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Figure 1. One-2-3-45++ is capable of transforming a single RGB image of any object into a high-fidelity textured mesh in under one
minute. The generated meshes closely mirror the input image. Input image (and text prompt), textured mesh, and normal map are shown.

Abstract
Recent advancements in open-world 3D object genera-

tion have been remarkable, with image-to-3D methods of-
fering superior fine-grained control over their text-to-3D
counterparts. However, most existing models fall short in
simultaneously providing rapid generation speeds and high
fidelity to input images - two features essential for practi-
cal applications. In this paper, we present One-2-3-45++,
an innovative method that transforms a single image into
a detailed 3D textured mesh in approximately one minute.
Our approach aims to fully harness the extensive knowledge
embedded in 2D diffusion models and priors from valuable
yet limited 3D data. This is achieved by initially finetun-
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ing a 2D diffusion model for consistent multi-view image
generation, followed by elevating these images to 3D with
the aid of multi-view-conditioned 3D native diffusion mod-
els. Extensive experimental evaluations demonstrate that
our method can produce high-quality, diverse 3D assets that
closely mirror the original input image.

1. Introduction
Generating 3D shapes from a single image or text prompt
is a long-standing problem in computer vision and is essen-
tial for numerous applications. While remarkable progress
has been achieved in the field of 2D image generation due
to advanced generative methods and large-scale image-text
datasets, transferring this success to the 3D domain is hin-
dered by the limited availability of 3D data. Although many
works have introduced sophisticated 3D generative mod-
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els [8, 16, 37, 87], a majority rely solely on 3D shape
datasets for training. Given the limited size of publicly
available 3D datasets, these methods often struggle to gen-
eralize across unseen categories in open-world scenarios.

Another line of work, exemplified by DreamFusion [49],
Magic3D [31], harnesses the expansive knowledge or ro-
bust generative potential of 2D prior models like CLIP [51]
and Stable Diffusion [56]. They typically optimize a 3D
representation (e.g., NeRF or mesh) from scratch for each
input text or image. During the optimization process, the
3D representation is rendered into 2D images, and the 2D
prior models are employed to calculate gradients for them.
While these methods have yielded impressive outcomes, the
per-shape optimization can be exceedingly time-intensive,
requiring tens of minutes or even hours to generate a sin-
gle 3D shape for each input. Moreover, they frequently
encounter the “multi-face” or Janus problem, produce re-
sults with oversaturated colors and artifacts inherited from
the NeRF or triplane representation, and face challenges in
generating diverse results across different random seeds.

A recent work One-2-3-45 [33] presents an efficient
feed-forward pipeline to leverage rich priors of 2D diffu-
sion models for 3D generation. It initially predicts multi-
view images via a view-conditioned 2D diffusion model,
Zero123 [34]. These images are subsequently processed by
a generalizable NeRF method [38] for 3D reconstruction.
Although One-2-3-45 can produce 3D shapes in a single
forward pass, its efficacy is often constrained by the incon-
sistent multi-view predictions of Zero123, leading to com-
promised 3D reconstruction results.

In this paper, we introduce One-2-3-45++, a novel
method that effectively overcomes the shortcomings of
One-2-3-45, delivering significantly enhanced robustness
and quality. Taking a single image of any object as in-
put, One-2-3-45++ also includes two primary stages: 2D
multi-view generation and 3D reconstruction. During the
initial phase, rather than employing Zero123 to predict
each view independently, One-2-3-45++ predicts consistent
multi-view images jointly. This is realized by tiling a con-
cise set of six-view images into a single image and then
finetuning a 2D diffusion model to generate this combined
image conditioned on the input reference image. In this
way, the 2D diffusion net is able to attend to each view
during generation, ensuring more consistent results across
views. In the second stage, One-2-3-45++ employs a multi-
view conditioned 3D-diffusion-based module to predict the
textured mesh in a coarse-to-fine fashion. The consistent
multi-view conditional images act as a blueprint for 3D re-
construction, facilitating a zero-shot hallucination capabil-
ity. Concurrently, the 3D diffusion network excels in lift-
ing the multi-view images, thanks to its ability to harness a
broad spectrum of priors extracted from the 3D dataset. Ul-
timately, One-2-3-45++ employs a lightweight optimization

technique to enhance the texture quality efficiently, leverag-
ing the consistent multi-view images for supervision.

As depicted in Fig. 1, One-2-3-45++ efficiently gener-
ates 3D meshes with realistic textures in under a minute,
offering precise fine-grained control. Our comprehensive
evaluations, including user studies and objective metrics
across an extensive test set, highlight One-2-3-45++’s su-
periority in terms of robustness, visual quality, and, most
importantly, fidelity to the input image.

