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Abstract

Recently, many approaches directly operate on point
clouds for different tasks. These approaches become more
computation and storage demanding when point cloud size
is large. To reduce the required computation and storage,
one possible solution is to sample the point cloud. In this
paper, we propose the first Learnable Task-Agnostic Point
Cloud Sampling (LTA-PCS) framework. Existing task-
agnostic point cloud sampling strategy (e.g., FPS) does not
consider semantic information of point clouds, causing de-
graded performance on downstream tasks. While learning-
based point cloud sampling methods consider semantic in-
formation, they are task-specific and require task-oriented
ground-truth annotations. So they cannot generalize well
on different downstream tasks. Our LTA-PCS achieves
task-agnostic point cloud sampling without requiring task-
oriented labels, in which both the geometric and semantic
information of points is considered in sampling. Extensive
experiments on multiple downstream tasks demonstrate the
effectiveness of our LTA-PCS.

1. Introduction

3D point cloud has been widely used in many areas like au-
tonomous driving and robotics. However, the point clouds
collected by LiDAR or other sensors contain millions or
even billions of points, making it challenging to process,
store, and transmit them efficiently. Therefore, to improve
computational efficiency and reduce memory costs, it is
critical to develop point cloud sampling methods to reduce
the number of points while preserving the essential features
of the original point clouds.

Among point cloud sampling methods, the most widely
used one is the farthest point sampling (FPS) strategy in
Fig. 1(a). It samples the critical points based on their 3D
coordinates iteratively and selects a group of points that
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Figure 1. Comparison of FPS, learnable task-specific methods,
and our LTA-PCS. FPS samples points using 3D coordinates,
which ignores semantic meaning. Learnable Task-specific meth-
ods need different sampling networks for different tasks. Our LTA-
PCS is task-agnostic, where one trained sampling network can be
used for different tasks. Note that the pretrained 2D feature ex-
tractor is frozen in training, and not used at inference.

are farthest apart from each other. Although FPS is task-
agnostic, it does not utilize the semantic information of
point clouds as the sampling process is solely based on the
point coordinates, causing degraded performance on down-
stream tasks. Recently, in Fig. 1 (b), learning-based point
cloud sampling methods [7, 15] are proposed to sample the
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points with more semantic meanings for better downstream
task performance. They additionally introduce task-specific
losses when learning the network for point cloud sampling.
However, these methods are task-specific and require task-
oriented labels. In real-world applications, the downstream
tasks are usually not specified. But we need to sample
fewer points in the collected point cloud by LiDAR or other
sensors to save the storage. Moreover, even downstream
tasks are given, the existing learning-based methods need
to sample the points again based on the new downstream
task for better performance, which is cumbersome in prac-
tice. Besides, the existing learning-based methods use the
pretrained 3D feature extractor (e.g., PointNet [27]) to cal-
culate the task loss for training the sampling network, while
the capacity of these 3D feature extractors is limited by both
model size and the scale of 3D point cloud datasets, which
becomes the bottleneck for training the sampling network
with semantically meaningful sampling ability. Finally, the
task-specific loss makes them prone to overfit on specific
datasets and hard to generalize on different datasets, and the
requirement of labels increases the training cost. Although
we can remove the task-specific loss in these learning-based
methods for task-agnostic point cloud sampling, the sam-
pled points still lack semantic meaning in this case.

So the problem is: How to design a learnable task-
agnostic label-free point cloud sampling strategy with the
consideration of semantic information? To solve this prob-
lem, in Fig. 1(c), we propose the first Learnable Task-
Agnostic Point Cloud Sampling (LTA-PCS) framework, in
which the semantic meaning of points is considered in the
sampling process. It is non-trivial to construct such a frame-
work. Without the specific downstream tasks, the designed
sampling loss for learning-based sampling methods is based
on the coordinates, which lack semantic meaning.

