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StoryGen

(1) Once upon a time, 
in a tranquil meadow, 

there lived a fluffy 
white rabbit…

(2) The white rabbit's 
favorite pastime was 
hopping through the 

meadow…

(3) It would nibble on 
sweet clover and play 
hide-and-seek among 

the tall grasses...

(4) One sunny morning, 
the white rabbit noticed 

a sparkling dewdrop 
hanging from grass…

(5) To the rabbit's 
surprise, the dewdrop 

transformed into a tiny, 
real flower…

(6) From that day on, 
the white rabbit carried 
the tiny flower with it 
wherever it hopped…

(7) As the seasons 
changed, the white 

rabbit's heart remained 
as pure as ever…

ChatGPT: OK. Here is a story about a 
{white rabbit}: Once upon a time…

User: Hey, ChatGPT, please give me a 
story about a {white rabbit}.

(1) In a land veiled by 
the golden embrace of 
endless autumn, there 

was a man…

(2) The man raised his 
hands. From his palms 

flowed a stream of 
shimmering water..

(3) Flowers blossoming 
on previously barren 

ground where the 
magical water flows…

(4) Butterflies fluttering 
around the man as 

flowers bloom at his 
feet…

(5) As the stars blinked 
awake in the evening 

sky, the man's task 
neared its end…

(6) Glowing essence is 
released into the wind 

over a sleeping 
village.…

(7) The man, a silent 
guardian of nature's 
grace, watched the 
village from afar…

(b) Open-ended visual story continuation
BlackHairedMan

User: Hey, here is a 
story about the 
{BlackHairedMan} 
as shown in the left.
Please visualize the 
given story.

(a) Open-ended visual story generation

User: Hey, StoryGen, please visualize 
this story about a{white rabbit}.

StoryGen: Sure. I can do that for you. 

StoryGen: Here is the visual story. 

Figure 1. An illustration of open-ended visual storytelling. In practice, users can feed a unique and engaging story synthesized by
a large language model into our proposed StoryGen model to generate a sequence of images coherently, denoted as open-ended visual
story generation. And they can also provide a pre-defined character with its corresponding storyline, to perform open-ended visual story
continuation. We recommend the reader to zoom in and read the story.

Abstract

Generative models have recently exhibited exceptional
capabilities in text-to-image generation, but still struggle
to generate image sequences coherently. In this work, we
focus on a novel, yet challenging task of generating a co-
herent image sequence based on a given storyline, denoted
as open-ended visual storytelling. We make the follow-
ing three contributions: (i) to fulfill the task of visual sto-
rytelling, we propose a learning-based auto-regressive im-
age generation model, termed as StoryGen, with a novel
vision-language context module, that enables to generate
the current frame by conditioning on the corresponding
text prompt and preceding image-caption pairs; (ii) to ad-
dress the data shortage of visual storytelling, we collect
paired image-text sequences by sourcing from online videos
and open-source E-books, establishing processing pipeline
for constructing a large-scale dataset with diverse charac-
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ters, storylines, and artistic styles, named StorySalon; (iii)
Quantitative experiments and human evaluations have vali-
dated the superiority of our StoryGen, where we show it can
generalize to unseen characters without any optimization,
and generate image sequences with coherent content and
consistent character. Code, dataset, and models are avail-
able at https://haoningwu3639.github.io/
StoryGen_Webpage/.

“Mirror mirror on the wall, who’s the fairest of them all?”

—— Grimms’ Fairy Tales

1. Introduction

This paper considers an interesting, yet challenging task,
namely, open-ended visual storytelling. The goal is to train
a generative model that effectively captures the relation be-
tween visual elements and corresponding text descriptions,
to generate a sequence of images that tell a visually coher-
ent story, as shown in Figure 1. The outcome of this task
has significant potential for education, as it provides chil-
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dren with an engaging and interactive way to learn complex
visual concepts and develop imagination, creativity, emo-
tional intelligence, and language skills, as evidenced by re-
search in psychology [5, 45].

The recent literature has witnessed tremendous progress
in image generation, particularly with the guidance of text
as prompt, such as stable diffusion [41], DALL·E [39] and
Imagen [14]. However, to generalize the models for open-
ended visual storytelling, we are facing three challenges: (i)
previous models are designed to only generate images inde-
pendently, without considering context, for example, pre-
ceding frames or overall narrative, resulting in a lack of vi-
sual consistency; (ii) most methods generate images by only
conditioning on text, which potentially leads to ambigui-
ties or requires unnecessarily long descriptions to maintain
character appearances; (iii) existing datasets are limited to a
few animations, covering a closed set of vocabulary or char-
acters [25, 31, 36]. Training on such datasets suffers from
severe overfitting on seen characters, leading to unsatisfac-
tory generalization capability for open-ended generation.

