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(a) A Fast-Moving Vehicle

(b) A Parking Vehicle Starts to Move

(c) A Forward Moving Vehicle Stops and Reverses

Figure 1. Illustration of Instantaneous Motion Perception. We visualize motion of three objects from Waymo dataset [46], each with
three consecutive frames. Objects in fast and subtle motions are marked as red and blue, respectively, with arrow length indicating motion
magnitude. While standard motion detection handles general large motions such as (a), we focus on instantaneous perception of subtle
motions that may indicate changes in driving behavior, for example (b) parking car starts to move, and (c) forward moving car stops and
reverses. The visualized subtle motions (b)(c) are output from our framework. We also provide the video visualization in supplementary.

Abstract

The perception of 3D motion of surrounding traffic par-
ticipants is crucial for driving safety. While existing works
primarily focus on general large motions, we contend that
the instantaneous detection and quantification of subtle mo-
tions is equally important as they indicate the nuances in
driving behavior that may be safety critical, such as behav-
iors near a stop sign of parking positions. We delve into
this under-explored task, examining its unique challenges
and developing our solution, accompanied by a carefully
designed benchmark. Specifically, due to the lack of cor-
respondences between consecutive frames of sparse Lidar
point clouds, static objects might appear to be moving – the

so-called swimming effect. This intertwines with the true
object motion, thereby posing ambiguity in accurate esti-
mation, especially for subtle motions. To address this, we
propose to leverage local occupancy completion of object
point clouds to densify the shape cue, and mitigate the im-
pact of swimming artifacts. The occupancy completion is
learned in an end-to-end fashion together with the detec-
tion of moving objects and the estimation of their motion,
instantaneously as soon as objects start to move. Extensive
experiments demonstrate superior performance compared
to standard 3D motion estimation approaches, particularly
highlighting our method’s specialized treatment of subtle
motions.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Human drivers pay special attention to surrounding moving
objects to understand and predict their driving behavior, and
react accordingly to avoid collisions. Similarly, intelligent
autonomous systems must also navigate safely through traf-
fic scenes, where preventing collisions with moving objects
is considerably more complex than with static background
scenes. This gives rise to several lines of computer vision
research centered around motion, ranging from low-level
tasks like 3D scene flow [24], to middle-level motion seg-
mentation or detection [49], and high-level perception on
3D object tracking [54].

However, these methods are designed to handle general
3D motion without considering the extent and context of the
motion. In this paper, we would like to focus on an impor-
tant subset of motion – small subtle motions. Such motions
are of significance as they often indicate changes in driving
intention or behavior; for instance, as illustrated in Fig. 1,
parking vehicles start to move and cut into the driving lane,
or vehicles in the driving lane start to reverse back for re-
verse parking. As a more general note, the instant capture
of all nuanced changes happening in the scene is essential
for situation awareness, especially in corner-scenario cases.
This however remains under-explored in computer vision,
thus motivates our research in this paper, which aims to de-
tect the presence of subtle motions as well as estimate their
motion flow instantaneously.

While prominent motions from fast-moving objects are
more feasible to detect and quantify due to a strong signal-
to-noise ratio, recovering subtle motions with high accuracy
presents its challenges. Specifically, the Lidar sensor cap-
tures only a sparse point set of the surrounding scene el-
ements, and the pattern of points varies depending on the
relative position between the Lidar and the scene. Conse-
quently, there are typically no point correspondences across
frames with a moving Lidar sensor, even for static scene el-
ements. This further implies that static objects may appear
to be moving, known as the swimming artifact [8, 21]. It
intertwines with and hence obfuscates the true object mo-
tion, especially under small motions; as such, we empiri-
cally observe that a model trained for general motions does
not perform as well with subtle motions.