In LTA-PCS, we observe 2D feature extractors [31]
are effective tools to extract task-agnostic but semantically
meaningful features and propose to introduce the fixed 2D
feature extractors pre-trained on large-scale datasets to help
the training of our LTA-PCS for sampling more semantic
meaningful points, where the specific tasks and the corre-
sponding labels are both not required. Specifically, to solve
the heterogeneous problem of image and point cloud data,
we first project 3D point clouds to multi-view depth maps,
which can be readily used by 2D feature extractors to extract
semantic meaningful features. Then, we calculate the loss
based on both the 3D coordinates and the extracted features
and train the sampling network, which can enforce it to rec-
ognize meaningful points in terms of both geometric and
semantic aspects. After training, we directly use the trained
sampling network to generate the simplified point clouds
for different downstream tasks, in which an inference align-
ment strategy is used to ensure the simplified point cloud is
a subset of the original dense point cloud.

In the aforementioned training paradigm, another issue
is that the projection from point clouds to multi-view depth
maps will inevitably cause information loss, causing inac-
curate learning of semantic meaningful points. To this end,
we propose a new loss function called semantic loss, which
includes both intra- and inter-view losses. Specifically, the
intra-view loss minimizes the information loss between the
dense point cloud and simplified point cloud under the same
views, while the inter-view loss is calculated based on the
relationship between different views. By introducing the se-
mantic loss, we can consider both the information under the
same and cross views, which can help the sampling network
to generate more semantic meaningful points.

Moreover, our LTA-PCS framework is also general. Al-
though it is designed for task-agnostic point cloud sam-
pling, we can further combine it with the task-specific loss
for task-specific point cloud sampling to achieve better per-
formance when the downstream task is given.

The contributions of LTA-PCS are shown as follows:
• To the best of our knowledge, we propose the first learn-

able task-agnostic point cloud sampling framework called
LTA-PCS, in which both the geometric and semantic in-
formation are considered and the task-oriented labels are
not required.

• We introduce the pre-trained 2D feature extractor to com-
pute the inter- and intra-view learning objective functions
to help train the sampling network in our LTA-PCS frame-
work, which can enforce the sampling network to sample
more semantically meaningful points.

• Extensive experiments on multiple downstream tasks
demonstrate the effectiveness of our LTA-PCS.

2. Related Work
Deep learning on point clouds. Recently, deep learning
methods [18, 22, 23, 37–39, 48, 53] attract many attentions,
in which a large number of methods using point clouds
are proposed for 3D scene understanding [9–11, 17, 19–
21, 46, 49, 50]. For example, PointNet [27] uses multi-
layer perceptron to process points for different tasks. Point-
Net++ [28] proposes a hierarchical structure to extract fea-
tures. Li et al. [16] proposed PointCNN to perform con-
volution operations on point clouds. Wu et al. [45] pro-
posed PointConv to introduce point density when perform
convolution on point clouds. There are also many meth-
ods on point cloud segmentation [40, 41, 43] and object de-
tection [29, 34, 56]. In addition, approaches are also pro-
posed to focus on point cloud completion [4, 32, 54], point
cloud registration [2, 33]. On the other hand, some meth-
ods project point clouds into volumetric [24, 57] or multi-
view [13, 31, 35, 52] data forms and process them using
neural networks. For example, Zhang et al. [55] project
point clouds into multi-view depth images and process them
using pretrained CLIP model [31]. Goyal et al. [8] propose
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Table 1. Comparison between our LTA-PCS framework with ex-
isting point cloud sampling methods.

Methods Semantic information Task-agnostic

FPS % "
Learning-based

methods [5, 7, 15] " %

LTA-PCS " "