This paper describes a learning-based model for open-
ended visual storytelling, termed as StoryGen, that enables
to generate unseen characters without any further optimiza-
tion, while having character consistency. At inference, Sto-
ryGen can synthesize frames either by taking text prompts,
or along with preceding image-text pairs as conditions, i.e.,
iteratively creating visual sequences that are aligned with
language description, while being consistent with preced-
ing frames in both style and character perspectives. Specif-
ically, to achieve consistency within the generated image
sequence, we incorporate a novel vision-language context
module into the pre-trained stable diffusion model, which
provides visual context by conditioning the generation pro-
cess on extracted diffusion denoising feature of previous
frames under the guidance of corresponding captions.

As for training, we construct a dataset called StorySa-
lon, that features a rich source of coherent images and sto-
ries, primarily comprising children’s storybooks collected
from videos and E-books. As a result, our dataset includes
a diverse vocabulary with different characters, storylines,
and artistic styles. The scale and diversity of our collected
dataset enable the model for open-vocabulary visual story-
telling, i.e., generating new image sequences that are not
limited to pre-defined storylines, characters, or scenes. For
example, we can prompt a large language model to create
unique and engaging stories, then feed them into StoryGen
for generation, as shown in Figure 1.

To summarize, we make the following contributions in
this paper: (i) we initiate a fun yet challenging task, namely,
open-ended visual storytelling, that involves generating en-
gaging image sequences aligned to a given storyline; (ii)
we propose a learning-based open-ended visual storytelling
model, termed as StoryGen, which can generalize to un-

seen characters without any further optimization and gener-
ate coherent visual stories, utilizing a novel vision-language
context module; (iii) we establish a data processing pipeline
and collect a large-scale dataset of storybooks, called Sto-
rySalon, from online videos and open-source E-books, re-
sulting in a diverse vocabulary with various characters, sto-
rylines, and artistic styles; (iv) we conduct quantitative ex-
periments and human evaluations to validate the effective-
ness of our proposed modules, demonstrating the superior-
ity of our model, in terms of image quality, consistency, and
visual-language alignment of generated contents.

2. Related Works
Text-to-image Generation has been tackled using various
generative models, with GAN [8] as the first widely used
model. Several GAN-based methods [50, 53, 54] have
achieved notable success, and auto-regressive transform-
ers [46], such as DALL·E [39], have also demonstrated
the ability to generate high-quality images based on text
prompts. Recently, diffusion models, such as Imagen [42]
and DALL·E 2 [40], have emerged as a popular approach.
Stable Diffusion Models [41] performs diffusion process in
latent space, and can generate impressive images after pre-
training on a large-scale text-image dataset.
Diffusion Models learn to model a data distribution via iter-
ative denoising and are trained with denoising score match-
ing. Notably, DDPM [13] demonstrates improved perfor-
mance over other generative models, while DDIM [44] sig-
nificantly boosts efficiency. In view of their superior gen-
erative capabilities, diffusion models have found extensive
utility in various downstream applications besides image
generation, such as video generation [6, 14, 15, 43], im-
age manipulation [2, 10, 18, 33], grounded generation [26],
image restoration [4], and image inpainting [1, 28, 35, 48].
Story Synthesis is first introduced as the task of story visu-
alization by StoryGAN [25], which presents a GAN-based
framework and the PororoSV dataset, derived from car-
toons. Some works [29, 30] follow the GAN-based frame-
work, whereas others [3, 21] emphasize more on text rep-
resentation. StoryDALL-E [31] extends story synthesis to
story continuation with the initial image given, and ex-
ploits a pre-trained DALL·E model [39] to produce coher-
ent images. AR-LDM [36] introduces an auto-regressive la-
tent diffusion model to generate image sequences, but only
consistent within a limited character vocabulary. NUWA-
XL [52] exploits hierarchical diffusion models to synthe-
size long videos, but still achieve character consistency by
memorizing. TaleCrafter [7] proposes a story visualization
system and utilizes LoRA [16] to achieve character consis-
tency. However, large-scale applications will be constrained
due to its optimization-based nature. In this paper, we target
more ambitious applications, to develop an open-ended vi-
sual storytelling model, that can synthesize coherent image
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Figure 2. Architecture Overview. (a) Our StoryGen model utilizes current text prompt and previous visual-language contexts as conditions
to generate an image, iteratively synthesizing a coherent image sequence. Note the parameters of the corresponding attention layers are
shared between Diffusion UNet and StoryGen. To avoid potential ambiguity, the parameters are not shared across UNet blocks in a single
model. (b) The proposed Visual-Language Context Module can effectively combine the information from current text prompt and contexts
from preceding image-caption pairs. (c) We add more noise to reference frames with longer temporal distances to the current frame as
positional encoding to distinguish the temporal order. The multiple features can then be directly concatenated to serve as context conditions.