To address this, our framework proposes to learn shape
completion before performing motion detection and estima-
tion. Taking sequential frames of Lidar point clouds within
a short period as input, our method voxelizes the point
clouds as occupancy grids, and leverages the accumulated
Lidar points from nearby frames to generate a denser occu-
pancy grid, which is then applied as supervision for occu-
pancy completion. This effectively densifies and enhances
the surface cue to mitigate the impact of the swimming ar-
tifact. To prevent the noises brought about by imperfect
completion from affecting the downstream motion estima-

tion task, we refrain from performing full object shape com-
pletion but rather do so locally only for the visible surface
part, where the major motion signals lie. Our framework
takes the point clouds of each object individually as input
to our network, which is trained exclusively on the regime
of small motion. We name our method S’More, indicating
subtle motion regressor. Since there is no standard train-
ing dataset and evaluation benchmark specific to subtle mo-
tions. We contribute one by extracting small motions from
the large-scale Waymo dataset [46], leveraging its existing
annotations. We demonstrate the efficacy of the proposed
method with the newly proposed benchmark.

In summary, our contributions include:
• Introduce the task of detecting and estimating subtle mo-

tions for vehicles, with insights on their practical signifi-
cance and challenges.

• Design a framework with occupancy completion to miti-
gate the swimming artifacts on small motion estimation.

• Translate our insights into favorable performance in a new
evaluation benchmark tailored for small motions.

2. Related Work

3D Scene Flow. 3D scene flow aims to estimate the motion
field of each observed 3D point. It is an important tool for
analyzing scene dynamics and has been extensively studied
in computer vision [10, 17, 23, 25, 33, 41, 52, 57]. While
the scene flow of background points as the dominant rigid
motion may be reliably estimated [8], accurately estimating
the motion flow for dynamic foreground objects remains a
challenge. This leads to object-aware scene flow works [3,
22, 23, 48] that leverage rigidity prior of objects. However,
the nearest neighbor-based approach for motion estimation
like scene flow suffers from inherent ambiguity brought by
the “swimming” effect [21] of Lidar point clouds, which is
more severe with smaller motion magnitude. In this work,
we develop insights towards addressing this issue.
Moving Object Detection. Moving object detection is an
essential capability for autonomous vehicles and other ar-
eas, which results in many prior works, such as [7, 13, 15,
20, 29, 38, 39, 45, 49]. However, they detect motions at a
coarse level for general large motions. SemanticKITTI [4],
a commonly used dataset in this field, labels moving ob-
ject in a coarse sequence level instead of in an instanta-
neous manner. In contrast, our approach offers special
treatment for detecting small motions instantaneously. An-
other possible way for moving object detection is through
3D detection [14, 18, 27, 28, 34, 37, 40, 58] and track-
ing [19, 54]. However, we found empirically that such
methods stumble in identifying small motions due to im-
perfect object localization. Lastly, we also note a concur-
rent work, M-detector [53], that instantly detects point-level
moving events based on occlusion principles.
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Figure 2. Overview of S’More. Given a sequential LiDAR point cloud, we first identify objects of interest by filtering out background
and objects with large motion. We then voxelize the point cloud for each object, extract features through an encoder-decoder network, and
perform occupancy completion. The output is passed to a motion detector and a motion flow predictor for final detection and estimation.

Occupancy Prediction. Occupancy is an effective 3D
scene representation that has wide applications in au-
tonomous driving. Argo et al. [1] and Reza et al. [36] apply
the occupancy flow field for perception and motion forecast-
ing. [21] performs 4D occupancy forecasting supervised
by point cloud forecasting. ALSO [6] utilizes occupancy
completion as a tool for self-supervised feature learning
for Lidar point clouds. Another line of work [47, 50, 51]
learns occupancy prediction from monocular cameras. In
this work, we present the first known attempt to use occu-
pancy completion to facilitate the estimation of small mo-
tions from LiDAR point clouds.
Subtle Motions in General. The field of computer vi-
sion has shown a long history of interest in small mo-
tions in a broader context. Differential structure-from-
motion [35, 60] aims to recover instantaneous camera mo-
tion from optical flow. Several works [9, 16, 30–32, 55]
utilize accidental camera motion to perform 3D reconstruc-
tion. Another line of research [12, 26] targets magnifying
invisible subtle motions in videos. Our work focuses on
perceiving the subtle motions of surrounding vehicles, a ca-
pability critical to the safety of autonomous systems.