SimpleView projection methods for point cloud classifica-
tion. Zhu et al. [58] utilize pretrained CLIP model for 3D
open-world learning. Although these methods use CNNs or
CLIP models for learning point cloud features, they do not
focus on point cloud sampling. Besides, we utilize the 2D
feature extractor in a different perspective, in which the 2D
feature extractors are used to facilitate the training of our
LTA-PCS for more semantically meaningful sampling.
Point cloud sampling methods. Recently, many point
cloud sampling methods were proposed. In Table 1, for the
task-agnostic point cloud sampling, the FPS method sam-
ples the point that is farthest from the previously sampled
ones iteratively. However, this method only uses point co-
ordinates, which does not consider the semantic informa-
tion of points and leads to a sub-optimal solution when
using the sampled points for downstream tasks. Besides,
many learning-based approaches were proposed [5, 30, 44].
For example, Dovrat et al. [7] proposed S-NET to use net-
works for point cloud sampling, where a sampling regular-
ization loss is used to train this S-NET. Lang et al. [15] pro-
posed SampleNet to use differentiable relaxation for point
cloud sampling. Qian et al. [30] proposed a task-oriented
point cloud downsampling approach. Attention operation
is also used for point cloud sampling [42, 51]. Although
these methods use networks to sample semantic meaning-
ful points from a dense point cloud, they are task-oriented.
Therefore, these approaches need specific downstream tasks
to train the sampling network, which is often infeasible in
real-world applications. In contrast, our LTA-PCS frame-
work is task-agnostic, and the comparison between our
LTA-PCS and the existing methods is shown in Table 1.

3. Methodology

3.1. Problem Statement

Given a dense point cloud with n points P = {pi ∈ R3, i =
1, . . . , n} and a target size m ≤ n, our goal in this work is to
learn a sampling network that can sample m points from P
and generate a simplified point cloud that can best represent
the dense point cloud with task-agnostic semantic meaning
as follows:

T (P ) ⊂ P, |T (P )| = m ≤ n, (1)

where T (·) is the operation of the sampling network, and
T (P ) is the simplified point cloud. In our LTA-PCS, the
learning process of the sampling network T (·) is not re-
lated to any downstream tasks. In other words, we aim to
find the best sampling network to generate the simplified
point cloud that can perform well on the downstream tasks.
Traditional point cloud sampling methods (e.g., FPS) only
sample the points based on 3D coordinates, which lacks se-
mantic information. To introduce semantic information in
sampling, learning-based sampling methods like S-NET [7]
and SampleNet [15] use the task-specific loss to train the
sampling network. However, when the task is not given, it is
still an open problem on how to introduce such a semantic-
aware loss for guiding the sampling network to sample se-
mantically meaningful points. Therefore, we propose to use
effective and well-performed pretrained 2D feature extrac-
tors to facilitate the training of the sampling network for
LTA-PCS in a task-agnostic way.

3.2. Overview

Fig. 2 shows the overview when training our LTA-PCS
framework. Given a dense point cloud, we use the sam-
pling network in LTA-PCS to sample points from this point
cloud and generate the simplified point cloud. To utilize the
pretrained 2D feature extractors, we first project both the
dense and simplified point clouds to multi-view depth maps.
Then, we use the pretrained 2D feature extractor to ex-
tract semantically meaningful features based on multi-view
depth maps. In our implementation, we choose the vision
branch of the CLIP model [31] as our pretrained 2D fea-
ture extractor, and the parameters of the 2D feature extractor
are frozen in the training process. After that, we calculate
the proposed semantic loss including both inter- and intra-
view losses based on the output feature from 2D feature ex-
tractors, which introduces the semantic-level supervision to
help the sampling network in our LTA-PCS framework and
sample more semantically meaningful points. Besides, to
fully utilize the 3D coordinate information of point clouds,
we also use geometric loss [7] to introduce geometric-level
supervision when training our LTA-PCS framework in the
training process. We update the sampling network based on
both geometric loss and semantic loss.

Sampling network. Our sampling model follows the ar-
chitecture of [7, 27]. The input points are processed by a
series of 1 × 1 convolution layers, which produce a fea-
ture vector for each point. Then, a symmetric feature-wise
max pooling operation is applied to obtain a global feature
vector. Finally, we use several fully-connected layers. The
output of the last layer is the set of generated points.