sequences based on storylines of diverse topics.

3. Method
In this section, we start by formulating the problem of open-
ended visual storytelling in Section 3.1; then we elaborate
on the proposed StoryGen architecture in Section 3.2; lastly,
we present details for model training in Section 3.3.

3.1. Problem Formulation

In this paper, we focus on a challenging task, termed as
open-ended visual storytelling, the goal is to generate con-
tinuous image sequence from a given story in the form of
natural language. Specifically, we propose a learning-based
auto-regressive image generation model, called StoryGen,
that generates the current frame Îk by conditioning on the
current text prompt Tk, and image-text pairs (Î<k, T<k) of
previous frames, as illustrated in Figure 2 (a). The model is
formulated as follows:

{Î1, Î2, . . . , ÎL} = ΦStoryGen({T1, T2, . . . , TL}; Θ)

Îk := ΦStoryGen(Îk|Tk, (Î<k, T<k))

Here, {T1, T2, . . . , TL} refer to the given storylines, and
{Î1, Î2, . . . , ÎL} denote the generated image sequence.
ΦStoryGen(·) represents our proposed StoryGen model.
In one-step generation, StoryGen takes the current text
prompt, and preceding image-caption pairs as conditions,
and generates an image consistent with both the story’s nar-
rative and previous frames. The whole image sequence can
then be synthesized with step-by-step inference.
Relation to Existing Tasks. In contrast to existing story vi-
sualization works, this paper makes improvements from two
aspects: (i) conventional generation/continuation tasks are

limited to training on specific characters/stories, for exam-
ple, [25, 31, 36] only exploits datasets from animation The
Flintstones and Pororo, while our model enables to generate
visual stories based on any given storyline, such as a brand-
new one generated by ChatGPT; and any pre-defined char-
acter, for example, ‘Doraemon’ from the Internet; (ii) unlike
existing work that requires costly character-specific opti-
mization, for example, [7, 36] rely on LoRA-based [16] op-
timization to adapt to new characters, our model is learning-
based and expected to generalize to any unseen character
without any further optimization.

3.2. Architecture

To tackle the problem of open-ended visual storytelling, we
expect the model to not only condition on the current text
prompt, but also preceding image-text pairs. In this sec-
tion, we describe the procedure for one-step generation,
i.e., generating the k-th frame (k > 1) by conditioning
on {(Î1, T1), . . . , (Îk−1, Tk−1), Tk}. Generally speaking,
our proposed StoryGen model comprises four components:
(i) Input Initialization, (ii) Context Encoding, (iii) Visual-
Language Contextual Fusion, (iv) Conditional Generation.
Input Initialization. Our model is built upon the founda-
tion of a pre-trained stable diffusion model (SDM), which
randomly samples a noisy latent x from the latent space of
the VAE [19] encoder. Moreover, for a given text prompt
Tk, the text condition will be extracted by a pre-trained
CLIP [37] text encoder ϕCLIP via CT = ϕCLIP(Tk).
Context Encoding. In standard SDM, the noisy latent is
recursively denoised with a UNet, conditioning on the text
prompt. However, in our case, it is crucial for the generation
procedure to also condition on context features of preceding
frames, to maintain consistency in characters and storyline.
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In practice, to extract the contextual features, we add
noise to the preceding frames and exploit the pre-trained
SDM to denoise for one diffusion step under the guidance
of their corresponding captions. The diffusion features after
every self-attention layer in the UNet blocks can be directly
selected to serve as the conditioning visual context features,
thus constituting a pyramid of visual context features. The
visual condition features for Îk can be expressed as:

CV = [ϕSDM(Î1, ϕCLIP(T1)), . . . , ϕSDM(Îk−1, ϕCLIP(Tk−1))]

Experimentally, we notice that, the magnitude of noise
added to the preceding frames can greatly affect the condi-
tional generation quality, i.e., large-scale noise on preceding
frames incurs severe information loss. Thus, we propose
to use a much smaller diffusion timestep t′ for preceding
frames compared with the diffusion timestep t of the current
image Îk, and follow a t′ = t/10 rule. As depicted in Fig-
ure 2 (c), in case of multiple preceding image-caption pairs,
we use larger t′ for frames with longer temporal distances to
Îk. Therefore, the extracted multi-frame visual context fea-
tures can be directly concatenated, and their different noise
level will serve as temporal positional embedding. Such de-
sign reflects the intuition that frames with longer distances
will incur less effect on generating the current frame.
Vision-Language Contextual Fusion. Here, our vision-
language context module is designed to fuse information
from current text prompt and contextual information from
preceding image-caption pairs. This is achieved by aug-
menting the transformer decoder in SDM with an additional
image cross-attention layer. Note that, the math expression
in this section is not strict, we omit the footnote of diffusion
timestep t and UNet block level l for simplicity.

Specifically, on visual context conditioning, the noisy la-
tent x is projected into query, and cross-attends to the visual
context features from the corresponding-level UNet block
that act as key and value, denoted as:

QI = xWQ
I , KI = CVWK

I , VI = CVWV
I

where WQ
I , WK

I , and WV
I represent different projection

matrices, respectively.
On text conditioning, the noisy latent x is again projected

to query, and cross-attends to the text features of the current
prompt encoded by CLIP text encoder, i.e.,

QT = xWQ
T , KT = CTWK

T , VT = CTWV
T

where WQ
T , WK

T , and WV
T also represent corresponding

projection matrices.
As depicted in Figure 2 (b), the image cross-attention

layer is inserted in parallel to the text cross-attention layer in
the transformer decoder of UNet blocks. Drawing inspira-
tion from ControlNet [55], the results from these two cross-
attention layers are simply summed up as the final output

O. The final output can thus be expressed as:

O = Softmax(
QI(KI)

⊤
√
d

)VI + Softmax(
QT (KT )

⊤
√
d

)VT

Conditional Generation. With the fused vision-language
condition features from above, our StoryGen can now gen-
erate visual stories that achieve both content coherence and
character consistency. Here, our conditional generation pro-
cedure can be represented as:

Îk = ΦStoryGen(Îk|Tk, (Î<k, T<k)) = ΦStoryGen(x, CT, CV)

With the new conditioning modality introduced, we also
adopt another classifier-free guidance term [12], as has been
done in [2]. Concretely, we exploit two different guidance
scales, wv and wt for the visual condition and the text con-
dition. The relation between the final noise for inference ϵ̄θ
and UNet-predicted noise ϵθ is now expressed as:

ϵ̄θ(xt, t, CV, CT) = ϵθ(xt, t,∅,∅)

+ wv(ϵθ(xt, t, CV,∅)− ϵθ(xt, t,∅,∅))

+ wt(ϵθ(xt, t, CV, CT)− ϵθ(xt, t, CV,∅))

Discussion. Our work differs from previous ones from two
aspects. First, our StoryGen is a learning-based method,
which can directly generalize to unseen characters by at-
tending to reference images. Second, we propose to con-
dition the generation process on diffusion features of pre-
ceding image-text pairs from the same SDM, which pre-
serves more visual details, greatly differing from existing
works [22, 49, 51] using CLIP, BLIP [24], or VAE features.

3.3. Model Training

Training Objective. At training stage, we randomly sam-
ple a triplet each time, i.e., {Ik, Tk, (I<k, T<k)}. The ob-
jective function can be expressed as:

Lt = Et∼[1,T ],x0,ϵt,CV,CT

[
∥ϵt − ϵθ(xt, t, CV, CT)∥2

]
Two-stage Training Strategy. Our two-stage training strat-
egy includes single-frame pre-training and multiple-frame
fine-tuning. To be specific, at the first stage, we do not intro-
duce additional image cross-attention layers, and only train
self-attention layers in standard SDM to ensure the single-
frame generation ability. In multiple-frame fine-tuning,
we train additional image cross-attention layers in vision-
language context module on our dataset, with all other pa-
rameters frozen. This enables the generation procedure to
utilize information from not only current prompt, but also
preceding image-caption pairs.
Inference. As shown in Figure 1, at inference time, we
can prompt ChatGPT to generate novel storylines, and syn-
thesize the first image directly or attending to a pre-defined
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Text: Santa waved down 
with a cry of delight: 
merry Christmas, my dears, 
and good night. Please let 
YouTube know you're 
interested in videos.