3. Method
3.1. Problem Definition and Challenges

Our goal is to identify moving objects and estimate their
motion using sequential point clouds; we focus in this pa-

3D tracking
Large motion

Small motion or static

S’More

Small motion

Static

Figure 3. Integration of S’More with 3D tracking systems.

per on vehicles while leaving the human category for future
work. Unlike existing works, we concentrate on small mo-
tion for instantaneous detection as objects begin to move.
As a preprocessing step, our framework filters out fast-
moving objects, thereby targeting static and slow-moving
ones. Fig. 3 illustrates a practical use case of such setting in
a 3D tracking system. Further, we make a practical assump-
tion that the ego-vehicle’s motion can be reliably estimated
by ICP, possibly aided by GPS/INS, as validated by recent
studies [8]. This allows for the exclusion of ego-motion
from the observed object motion, resulting in a noisy obser-
vation of the true object motion w.r.t. the world coordinate.
Our method is object-centric, processing point clouds from
five consecutive frames (Ft, t=1, ..., T ) to classify objects
as static or moving. For moving objects, we estimate the
motion flow from F1 to FT for each point in F1, setting
T=5 as per [20].
Swimming Effect. The detection and estimation of small
motions present its challenges, primarily arising from the
sparse nature of Lidar point clouds. Remarkably, the spa-
tial distribution of captured points closely depends on the
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(a) (b) (c)

Figure 4. Illustration of Swimming Effect on ground (a) and
static object (b), and (c) our ground truth occupancy completion
for (b). Bule and red points indicate points from two frames.

relative position between the Lidar sensor and surrounding
scene elements. Hence, as the Lidar sensor moves along
with the ego-vehicle, there are typically no exact point cor-
respondences across frames, and even static scene elements
may appear to be moving. This effect manifests itself on
both background scene and foreground objects, as illus-
trated in Fig. 4 (a)(b). In particular, the ground points vi-
sually appear to be swimming across frames, hence termed
as swimming effect [21]. This effect poses challenges, es-
pecially to characterizing subtle motions as one would need
to distinguish the true object motion from this effect. We
note that the sparse nature of Lidar points distinguishes the
problem from optical flow [11], where dense correspon-
dences exist and small motions simplify the flow estimation
through brightness consistency assumption.

3.2. Our Framework

Fig. 2 illustrates the overview of S’More. Given five con-
secutive Lidar frames, we filter out fast-moving objects
and for each remaining ones, our network estimates the
small motion or the lack thereof. We start by voxelizing
the input point clouds, followed by feature extraction using
an encoder-decoder network, and then perform occupancy
completion, the output of which is passed to the motion seg-
mentation head and the instantaneous flow estimation head.

3.2.1 Occupancy Completion

Input Voxelization. First, following state-of-the-art 3D de-
tection frameworks [34, 54], we voxelize the point cloud
Xt ∈ RN×3 at each frame as a binary grid of size
[Wx,Wy,Wz], with the voxels containing Lidar points
filled with 1, and 0 elsewhere. This grid may be viewed
as an incomplete occupancy grid, in that it indicates part
of the visible object surface captured by Lidar at a single
timestamp. We stack consecutive frames to form a spatial-
temporal grid of size [T,Wx,Wy,Wz].
Local Occupancy Completion. Recall that the sparse na-
ture of Lidar point clouds poses challenges to accurate small
motion estimation, due to the actual subtle motion inter-
twined with the swimming effect. To mitigate this issue,
our framework first learns occupancy completion that effec-

tively densifies the object surface, to offer stronger cues for
subsequent networks to reason correspondence, and hence
the motion between frames.