Projection. Directly using pretrained 2D feature ex-
tractor is infeasible because of the heterogeneous problem
between 2D images and 3D point clouds. To solve this
problem, we need to project point clouds to multi-view
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Figure 2. Training procedure of our LTA-PCS framework. Given a dense point cloud, we first use the initialized sampling network to
sample points from it and generate a simplified point cloud. Then, we project both the dense and simplified point clouds to multi-view
depth maps, which will be used for feature extraction by a frozen pretrained 2D feature extractor. We calculate the semantic loss including
intra-view and inter-view losses using the extracted features. Geometric loss is also used in training. At the inference stage, we directly
use the trained sampling network to sample points from dense point clouds.

depth maps. Specifically, inspired by [55], we take the
bottom view as an example, the point with the coordinate
of (x, y, z) will be projected to (⌈x/z⌉, ⌈y/z⌉). Also, as
the vision branch of CLIP model aims to process images
with three channels, we copy the projected depth maps three
times and form the input of the CLIP model, which ensures
there is no shape mismatch when using the CLIP model.

Inference. At inference, we use the sampling network in
Fig. 2 to sample points from the dense point cloud, which
can be used for multiple downstream tasks.

3.3. Loss Function

Overall loss function. Formally, the overall loss function
of our LTA-PCS can be written as follows:

L = Lgeo + αLsem, (2)

where Lgeo is the geometric loss, and Lsem is the newly
proposed semantic loss, which includes both the intra- and
inter-view losses. α is the coefficient to balance these two
terms. In LTA-PCS, the geometric and semantic losses aim
to preserve the geometric and semantic consistency between
the original point cloud and the simplified point cloud.

Geometric loss. We denote Q as the simplified point
cloud, i.e., Q = T (P ). Inspired by [7], the geometric loss

is defined as follows:

Lgeo = La(Q,P ) + βLw(Q,P ) + γLs(Q,P ),

where La(Q,P ) =
1

|Q|
∑
q∈Q

min
p∈P

||q − p||22,

Lw(Q,P ) = max
q∈Q

min
p∈P

||q − p||22,

Ls(Q,P ) =
1

|P |
∑
p∈P

min
q∈Q

||p− q||22.

(3)

Here, La(Q,P ) is to minimize the average distance be-
tween Q and P . Lw(Q,P ) is to minimize the maximum
distance between Q and P . Ls(Q,P ) ensures the points in
Q evenly spread in the 3D coordinate space. Following [7],
β and γ are the loss weights.

Semantic loss. To enforce the sampling network to sam-
ple more semantically meaningful points, we also introduce
the newly proposed semantic loss Lsem in the training pro-
cess. Formally, let us suppose the dense point cloud as P
and the simplified point cloud generated by the initialized
sampling network as Q. The semantic loss consists of intra-
view and inter-view loss, which can be written as follows:

Lsem = Lintra + λLinter. (4)

The intra-view loss aims to minimize the semantic infor-
mation loss under the same view as follows:

Lintra =

K∑
k=1

MSE[E(Jk(P )), E(Jk(Q))], (5)
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Algorithm 1 Training procedure of our LTA-PCS.

Input: Dense point cloud P ; Simplified point cloud Q;
Randomly initialized sampling network T ; Number of
projected views K; Pretrained 2D feature extractor E;

1: for each iteration in the training process do
2: // Calculate geometric loss Lgeo

3: Use T to generate the simplified point cloud Q;
4: Calculate geometric loss Lgeo based on dense point

cloud P and the simplified point cloud Q using Eq. (3);
5: // Calculate semantic loss Lsem

6: for view k in K do
7: Project dense point cloud P and simplified point

cloud Q to the k-th view depth map Jk(P ) and Jk(Q),
respectively;

8: Extract the features of Jk(P ) and Jk(Q) using
the 2D feature extractor E, respectively;

9: end for
10: Calculate intra- and intra-view losses by Eq. (5) and

Eq. (6);
11: Calculate semantic loss Lsem based on Eq. (4);
12: Calculate overall object function L using Eq. (2);
13: Back propagate the gradients and update the param-

eters of the sampling network T ;
14: end for
Output: The optimized sampling network T ;

where Jk(·) denotes the projection operation for the k-th
view, and E(·) is the 2D feature extractor for extracting se-
mantic features. MSE(·) is the mean square error, and K
is the total number of projected views.

