoU, 2.04% and 1.06%
higher Pd on IRSTD-1k and NUAA-SIRST datasets, re-
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Infrared Images Ground-Truth Top-Hat[17] WSLCM[10] IPI[8] ISNet[30] DNANet[14] MSHNet (Ours)

Figure 5. Visual comparison of detection results on several infrared images. Correctly detected targets, missed targets, and false alarms are
framed by red, blue, and yellow boxes, respectively. A close-up view of the target is shown in image corners.

spectively. In addition, the false alarm (Fa) on both datasets
are all reduced by a large margin, demonstrating the superi-
ority of our method.

As mentioned before, there are no complex model struc-
tures in MSHNet, which achieves a better balance be-
tween detection performance, floating point of operations
(FLOPs) and inference time consumption. The results of
DL-based methods are presented in Fig. 1. It can be ob-
served that MSHNet has the best detection performance and
the least inference time consumption. It also has the least
number of FLOPs except for ALCNet. We own the less in-
ference time consumption of MSHNet to the smaller num-
ber of FLOPs and the simple architectures (complex struc-
tures in deep models bring more inference time consump-
tion [22]). The better detection performance demonstrates
the effectiveness of the proposed multi-scale head and the
scale and location sensitive loss.

Qualitative Results. For different kinds of methods, we
visualize the detection results of the representative methods
in Fig. 5 and Fig. 6. It can be observed that our method has

better capability for the detection of challenging small tar-
gets. Traditional methods are susceptible to noise interfer-
ence, resulting in a large number of false alarms. Moreover,
due to the small scale and low contrast of the target, tra-
ditional methods and other DL-based methods struggle to
effectively extract feature information of small targets from
challenging scenarios, resulting in a considerable number
of missed targets. In contrast, our methods can accurately
distinguish small targets from these low-contrast infrared
images. Take the case in the 5-th row in Fig. 5 for example,
except for MSHNet and WLSLCM, other methods fail to
detect the target. Moreover, from the peaks and the area un-
der the peaks in Fig. 6, it can be observed that our method
predicts targets with higher confidence and obtains a closer
number of peaks with ground-truth. We attribute the su-
periority of MSHNet to the scale and location sensitivity
brought by our SLS loss and multi-scale head.

5.4. Discussions

We provid some discussions to show the effectiveness of our
method. Experiments are conducted on IRSTD-1k dataset.
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Infrared Images Ground-Truth Top-Hat[17] WSLCM[10] IPI[8] ISNet[30] DNANet[14] MSHNet (Ours)

Figure 6. 3D visualization results corresponding to those in Fig. 5. Different colors represent distinct grayscale values, ranging from blue
to yellow, with values gradually increasing. Please zoom in for better viewing.

Detection Results for Different Scales of Targets. Since
our SLS loss and MSHNet both are scale sensitive, we show
how the detection performance changes with respect to dif-
ferent scales of targets. To do this, we split the targets into
three different scale levels according to the number of pix-
els: (0,10], (10, 40] and (40, ∞]. Results are shown in
Tab. 2. Due to the limited space, only several DL-based
methods are evaluated (specifically, ISNet, DNANet and
our MSHNet). Compared with DNANet, MSHNet per-
forms better for all scale levels of targets. Compared with
ISNet, MSHNet achieves comparable performance with IS-
Net for (0,10] and (10,40] scales but much better perfor-
mance for (40,∞] scale. The conclusion is that MSHNet
can pay attention to different scale levels of targets, result-
ing in an overall better performance.

Impact of Scale and Location Sensitive Loss. We com-
pare our SLS loss with the commonly used IoU loss and
Dice loss. The results of several DL-based methods trained
with different losses are presented in Tab. 3. Overall, the
detection performance of different detectors is all improved
by our SLS loss in terms of IoU metric, demonstrating the
effectiveness and generalization of SLS loss. However, it is
hard to tell which loss performs the best on the metric of Pd.
Interestingly, adopting our SLS loss results in a poorer per-
formance on Fa metric. The reason is that more false alarm
pixels may be treated as positive targets since our SLS loss
tries to distinguish the targets of all different scales.

Next, we show the effectiveness of scale sensitive loss

Scale Method IoU↑ Pd ↑ Fa ↓

(0,10]
DNANet [3] 47.26 91.27 22.53
ISNet [14] 50.94 94.53 30.91

MSHNet (Ours) 49.51 95.24 20.68

(10,40]
DNANet [3] 63.14 91.85 13.25
ISNet [14] 65.41 91.91 16.60

MSHNet (Ours) 64.79 91.85 8.03

(40,∞]
DNANet [3] 78.46 93.94 6.78
ISNet [14] 66.45 87.87 58.80

MSHNet (Ours) 79.20 96.97 11.02

Table 2. Comparisons of different methods in terms of different
scales of targets. Results for the metrics of IoU(%), Pd(%) and
Fa(10−6) are presented. Our MSHNet achieves overall the best
performance.