Before proceeding, one should be mindful of the poten-
tial trade-off brought by this step – the estimated occupancy
completion may well be imperfect, introducing extra noise
to the system. This may be harmful to the final motion
segmentation and estimation if the noises reach a certain
level, hence defeating the purpose of occupancy comple-
tion. Therefore, while the standard shape completion prob-
lem (e.g. [42]) is tasked to recover the entire object shape
from a single-frame input, it is an overly complicated and
unnecessary task in our case, besides the infeasibility of get-
ting the ground truth in real driving scenes. Instead, since
the T Lidar frames collectively observe only a local part of
the object within an instantaneous timeframe, we target lo-
cal occupancy completion at these observed regions, while
refraining from hallucinating areas invisible to all T Lidar
frames. This way, we enhance the critical signal essen-
tial for motion characterization while minimizing the extra
noises from imperfect completions.
Supervision for Occupancy. We densify the local occu-
pancy grid by leveraging nearby frames, as shown in Fig. 2.
Specifically, for each frame Ft, t ∈ [1, ..., T ] in the input
window, we warp all Lidar points from the rest T−1 frames
to Ft, using the ground truth object motion (recall that ego-
motion has been factored out), and then mark the corre-
sponding voxel as occupied, i.e. 1. In addition, we mark the
points along the line-of-sight as empty i.e. 0. All other vox-
els are deemed as unknown. We apply a fast voxel traversal
algorithm [2] to implement this step, similarly as in [21],
with an example illustrated in Fig. 4(b)(c). Note we only
use the Lidar frames inside the input window to generate
the target occupancy grid, to simplify the task. By learning
occupancy, the network is explicitly enforced to learn the
notion of dense shapes in an end-to-end manner, thereby
facilitating the task of motion detection and estimation.

3.2.2 Network Architecture and Losses

Network Architecture. We apply an encoder-decoder
for occupancy grid prediction, which is passed to another
encoder-decoder for motion detector and motion flow pre-
dictor. The motion detector classifies input objects as static
or moving, while the flow estimator regresses a motion vec-
tor for each occupied voxel in the grid. We then extract
the motion flow for each raw input point as the predicted
flow in the voxel that point resides in. Note that we do not
enforce rigidity constraints on the flow field, maintaining
the method’s generality, though we do evaluate the setting
with rigidity prior as well. We utilize the encoder-decoder
structure as in [56], consisting of simple convolutional lay-
ers with skip connection; we follow [21] to treat the height
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and temporal dimension as the channel dimension, which
allows to use 2D convolutional layers for efficiency; see
supplementary for details. Our network processes each ob-
ject separately, but remains efficient and runs at 27 fps for a
scene consisting of 30 objects of interest.
Overall Losses. The overall loss function of our model is a
weighted combination of five terms:

L = λoccLocc + λmotLmot + λepeLepe + λrelLrel + λangLang.
(1)

Specifically, we apply a binary cross-entropy (BCE) loss
Locc for the occupancy grid prediction, a BCE loss Lmot
on static/moving object classification, a L1 loss Lepe and
a scale-aware Lrel loss on motion flow prediction for mov-
ing objects. Additionally, since the motion direction carries
important information about driving intention such as re-
versing or left/right turning, we add an angular loss Lang for
the motion flow. We denote the set of occupied and empty
voxels as ϕo and ϕe, respectively.
Occupancy Loss is written as

Locc = Ev∈{ϕo,ϕe}

[
Ôv log(Ov) + (1− Ôv) log(1−Ov)

]
,

(2)
where Ov and Ôv indicate the predicted and ground truth
occupancy at voxel v.
Flow Prediction Losses. For each voxel v, we define the
ground truth flow (denoted as f̂v) as the average of the
ground truth flow associated with the points falling into that
voxel. The relative flow loss Lrel is written as

Lrel = Ev∈ϕo

∥f̂v − fv∥2
∥f̂v∥2 + ε

, (3)

where f̂v indicates predicted flow at voxel v and ε is a small
constant. Note this loss is inverse scaled by the flow mag-
nitude to emphasize learning on small motions. And the
augular loss is written as

Lang = Ev∈ϕoacos

(
⟨fv, f̂v⟩

∥fv∥2 · ∥f̂v∥2 + ε

)
(4)

where ⟨·, ·⟩ denotes the dot product between the vectors.

4. Experiments
4.1. Evaluation of S’More

Evaluation Benchmark. In the absence of existing bench-
mark dedicated to subtle motions, we curate one such
dataset from the Waymo open dataset [46], where each se-
quence provides Lidar frames at 10Hz for about 20s. We
collect the point clouds for each object from every five con-
secutive frames (0.5s) denoted as Fi, i=[1, ..., 5]. To gener-
ate ground truth motion status, we follow [20] to derive the

Table 1. Quantitative Comparisons with ICP, Point-to-Plane
ICP, Generalized ICP, CenterPoint and FastNSF.