As the projection operation inevitably causes informa-
tion loss and the relationship of different views can also pro-
vide essential information [25, 26], we calculate the inter-
view loss for compensation as follows:

Linter = MSE(ΦΦT ,ΨΨT ),

where Φ =Concat
K

[Flat(E(Jk(P )))] ,

Ψ =Concat
K

[Flat(E(Jk(Q)))] .

(6)

Here, Flat(·) is the flatten operation. ConcatK concate-
nate the vectors along different views. By using the inter-
view loss, we obtain the relation information in different
views from dense point cloud and enforce the simplified
point cloud to mimic this information.

Based on the intra-view loss Lintra, inter-view loss
Linter, and the geometric loss Lgeo, we obtain the loss func-
tion L in Eq. (2) to train the sampling network T , which is
used to generate the simplified point cloud at inference. The
training procedure is also illustrated in Alg. 1.

3.4. Inference

At inference, we use the trained sampling network T to gen-
erate the coordinates of the sampled points. However, as
we use several fully-connected layers to directly predict the
coordinates of the sampled points at the end of the sam-
pling network, we cannot ensure the simplified point cloud
Q generated by the sampling network to be a subset of dense
point cloud P . Thus, following S-Net [7], we can obtain the
points in Q to its nearest neighbors in dense point cloud P .
Specifically, for each point q ∈ R3 in Q, the matched point
q∗ is written as follows:

q∗ = argmin
p∈P

||q − p||22. (7)

After the matching process for Q with m points, we can
obtain the simplified point cloud Q∗ = {q∗i }mi=1, which is a
subset of P . Note that the matching process is very fast.

3.5. Downstream Tasks Usage

After training the sampling network in our LTA-PCS, we
can use it to effectively generate the simplified point cloud
with the information from both 3D coordinates and the se-
mantic meanings. As the downstream tasks are not decided
at this stage, we store these simplified point clouds as a
new point cloud dataset to simulate this scenario. When
the downstream tasks are given, we use the simplified point
clouds to train different backbone network architectures
(e.g., PointNet [27]) for different downstream tasks as be-
fore, and the backbone network is initialized from scratch.

3.6. Discussion

Necessity of Learnable Task-Agnostic Point Cloud Sam-
pling. We would emphasize that LTA-PCS tries to solve the
point cloud sampling under an important scenario where the
collected point clouds are given but the downstream tasks
are not given. In real-world applications, this scenario of-
ten occurs. We often use LiDAR to collect point clouds
and store them. When specific tasks are given, we use the
stored point cloud data for downstream tasks. Thus, sam-
pling semantically meaningful points from dense collected
point clouds becomes critical for storage saving. Existing
learning-based methods [15] use task-specific loss to intro-
duce semantic information in sampling, which is infeasi-
ble in this scenario as the downstream tasks and the cor-
responding labels are required. Although we can remove
task-specific loss in these learning-based methods for task-
agnostic point cloud sampling, semantic information will
not be considered in this case. Moreover, the task-specific
loss will degrade the generalization ability of these meth-
ods on different datasets. LTA-PCS targets at solving the
point cloud sampling under a new setting, which cannot be
achieved by existing learning-based approaches.
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Discussion on the reason that our task-agnostic point
cloud sampling method (i.e., LTA-PCS) yields better re-
sults relative to task-specific methods (e.g., S-Net, Sam-
pleNet). We hypothesize this is because we introduce
the 2D pretrained model in the training process. Therefore,
the knowledge in 2D pretrained model can significantly im-
prove the performance of the sampling network. In con-
trast, due to limited network capacity or dataset size, there is
no general and well-performed 3D pretrained model when
compared with 2D pretrained models. Therefore, although
existing state-of-the-art point cloud sampling methods are
task-intensive, they cannot well utilize the prior knowledge
in 2D pretrained model, resulting worse performance than
our task-agnostic method LTA-PCS. Our LTA-PCS frame-
work can be also combined with task-specific loss, and the
results show the performance can be further boosted.
Discussion on the necessity of 2D feature extractor. We
choose the pretrained 2D feature extractor to introduce se-
mantic information when training our LTA-PCS framework
as there is no existing well-performed pretrained 3D feature
extractor on large-scale datasets in the literature. Current
3D feature extractors like PointNet [27] or PointNet++ [28]
are trained based on specific tasks and datasets, which can-
not be used in the task-agnostic setting. We hypothesize
that this is because of the lack of large-scale high-quality
3D point cloud datasets. Therefore, although we encounter
information loss in the projection process, we choose a 2D
feature extractor to introduce semantic information when
constructing our LTA-PCS.