Unstructured Metadata

Aligned Image-text Pairs

Narrative: Santa waved 
down with a cry of delight: 
merry Christmas, my dears, 
and good night. 
Caption: Two mice are 
sleeping in the bed…

Data Preparation Pipeline
(Extraction, Alignment, Post-processing)

Diverse Data Samples

Figure 3. Dataset Pipeline and Visualization. Left: Meta-
data sourced from the Internet undergoes a three-step pipeline
including frame extraction, visual-language alignment and post-
processing, resulting in properly aligned image-text pairs. Right:
Our StorySalon dataset contains diverse styles and characters.

character. Then the previously synthesized frames, along
with the story descriptions, are treated as conditions to syn-
thesize the image sequence in an auto-regressive manner.
Experimentally, our proposed StoryGen is shown to gener-
ate images that align with the storyline, as well as maintain
consistency with previously generated frames.

4. StorySalon Dataset
In order to train our proposed open-ended visual storytelling
model, we construct a large-scale dataset, termed as Sto-
rySalon. The dataset contains videos and E-books with di-
verse characters, storylines, and artistic styles. Specifically,
we download a large number of videos and subtitles from
YouTube, by querying keywords related to story-telling for
children, for instance, storytime. Additionally, we collect E-
books (partially with corresponding audios available) from
six open-source libraries which are all registered under the
Creative Commons 4.0 International Attribution (CC BY
4.0) license. In the following, we elaborate on the data pro-
cessing pipeline and statistics of our collected dataset.
Visual Frame Extraction. We extract keyframes from the
videos, along with the corresponding subtitles and their
timestamps. To remove duplicate frames, we extract ViT
features for each frame using pre-trained DINO [32]. For
the image groups with high similarity scores, we only keep
one of each. Then, we use YOLOv7 [47] to segment and
remove real-person frames and headshots, as they often cor-
respond to the story-teller and are unrelated to the content
of the storybook. Similarly, we extract images from the
downloaded E-books, except for those with extraneous in-
formation, for example, the authorship page. We acquire the
corresponding text description with Whisper [38] from the
audio file, and for E-books that do not have corresponding
audio files, but with available storyline text, we use OCR
algorithms, to directly recognize the text on each page.

Dataset Style #Frames Avg.Length #Categories

PororoSV [25] Animation 73,665 5 9
FlintstonesSV [9] Animation 122,560 5 7
DiDeMoSV [31] Real 52,905 3 -

VIST [17] Real 145,950 5 -

StorySalon Animation 159,778 14 446

Table 1. Dataset Statistics. Our StorySalon dataset far exceeds
previous story generation datasets in terms of the total number of
images, average length, and categories of characters included.

Visual-Language Alignment. As shown in Figure 3, for
each of the image, we can collect two types of text descrip-
tions, e.g., story-level narration, and descriptive captions.
This is based on our observation that there actually exists
a semantic gap between narrative storyline and descriptive
text, for example, the same image can be well described as
“The cat is isolated by others, sitting alone in front of a vil-
lage.” in the story, or “A black cat sits in front of a number
of houses.” as descriptive caption, therefore, directly fine-
tuning stable diffusion models with story narration may be
detrimental to its pre-trained text-image alignment. In prac-
tice, to get story-level paired image-text samples, we align
the subtitles with visual frames by using Dynamic Time
Warping (DTW) algorithm [34]. To get visual descriptions,
we use TextBind [23] to generate captions for each image,
with both the image and the corresponding narrative text
as inputs. At training time, this allows us to substitute the
original story with more accurate and descriptive captions.
Visual Frame Post-processing. In practice, we observe
that book pages and borders in images can potentially inter-
fere with our generative model by having story texts printed
on them. To tackle this, we use an OCR detector to identify
text regions in images and an image inpainting model [41]
to fill in the text and headshot regions, resulting in more
precise image-text pairs that are suitable for model training.
Discussion. After the three-step pipeline above, we obtain
our StorySalon dataset. As shown in Table 1, our dataset has
nearly 160K animation-style images in total with an average
length of 14 frames per story, which is conducive to build-
ing long-range semantic correspondence. Finally, we query
MiniGPT-4 [56] about the main character category of each
image in our dataset, like Dog and Cat, then count the cat-
egories and filter out those appear less than 3 times. Com-
pared with previous datasets with less than 10 characters,
our dataset comprises hundreds of character categories, and
even more character instances, which provides a data basis
for training open-ended visual storytelling models, showing
a significantly broader range of visual styles and character
appearances over existing datasets.