EPE (↓) Angle Error (↓) F1 Score (↑)

FastNSF [24] 0.1189 0.5592 0.6180
ICP [5] 0.0554 0.4499 0.7456
Point-to-Plane ICP [43] 0.2263 0.4379 0.7856
Generalized ICP [44] 0.1117 0.4170 0.7693
CenterPoint [54] 0.0927 0.5622 0.7270
S’More 0.0437 0.3189 0.8323

spatial transformation from the 3D boxes annotations, and
hence compute the scene flow fi from F1 to F5 for every
point xi in F1. To concentrate on small motions, we deem
the data sample valid only when the minimal flow magni-
tude fmin=minxi∈F1 ||fi|| is less than 0.2m. Further, we
label the object as static if fmin<fthre. We set fthre=0.05m
but also evaluate under other settings shortly. This way, we
collect about 140k and 9k samples for training and test sets,
respectively. More details are in the supplementary.

Evaluation Metrics. We apply the standard F1 score to
measure the accuracy of static/moving object classification.
We apply end-point error (EPE) and the angular error to
measure the object motion flow error.

Baselines. In the absence of existing detection methods
dedicated to small motions, we mainly compare with: (i)
the classical Iterative Closest Point (ICP) [5], which re-
mains competitive [8] for motion flow task; (ii) the point-
to-plane ICP [43] and the generalized ICP [44] imple-
mented in Open3D [59]; (iii) the leading scene flow method
FastNSF [24]; (iv) the detection and tracking based method
CenterPoint [54], where we use ground-truth tracking by
associating detected objects with the ground truth, and the
motion flows are derived from boxes transformation. For all
methods we use their output motion flows to detect moving
objects, according to the aforementioned criterion.

Comparison. Tab. 1 shows quantitative evaluation re-
sults, indicating the significantly superior performance of
our model compared to the baselines. We note that the
object-tracking method CenterPoint gives decent accuracy
but lags behind S’More, likely because their imperfect ob-
ject localization causes ambiguity in distinguishing small
motions from static ones. In Fig. 5, we provide a visual-
ization comparison with ICP and FastNSF. The input com-
prises two sets of point clouds: the first frame (in red) and
the last frame (in green). We visualize the flow accuracy
through alignment – we shift the red points with the flow
and the resultant points (marked as blue) should ideally
align well with the green points if the flows are correct.
Our model demonstrates superior alignment accuracy, es-
pecially at the subtle level of local registration, attributable
to its advanced motion estimation capabilities. More exam-
ples are provided in the supplementary material.
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(a) Input (b) Ground Truth (c) S’More (ours) (d) FastNSF (e) ICP
Figure 5. Qualitative Comparison. We exhibit point cloud registration results for two point cloud sets: the first frame (in red) and the last
frame (in green). The results are shown using (b) ground truth motion, and estimated motions by (c) S’More(ours), (d) FastNSF, and (e)
ICP. The blue points indicate resultant positions after adding flow to the red points, which should ideally align with the green points.

Input w/o Occ w/ Occ as auxiliary task S‘More Ground Truth
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Figure 6. Ablation study on Occupancy Completion. (a)(b)(c) illustrate structure of having the occupancy module removed or as an
auxiliary task. (d)(e)(f) show the qualitative and quantitative comparisons; the visualization in (d) follows the same protocol in Fig. 5.

(a) Two Frames of Input (b) GT Occ Completion (c) Predicted Occ Completion

Figure 7. Example Results of Occupancy Completion. The blue
and red points represent different frames in the input.