(LS) and location sensitive loss (LL) separately. To do
this, we train MSHNet with different losses. The results
are presented in Tab. 4. Note that the difference between
LS and LIoU lies in the newly introduced weight w (refer
to Sec. 3.1). By comparing the results in the first two rows,
we can find that the introduction of w (refer to Eq. (3)) is
positive to the metrics of IoU and Fa, indicating that the
detector produces more accurate shapes for targets as well
as less false alarms. While comparing the results in the last
two rows, it can be observed that more false alarms will
be produced when the location sensitive loss is introduced.
However, both IoU and Pd are greatly improved.

Finally, we make a study on different types of location
sensitive loss. As mentioned in Sec. 3.2, our location sen-
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Loss
DNANet [3] ISNet [14] MSHNet (Ours)

IoU↑ Pd ↑ Fa ↓ IoU↑ Pd ↑ Fa ↓ IoU↑ Pd ↑ Fa ↓
LIoU 65.71 91.84 17.61 62.88 92.59 27.92 64.83 91.16 5.28
LDice 65.58 92.17 12.75 62.94 90.91 19.26 65.36 92.18 14.12

LSLS (Ours) 67.09 92.15 35.15 64.42 92.26 15.14 67.16 93.88 15.03

Table 3. Comparisons of different losses and detectors. Results for the metrics of IoU(%), Pd(%) and Fa(10−6) are presented. The main
IoU metrics of different detectors are consistently boosted by our scale and location sensitive loss.

Loss IoU↑ Pd ↑ Fa ↓
LS w/o. w 64.83 91.16 5.28

LS 65.82 89.46 4.06
LS + LL 67.16 93.88 15.03

Table 4. Ablation study of the scale sensitive loss (LS) and loca-
tion sensitive loss (LL). Results are obtained by MSHNet. The
metrics of IoU(%), Pd(%) and Fa (10−6) are adopted. Note that
LS without w is equivalent to LIoU .

Loss IoU↑ Pd ↑ Fa ↓
LS + LL2 64.89 92.86 7.29
LS + LL1 64.75 93.54 6.18
LS + LL 67.16 93.88 15.03

Table 5. Ablation study of different types of location sensitive loss.
Results are obtained by MSHNet. The metrics of IoU(%), Pd(%)
and Fa (10−6) are adopted.

sitive loss can distinguish different location errors more ef-
fectively . To show the effectiveness of such distinguisha-
bility, we use the L2 and L1 distances between cp and cgt
as the location sensitive loss (denoted as LL2

and LL1
, re-

spectively). Results are shown in Tab. 5. As we can see,
the distinguishability of different location errors is effective
in getting better IoU and Pd metrics. However, more false
alarms are produced (higher Fa). Such phenomenon is also
observed from Tab. 4. The reason may be that the distin-
guishability of different location errors makes the detector
more sensitive to small targets, resulting in the potential of
treating some noises to targets.

Impact of Multi-Scale Heads. Now we ablate the num-
ber of scales in our multi-scale head. Results are shown
in Tab. 6. As we can see, different predictions achieve
different detection performance. Overall, the more scales
adopted, the better the detection performance is achieved.
For example, the IoU is improved from 63.10% to 67.16%
when the number of scales is increased from 1 to 4. We use
4 scales by default.

6. Conclusion
In this paper, we focus on boosting the performance of in-
frared small target detection with an effective loss function

Num. of Scales Supervised Predictions IoU↑ Pd ↑ Fa ↓
1 p 63.10 86.73 19.21
1 p4, p 64.69 93.87 36.74
2 p3, p4, p 64.35 94.89 35.38
3 p2, p3, p4, p 65.90 93.54 24.37
4 p1, p2, p3, p4, p 67.16 93.88 15.03

Table 6. Ablation study of the number of scales in MSHNet. While
reducing the number of adopted scales, the remaining smallest
scale is removed. Results for the metrics of IoU(%), Pd(%) and
Fa (10−6) are presented.

but a simpler model structure. To do this, a Scale and Lo-
cation Sensitive (SLS) loss is first proposed. The merits
of SLS loss include: (1) it pays more attention to the tar-
gets that have large gaps between the predicted and ground-
truth scales; (2) it distinguishes different types of location
errors between the predicted and ground-truth center points
of targets. Then a simple Multi-Scale Head is introduced
to the plain U-Net (MSHNet), which produces multi-scale
predictions for each input. Through applying SLS loss to
different scales of predictions, different scales of targets can
attract different attention from the detector, resulting in an
overall better detection performance. Experimental results
show that MSHNet achieves SOTA detection performance
with the better balance of inference time and the number of
floating point of operations. While applying our SLS loss to
other existing detectors, the overall detection performance
can be boosted. However, more false alarms may be intro-
duced. Through the analysis in Sec. 5.4, we find that such a
phenomenon is brought by the location sensitive loss in SLS
loss which potentially treats some noises as targets. In fu-
ture works, we try to handle this by designing more suitable
location sensitive loss.
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