5. Experiments
In this section, we start by describing our experimental set-
tings, then compare with other models from three different
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Model FID ↓ CLIP-I ↑ CLIP-T ↑
GT - 1.0 0.2668

SDM 73.50 0.6155 0.3218
Prompt-SDM 67.35 0.6272 0.3225

Finetuned-SDM 42.01 0.6970 0.3005

StoryDALL·E 38.34 0.6823 0.2366
AR-LDM 39.55 0.6864 0.2614
StoryGen 33.90 0.7467 0.2875

Table 2. Comparison of automatic metrics
on StorySalon test set. Prompt-SDM denotes
Stable Diffusion model with cartoon-style-
directed prompts and Finetuned-SDM repre-
sents a Stable Diffusion model with all param-
eters fine-tuned on our StorySalon dataset.

Story Generation

Model Align. ↑ Style ↑ Cont. ↑ Char. ↑ Qual. ↑ Pref. ↑
GT 4.04 4.66 4.41 4.54 4.29 –

SDM 3.61 2.88 2.90 2.51 3.74 14.05%
Prompt-SDM 3.39 2.56 2.68 2.10 3.44 8.57%
StoryGen-S 3.50 2.73 2.81 2.21 3.19 10.24%
StoryGen 3.78 4.79 4.26 4.64 3.76 67.14%

Story Continuation

StoryDALL·E 1.18 1.55 1.20 1.14 1.19 0.63%
AR-LDM 2.47 2.82 2.40 1.87 2.54 2.50%
StoryGen 4.23 4.70 4.35 4.38 4.18 96.87%

Table 3. Comparison results of human evaluation. GT stands for ground truth
from the test set. StoryGen-S represents StoryGen without context conditions.
The abbreviated metrics are Text-image alignment, Style consistency, Content
consistency, Character consistency, image quality, and Preference, respectively.

perspectives: image-text alignment, consistency and image
quality with subjective human evaluation and quantitative
metrics. Additionally, we present results for ablation exper-
iments to prove the effectiveness of our proposed modules.
Please refer to ArXiv version for more experimental details.

5.1. Experimental Settings

Training Details. Our model is built on the stable diffusion
v1.5 model, and trained with a learning rate of 1 × 10−5

and a batch size of 256. We begin with a single-frame
self-attention pre-training stage, which involves 3,000 iter-
ations on 8 NVIDIA RTX3090. Next, we incorporate our
proposed vision-language context module, and train it for
5,000 iterations using a single preceding image-caption pair
as context condition, then continue to train it for another
5,000 iterations with multiple image-caption pairs for multi-
frame conditioning. To maintain our model’s unconditional
denoising ability for classifier-free guidance, we randomly
drop the current text and the context image-caption pairs
with a probability of 5% and 15%, respectively. During in-
ference, we utilize DDIM [44] with 40 steps of sampling
and select the guidance weight wv = 7.0 and wt = 3.5.
Baselines. We consider two scenarios of our proposed
open-ended storytelling task, namely, story generation and
story continuation. For story generation, we need the
model to be able to generate a complete visual story only
based on a given storyline. So we present a comparison with
Stable Diffusion Model (SDM) and Prompt-SDM, which
conditions on an additional cartoon-style-directed prompt
“A cartoon style image”. For story continuation, the first
frame or the main character is given, and the model is ex-
pected to generate coherent images based on the storyline.
In this scenario, we compare our model with two closed-set
story continuation models: namely, StoryDALL·E [31] and
AR-LDM [36] re-trained on our StorySalon dataset.
Automatic Metrics. To evaluate the quality of generated
image sequences, we adopt three widely-used metrics, in-

cluding Fréchet Inception Distance score (FID) [11], CLIP
image-image similarity (CLIP-I), and CLIP text-image sim-
ilarity (CLIP-T). Notably, in order to avoid the impact of
randomness in synthesis quality, we utilize a CLIP-based
scoring function trained exclusively on text-to-image gen-
erated images, namely, PickScore [20], to automatically se-
lect the generated images with better quality. Each chosen
image is selected from a pool of 10 candidates.