4.2. Ablation study on Occupancy Completion

To investigate the impact of occupancy completion, we re-
move this module from S’More, with structure shown in
Fig. 6(a) in relation to S’More in Fig. 6(c). Further, we also
evaluate the setting with the occupancy completion as just

an auxiliary trained in parallel with the motion detector and
flow predictor, as shown in Fig. 6(b). We report the accu-
racy in Fig. 6(e)(f), which indicates the significant impact
of occupancy completion towards good performance. We
attribute this to its role in effectively densifying object sur-
faces. In Fig. 6(d) we provide visualization of point cloud
registration to evaluate the estimated motion, further sup-
porting the efficacy of occupancy completion. The qualita-
tive results of the occupancy completion itself are demon-
strated in Fig. 7.

False Positive/Negative. This analysis explores how in-
corporating occupancy impacts the reduction of false posi-
tives and negatives. In Fig. 8(a), we display three sequential
frames that highlight how the model, without occupancy, er-
roneously detects a stationary vehicle as moving, marked by
a red box. Conversely, when employing dense occupancy
estimation, the model correctly identifies the stationary na-
ture of the vehicle, reducing the false positives. Similarly, in
Fig. 8(b), we show that without occupancy, the model fails
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Figure 8. Visualization of false positive/negative samples in the absence of occupancy completion. Each row shows three consecutive
frames, one per column. The motion of objects is marked with blue for detected subtle motions and red for GT large motions, with the arrow
length representing the motion’s magnitude. In (a), a false positive occurs where a stationary vehicle is mistakenly marked as moving. In
(b), a moving vehicle is incorrectly identified as static, a false negative. Both of them are rectified with the occupancy completion; note the
ground truth is same as the correct detection here hence is not visualized.

Table 2. Ablation Study of Losses. This study observes a correlation between decreasing flow thresholds fthre and the degradation of
model performance. Notably, our model achieves the best average performance over five thresholds in terms of all metrics.

End-Point-Error (EPE) (↓) Angle Error (↓) F1 Score (↑)

fthre 0.05 0.04 0.03 0.02 0.01 Avg 0.05 0.04 0.03 0.02 0.01 Avg 0.05 0.04 0.03 0.02 0.01 Avg

w/o Locc 0.0492 0.0443 0.0440 0.0489 0.0439 0.0461 0.3489 0.3455 0.3828 0.4219 0.4405 0.3879 0.8256 0.8202 0.8025 0.7575 0.7603 0.7932
w/o Langle 0.0458 0.0441 0.0452 0.0444 0.0454 0.0450 0.3469 0.3654 0.4052 0.4295 0.4860 0.4066 0.8344 0.8338 0.8111 0.7704 0.7841 0.8068
w/o Lrel 0.0446 0.0435 0.0439 0.0437 0.0430 0.0437 0.3179 0.3395 0.3780 0.4156 0.4291 0.3760 0.8378 0.8307 0.7937 0.7907 0.7847 0.8075
S’More 0.0437 0.0425 0.0436 0.0428 0.0421 0.0429 0.3189 0.3392 0.3834 0.4053 0.4324 0.3758 0.8323 0.8320 0.8003 0.7997 0.7857 0.8100

to detect a moving vehicle as static. This is rectified using
the model with occupancy. This comparison underscores
the effectiveness of using occupancy data in enhancing mo-
tion detection accuracy in our model. An interesting obser-
vation we found is that the occurrence frequency of false
positives is much higher than false negatives. We attribute
this to the swimming effect, where static objects appear to
be moving, especially under subtle motion conditions.

4.3. Analysis on Large Motion

Performance on large motion. While our focus is on small
motions, it would be more complete to study its perfor-
mance on large motions as well. It is of particular interest
to compare against 3D object tracking based method given
the practical system illustrated in Fig. 3. To this end, we

(a) (b)

Figure 9. Performance Analysis of (a) occupancy with different
grid sizes and (b) point-/object-level flow estimation. We evaluate
under different value of fthre for comprehensiveness.

train another model of S’More including large-motion data
and evaluate only on the large motion (fmin >0.2m) regime.
As shown in Tab. 3, both S’More and CenterPoint achieve
nearly perfect detection accuracy (F1→1.0), as expected
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Table 3. Quantitative evaluation on large motions.

EPE (↓) Angle Error (↓) F1 Score (↑)

CenterPoint [54] 0.1155 0.0247 0.9998
S’More 0.2790 0.0486 0.9847

Table 4. Benefits of having small-motion-specific training data.