4. Experiments

4.1. Implementation Details

We follow [7] to utilize a set of multi-layer perceptrons
(MLPs) as the sampling network, and batch normalization
and ReLU layers are appended after each MLP. In training,
we train the sampling network for 50 epochs with Adam
optimizer [14] on both ModelNet40, ShapeNet core55 and
ScanObjectNN datasets. The batch size is set as 8 and the
learning rate is 5e−4. We set the weight decay as 1e−4. In
the training process, we set the hyperparameter α in Eq. (2)
as 1. β and γ in Eq. (3) are set as 1 and 1, respectively, and
λ in Eq. (4) is set as 0.01. The number of views (i.e., K) is
set as 10. After training the sampling network, we use it to
generate simplified point clouds. Then, we use the gener-
ated simplified point clouds to train an initialized backbone
network for different downstream tasks. For the point cloud
classification task, we use PointNet [27] as our backbone
network and train the initialized PointNet for 200 epochs
with a batch size of 12. The learning rate is set as 1e−3

with weight decay of 1e−4. Step learning rate decay is used.
The learning rate will multiply 0.7 after every 20 epochs.
For the point cloud completion and registration tasks, we

use PCN [54] and PointNetLK [1] as baseline methods, re-
spectively, and the training epochs are set as 400 and 200,
respectively.

4.2. Point Cloud Classification

In Table 2, we compare our LTA-PCS with several exist-
ing point cloud sampling methods on the ModelNet40 [47],
ShapeNet [3] and ScanObjectNN (hardest perturbed variant
(PB T50 RS)) [36] for point cloud classification, where the
instance accuracy is used as the evaluation metric. Specif-
ically, Random and FPS are task-agnostic non-learnable
methods, and we directly sample a specific number of points
by using the corresponding methods. The baseline ap-
proaches S-Net [7], SampleNet [15] are task-specific learn-
able methods, and we first train the sampling network and
use the trained network to downsample the input point cloud
to a predefined number of points. However, we can re-
move the task-specific loss in these learnable sampling ap-
proaches to achieve task-agnostic point cloud sampling,
which are denoted by S-Net* and SampleNet*, respectively.
In contrast, LTA-PCS is a learnable approach without task-
specific loss in training. Therefore, it is a task-agnostic
point cloud sampling method. In Table 2, we observe
that our LTA-PCS achieves better results than other meth-
ods. Remarkably, we outperform the state-of-the-art Sam-
pleNet* under the task-agnostic setting by 2.1% when sam-
pling to 256 points on ModelNet40. Moreover, LTA-PCS
even performs better than the task-specific learnable point
cloud sampling methods S-Net and SampleNet. One possi-
ble explanation is that S-Net and SampleNet use pretrained
3D feature extractors (e.g., PointNet [27]) to calculate the
task loss, and their results are limited by the capacity of 3D
feature extractors.

4.3. Point Cloud Retrieval

We also follow S-Net [7] to report the results of the point
cloud retrieval task. For point cloud retrieval, we use Mod-
elNet40 to evaluate our LTA-PCS framework, where the
mean average precision (mAP) evaluation metric is used,
In Table 3, our LTA-PCS achieves promising performance.
Specifically, we first downsample the point cloud to the cor-
responding number of points, and then extract the features
by PointNet. Following [7], the results are computed by L2

distance of the shape descriptor, which is the feature of the
penultimate layer.