5.2. Quantitative Evaluation Results

We compare our StoryGen model with other baselines on
StorySalon test set, which contains 5% of total data (nearly
7K pairs). Each contains a current prompt and the image-
text context of the previous frame. The models are expected
to generate the current frame based on given conditions.

The quantitative results in Table 2 demonstrate that our
StoryGen model exhibits significant performance improve-
ment in terms of FID score and CLIP-I similarity compared
to existing models, while maintaining comparable CLIP-
T similarity. This confirms that our model can effectively
exploit contextual information, thus generating animation-
style visual stories based on the given storyline. Notably,
CLIP trained on natural images tends to have an under-
standing bias towards animation-style images, and the slight
decline in CLIP-T is an inevitable result of the conflict be-
tween text condition and newly introduced image condition.

5.3. Human Evaluation Results

Considering that the above metrics may not reflect the qual-
ity of the generated stories accurately, and there is no stan-
dardized metric for evaluating the consistency within the
visual story, we further include human evaluation for com-
parison of image-text alignment, image style, story consis-
tency, character consistency and synthesis quality.

For the two scenarios mentioned above, we respectively
conduct two types of human evaluation to assess the quality
of generated visual stories. To mitigate bias, participants are
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(a) Open-ended story generation for: a story of a {white dog}: (1) Once upon a time, in a peaceful countryside, there lived a white dog… (2) The 
white dog had an adventurous spirit, always eager to discover… (3) One afternoon, the white dog was staring at a sunflower… (4) The white dog 
ventured into a sunflower field… (5) The white dog discovered a bird's nest in the field… (6) From that day on, the white dog became a guardian… 
(7) The white dog’s spirit remained steadfast and bright, as the seasons changed and the leaves fell…

(b) Open-ended story continuation for: a story of a {a white-haired man}: (1) In a perpetual twilight, the white-haired man reached towards the 
twilight sky, stars appearing at his touch… (2) One twilight, the white-haired man looked concerned at a dark void in the sky... (3) The white-haired 
man drew stars in the sky with a silver quill… (4) The white-haired man was observing new constellations shining where the void once was… (5) 
The white-haired man with a serene expression was watching the peaceful starry sky... (6) The white-haired man walked towards a tower observatory 
under the starry sky… (7) Alone but content, the white-haired man’s gaze traversed the depths of space…

1

1

2 3 4 5 6 7

2 3 4 5 6 7

1

1

2 3 4 5 6 7

2 3 4 5 6 7

Reference Image

WhiteHairedMan

Figure 4. Qualitative Comparison with other methods. The image sequences in orange, green, and blue boxes are generated by Prompt-
SDM, AR-LDM and StoryGen respectively. Our synthesis results exhibit impressive performance superiority in terms of style, content and
character consistency, text-image alignment, and image quality. Please refer to the Appendix for more qualitative results.

unaware of the type of storybooks they are evaluating. Con-
cretely, we prompt GPT-4 to produce multiple storylines for
both test modes, and for story continuation, we search the
Internet for multiple characters that have never appeared in
our dataset. Then we utilize our StoryGen along with other
baselines to generate corresponding sequences of images.

Protocol-I. We randomly select an equal number of sam-
ples from the generated results of our StoryGen and other
baselines. Each time we randomly sample a visual story
from these sources, and participants are then invited to rate
the sample with a score ranging from 1 to 5, taking into ac-
count text-image alignment, style consistency, content con-
sistency, character consistency and image quality. Higher
scores indicate better samples. We also evaluate the same
number of samples from StorySalon test set as a reference.

Protocol-II. Each time we randomly sample a storyline and
its corresponding visual storybooks generated by StoryGen
and other methods. Participants are invited to select their
preferred generated result among these different image se-
quences of the same storyline.

Results. The results of human evaluation presented in Ta-

ble 3 illustrate that our StoryGen model demonstrates ex-
cellent performance in overall score, especially in terms of
consistency and quality. This indicates that our model can
generate coherent image sequences that are highly consis-
tent with given text prompts and visual-language contexts.