Training dataset EPE (↓) Angle Error (↓) F1 Score (↑)

Small + large motion 0.0979 0.5550 0.1414
Small motion only 0.0437 0.3189 0.8323

due to the large signal-to-noise ratio. This perfectness sup-
ports our focus on the small motion regime for enhancing
a practical system. We also note that being a detection-
tracking method, CenterPoint yields more precise flow esti-
mation, as its accuracy largely depends on 3D box localiza-
tion instead of motion.
Benefit of using small-motion-specific dataset. Recall
that we have filtered out the large-motion data during the
dataset curation, i.e. they are not in training data. Our ex-
perience is that excluding large motions in training data im-
proves the model performance on the small motion regime.
We report the accuracy in Tab. 4 to quantify this effect. The
benefit may be explained by the unique swimming artifact,
which mandates a small-motion-specific dataset.

4.4. Evaluation in terms of Latency

With a focus on instantaneous detection, a time-sensitive
task, it is helpful to also evaluate with a time-related met-
ric. Our original task is to detect objects moving more than
fthre=0.05m in a 0.5s latency. Here, we increase fthre to tar-
get at larger motion, which effectively allows proportionally
increased latency if assuming constant velocity, hence de-
creasing the requirement on the latency. We report in Tab. 5
the detection accuracy (F1) across different latencies, indi-
cating the consistently superior performance from S’More.

4.5. Important Design Choices

Grid Size. We study the impact of occupancy grid size
and find it important in our design. We compare the per-
formance of two grid sizes: a balanced 100 × 100 × 100
grid and an alternative 500× 500× 4 grid, where the latter
significantly reduces the resolution along z-axis. The re-
sults in Fig. 9(a), reveal a notable performance degradation
(see the two dashed lines are consistently lower than the
solid lines) when the z-axis resolution is reduced, despite
the increased axial resolution to 500 × 500. This may also
result in detection ambiguity which stems from the model’s
reduced capacity to discern subtle vertical variations, and
lead to less reliable vehicle localization and motion detec-
tion.

Table 5. Evaluation of detection (F1 score) in terms of latency.

Latency 0.5s 0.7s 0.9s 1.1s 1.3s

ICP [5] 0.7758 0.8129 0.8229 0.8308 0.8346
CenterPoint [54] 0.7270 0.7658 0.7800 0.7899 0.7935
S’More 0.8323 0.9003 0.9224 0.9568 0.9582

Point-/Object-level Instance Flow Estimation. We study
the behavior of the point-level and object-level training
strategies for motion flow estimation. The point-level ap-
proach predicts a separate flow for each point, whereas
the object-level strategy regresses a single rigid transfor-
mation for the entire object to calculate motion flow. The
results detailed in Fig. 9(b) in terms of EPE and Angle Er-
ror across various flow thresholds, reveal that point-level
instance flow estimation (indicated by two solid lines) con-
sistently outperforms the object-level approach (indicated
by two dashed lines). Notably, point-level estimation main-
tains stable performance even at very low thresholds. In
contrast, object-level flow prediction exhibits significant
fluctuations in performance across different thresholds.

Loss Components. We ablate each loss component and
report the results under various flow thresholds in Tab. 2.
Notably, we observe that as the flow threshold decreases,
there is a corresponding degradation in model performance.
This trend aligns with our expectation, as lower thresholds
are designed to detect subtler motions. Subtler motions of-
ten come with more severe swimming effects and thus lead
to less accurate predictions. We also observe that each loss
component plays a critical role in tuning the model for these
subtleties, making them essential for maintaining perfor-
mance across varying motion dynamics.

5. Conclusion

This paper defines the problem of perceiving subtle motion
for vehicles, presenting practical significance. To mitigate
swimming artifacts causing ambiguity in subtle motion per-
ception, we leverage occupancy completion as an effective
strategy to facilitate motion learning. Despite the overall
good performance, our method faces challenges under ex-
tremely sparse or high-occluded objects. Also, we currently
only handle vehicles but not pedestrians or cyclists. We
hope our work and its limitations can inspire more research
into this important yet under-explored problem.
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