4.4. Point Cloud Completion

We follow PCN [54] to reconstruct the simplified point
clouds into the original dense point clouds with 2,048 points
on ShapeNet Core55, and we provide the L1 Chamfer Dis-
tance (CD) results of different methods in Fig. 3. Note that
for the task-specific methods, we need to additionally train
the sampling network when training the PCN method. From
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Table 2. Comparison of our LTA-PCS with other methods under the point cloud classification task. * indicates we remove the task-specific
loss in training for task-agnostic setting. “Oracle” denotes the accuracy using original dense point clouds.

Datasets ModelNet (Oracle: 90.3) ShapeNet (Oracle: 85.0)

#Sampled points 64 128 256 512 64 128 256 512

Task-Agnostic

Random 81.5 86.2 86.6 88.2 79.3 80.9 81.9 83.2
FPS 86.1 87.9 88.1 88.3 80.5 81.5 82.4 83.3

S-Net* [7] 86.1 87.8 88.2 88.5 80.6 81.3 82.2 83.0
SampleNet* [15] 86.6 88.3 87.9 88.4 80.3 81.6 82.4 82.9

LTA-PCS 88.2 89.1 90.0 90.3 82.0 83.1 83.5 84.4

Task-Specific
S-Net [7] 87.7 88.1 88.4 89.0 80.9 82.3 82.7 83.6

SampleNet [15] 87.9 88.3 88.0 88.7 81.0 82.5 82.7 83.4

Table 3. Comparison of our LTA-PCS with other methods under
the point cloud retrieval task. * indicates we remove the task-
specific loss in training for task-agnostic setting.

#Sampled points 64 128 256 512

Task-Agnostic

Random 66.1 69.4 72.5 73.3
FPS 69.1 72.5 73.0 74.2

S-Net* [7] 69.4 71.7 73.6 74.1
SampleNet* [15] 70.4 72.3 72.6 74.7

LTA-PCS 71.4 73.2 74.8 77.2

Task-Specific

S-Net [7] 70.5 72.7 74.0 76.2
SampleNet [15] 70.9 72.5 73.6 76.0

64 128 256 512
#Sampled points

0.028

0.031

0.034

L 1
 C

D

FPS
S-Net*
SampleNet*
S-Net
SampleNet
LTA-PCS

Figure 3. Performance on the point cloud completion task. Lower
L1 Chamber Distance (L1 CD) denotes better performance.

Fig. 3, we observe that the quantitative results of our LTA-
PCS are better than other methods under different numbers
of sampled points. The results show our LTA-PCS is effec-
tive for different downstream tasks.
Visualization. We provide the visualization results of dif-

FPS S-Net LTA-PCS

FPS S-Net LTA-PCS

(a) Simplified Point Clouds

(b) Completed Point Clouds

Figure 4. (a). Simplified point clouds. (The sampled points are
enlarged for better visualization.) (b). Completed point clouds by
using the corresponding simplified point clouds as input.

ferent methods in Fig. 4. Specifically, in Fig. 4(a), the sim-
plified point clouds are produced by FPS, S-Net and LTA-
PCS, where the number of points in each simplified point
cloud are 64, and in Fig. 4(b), we observe that the recon-
struction quality of LTA-PCS is better than other methods.

4.5. Ablation Study

Effect of different losses. In Table 4 we provide three alter-
native variants of our LTA-PCS: LTA-PCS (w/o inter & w/o
intra), LTA-PCS (w/o inter), LTA-PCS (w/o intra). Specifi-
cally, for LTA-PCS (w/o inter & w/o intra), we remove the
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Table 4. Ablation on using different losses.

#Sampled points 128 256

LTA-PCS 89.1 90.0
LTA-PCS (w/o inter & w/o intra) 87.8 88.2

LTA-PCS (w/o inter) 88.6 89.4
LTA-PCS (w/o intra) 88.3 89.1

Table 5. Ablation on using different feature extractors.