5.4. Qualitative Results

In Figure 4, we present visualization results of both open-
ended visual story generation and visual story continuation,
showing that our StoryGen can generate visual stories with
a broad vocabulary, while maintaining content coherence
and character consistency throughout the narrative, whereas
other methods fail to do so. Moreover, our model can sta-
bly maintain the animation style of generated images, which
satisfies the requirements of visual storytelling for children.
More results can be found in our ArXiv version.

5.5. Ablation Studies

In order to demonstrate the effectiveness of our proposed
modules, we conduct ablation studies from both quantita-
tive metrics and qualitative visualization.
On Variants of StoryGen. We evaluate the performance of
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Augmented Object Stable DiffusionSource frame Ours

(a) Single Object in COCO: Prompt = “A large white and blue train on a train track”

(b) Single Object in Real-Data: Prompt = “Doraemon is standing in a forest.”

Object #2 Stable DiffusionObject #1 Ours

(c) Multiple Objects in COCO: Prompt = “A man is performing tricks on a skateboard.”

(d) Multiple Objects in Real-Data: Prompt = “Putin is riding a polar bear in the wild.”

Figure 5. Ablation studies on consistency. We incorporate our proposed Visual-Language Context Module into a pre-trained SDM, and
train it on MS-COCO [27] with other parameters frozen. The content consistency of single-object and multi-object generation on COCO
and real data has demonstrated the effectiveness of our module. Please refer to the Appendix for experiment details and quantitative results.

multiple model variants on the StorySalon test set, includ-
ing (i) our model without the context module, marked as
StoryGen-Single, which solely fine-tunes the self-attention
layers on our dataset. (ii) our model with context features
encoded by the VAE of SDM as context condition, with-
out text-guided diffusion process, denoted as StoryGen-
VAE; (iii) our model with CLIP image embedding as con-
text condition (StoryGen-CLIP); (iv) our model with con-
text features extracted by BLIP image encoder (StoryGen-
BLIP); (v) our model with naive denoising features at
Large-scale diffusion Timestep, satisfying t′ = t, as con-
dition (StoryGen-LT); and (vi) our full model (StoryGen).
We also employ PickScore to filter generation results of all
these models. The findings presented in Table 4 illustrate
the inclusion of our context module can significantly im-
prove the model performance, in terms of CLIP-I and FID.
As for the slight inferiority in CLIP-T, we have claimed
above that this is due to the understanding bias towards
animation-style images for CLIP trained on natural images.

Qualitative Visualization. As mentioned above, consis-
tency is a crucial factor in visual story generation. We
hope to more intuitively demonstrate that our proposed con-
text module can accurately capture the image content of
the previous frame. To this end, we incorporate our con-
text module into SDM and train it from scratch on the MS-
COCO [27] with other parameters frozen. Specifically, we
crop the object and perform data augmentations such as
translation and rotation to use it as image condition. The
category of the cropped object is used as its corresponding
text, and the caption of the original image serves as the text
prompt. We expect the model to reconstruct the original
image relying on the conditions above, which enables the
context module to learn how to leverage the previous im-
age. As shown in Figure 5, our model can make full use of
the objects in the reference frame and generate new images
that are consistent with them, while SDM fails to do so. In
addition, this can also be transferred to any real-world ref-

Model FID ↓ CLIP-I ↑ CLIP-T ↑
StoryGen-Single 38.81 0.6869 0.3140
StoryGen-VAE 36.98 0.6846 0.3061
StoryGen-CLIP 36.66 0.6934 0.3140
StoryGen-BLIP 34.78 0.7026 0.2838

StoryGen-LT 36.41 0.7141 0.3025
StoryGen 33.90 0.7467 0.2875

Table 4. Ablation studies on Visual-Language Context Module.

erence image, which strongly illustrates the robustness and
capability of our context module to assist diffusion models
in generating images based on any given object.

6. Conclusion
In this paper, we consider an interesting, yet challenging
task, termed as open-ended visual storytelling, which in-
volves generating a sequence of images that tell a coher-
ent visual story based on the given storyline. Our proposed
learning-based StoryGen model can take input from the
preceding image-caption context along with the text prompt
to generate coherent image sequences in an auto-regressive
manner, i.e., without test-time optimization. On the data
side, we establish a data processing pipeline to collect a
large-scale dataset named StorySalon that comprises story-
books with diverse characters, storylines, and artistic styles
sourced from videos and E-books. Extensive human evalu-
ation and quantitative comparison have illustrated that our
proposed model substantially outperforms existing models,
from the perspective of image quality, content coherence,
character consistency, and visual-language alignment.
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