#Sampled points 128

LTA-PCS (PointNet) 88.0
LTA-PCS (R50 trained on ImageNet) 88.3

LTA-PCS (R50 of CLIP vision encoder) 89.1

Table 6. Ablation on using different numbers of views.

# views 2 6 10

LTA-PCS 88.2 88.9 89.1

semantic losses (i.e., both inter-view and intra-view losses),
which is the same as the S-Net [7] without using the task
loss. For LTA-PCS (w/o inter), we only use the intra-view
loss without using the inter-view loss to train our LTA-PCS
framework. For LTA-LTA-PCS (w/o intra), we only use the
inter-view loss without using the intra-view loss to train the
LTA-PCS framework. In Table 4, our LTA-PCS is better
than these three alternative variants, which shows that it is
beneficial to utilize both intra-view and inter-view losses.
Effect of 2D feature extractor. In Table 5, we compare the
results of our LTA-PCS by using different pretrained vision
backbones [6, 12] to show the effect of 2D feature extrac-
tor. Specifically, for LTA-PCS (PointNet), we directly use
the PointNet backbone to extract the features of the origi-
nal dense point cloud and simplified point cloud and calcu-
late the MSE distance of corresponding features to preserve
semantic consistency. For LTA-PCS (R50 trained on Ima-
geNet), we use the ResNet-50 [12] model trained on Ima-
geNet as the feature extractor. For LTA-PCS (R50 of CLIP
vision encoder) and LTA-PCS (VIT-B/16 of CLIP vision
encoder), we use the pretrained CLIP vision encoder with
different backbones. In Table 5, first, the results of LTA-
PCS (PointNet) are lower than other methods a lot, which
indicates that the 3D feature extractor (i.e., PointNet) can-
not provide high-quality semantic supervision to train the
sampling network. Second, we observe that the results of
LTA-PCS (R50 of CLIP vision encoder) are better than the
results of LTA-PCS (R50 trained on ImageNet) by a large
margin, which shows the capacity of the feature extractor
is critical when training the sampling network. Therefore,

we choose the pre-trained 2D feature extractor to maintain
semantic consistency when training the sampling network
instead of using the pre-trained 3D feature extractor.
Effect of the number of views. In Table 6, we report the
performance results of using 128 sampled points as input to
analyze the effect of the number of projected views, where
we report the results on the ModelNet40 dataset based on
the PointNet backbone. When the number of views in-
creases from 2 to 10, LTA-PCS can achieve better perfor-
mance results, which indicates that it is effective to use more
views for maintaining the semantic consistency between the
original and simplified point clouds. Therefore, we set the
projected number of views as 10 to achieve better perfor-
mance with acceptable memory usage.

4.6. Further Analysis

Table 7. Inference time and GPU memory usage of our LTA-PCS
with different sampled points.

#Sampled points Inference time (ms) GPU usage (MB)

64 0.28 578
128 0.37 616
256 0.58 724
512 1.05 940

2048 1.77 2326

Comparison on inference time and GPU memory usage.
In Table 7, we take the ModelNet40 dataset as an exam-
ple and compare the inference time and GPU memory us-
age under different sampled points when using PointNet as
the backbone network. As shown in Table 7, we observe
that using fewer points can reduce inference time and GPU
memory usage greatly, which further demonstrates the ad-
vantages of point cloud sampling.

5. Conclusion
In this work, we propose the Learnable Task-Agnostic Point
Cloud Sampling (LTA-PCS) framework for task-agnostic
point cloud sampling task, which aims to preserve the geo-
metric and semantic consistency in point cloud sampling.
Specifically, we first propose to use the pre-trained 2D
feature extractor for training the sampling network, and
use semantic loss including both inter-view and intra-view
losses. Comprehensive experimental results on multiple
downstream tasks show the effectiveness of LTA-PCS. In
the future, we will continue to explore more tasks based on
our LTA-PCS method.
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