2. Related Work
2.1. 3D Generation
3D generation has garnered significant attention in recent
years. Before the advent of large-scale pre-trained 2D
models, researchers often delved into 3D native generative
models that learn directly from 3D synthetic data or real
scans and generate various 3D representations such as point
clouds [1, 15, 41, 47, 83], 3D voxels [9, 59, 74, 75], polygon
meshes [16, 17, 26, 32, 37, 46, 68], parametric models [21],
and implicit fields [8, 14, 19, 25, 30, 42, 48, 73, 78, 82, 84,
86, 87]. However, given the limited availability of 3D data,
these models tended to focus on a select number of cate-
gories (e.g., chairs, cars, planes, humans, etc.), struggling
to generalize to unseen categories in the open world.

The advent of recent 2D generative models (e.g., DALL-
E [53], Imagen [58], and Stable Diffusion [57]) and vision-
language models (e.g., CLIP [51]) has equipped us with
powerful priors about our 3D world, consequently fuel-
ing a surge of research in 3D generation. Notably, mod-
els like DreamFusion [49], Magic3D [31], and Prolific-
Dreamer [71] have pioneered a line of approach for per-
shape optimization [6, 7, 12, 23, 29, 40, 43–45, 50, 52,
60, 63, 64, 67, 76, 77, 81]. These models are designed to
optimize a 3D representation for each unique input text or
image, drawing on the 2D prior models for gradient guid-
ance. While they have yielded impressive results, these
methods tend to suffer from prolonged optimization times,
the ”multi-face problem,” oversaturated colors, and a lack
of diversity in results. Some works also concentrate on cre-
ating textures or materials for input meshes, utilizing the
priors of 2D models [5, 55].

A new wave of studies, highlighted by works like
Zero123 [34], has showcased the promise of using pre-
trained 2D diffusion models for synthesizing novel views
from singular images or texts, opening new doors for 3D
generation. For instance, One-2-3-45 [33], using multi-
view images predicted by Zero123, can produce a tex-
tured 3D mesh in a mere 45 seconds. Nevertheless, the
multi-view images produced by Zero123 lack 3D consis-
tency. Our research, along with several concurrent stud-
ies [36, 39, 61, 72, 80], is dedicated to enhancing the con-
sistency of these multi-view images – a vital step for subse-
quent 3D reconstruction applications.
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Figure 2. Starting with a single RGB image as input, we initially produce consistent multi-view images by fine-tuning a 2D diffusion
model. These multi-view images are then elevated into 3D through a pair of 3D native diffusion networks. Throughout the 3D diffusion
process, the generated multi-view images act as essential guiding conditions. After extracting the 3D mesh from the denoised volume, we
further enhance the texture by employing a lightweight optimization with multi-view images as supervision. One-2-3-45++ is capable of
producing an initial textured mesh within 20 seconds and delivering a refined one in roughly one minute using a single A100 GPU.

2.2. Sparse View Reconstruction
While traditional 3D reconstruction methods, such as multi-
view stereo or NeRF-based techniques, often demand a
dense collection of input images for accurate geometry
inference, many of the latest generalizable NeRF solu-
tions [3, 24, 28, 35, 38, 54, 66, 69, 70, 79] strive to learn
priors across scenes. This enables them to infer NeRF
from a sparse set of images and generalize to novel scenes.
These methods typically ingest a few source views as in-
put, leveraging 2D networks to extract 2D features. These
pixel features are then unprojected and aggregated into 3D
space, facilitating the inference of density (or SDF) and col-
ors. However, these methods may either rely on consistent
multi-view images with accurate correspondences or pos-
sess limited priors to generalize beyond training datasets.

Recently, some methods [2, 27, 65, 88] have employed
diffusion models to aid sparse view reconstruction tasks.
However, they generally frame the problem as novel view
synthesis, necessitating additional processing, such as dis-
tillation using a 3D representation, to generate 3D content.
Our work utilizes a multi-view conditioned 3D diffusion
model for 3D generation. This model directly learns pri-
ors from 3D data and obviates the need for additional post-
processing. Moreover, some concurrent works [36, 39, 61]
employ NeRF-based per-scene optimization for reconstruc-
tion, leveraging specialized loss functions.

3. Method
In traditional game studios, the creation of 3D content en-
compasses a series of stages, including concept art, 3D
modeling, and texturing, etc. Each stage demands distinct
and complementary expertise. For instance, concept artists
should possess creativity, a vivid imagination, and the skill
to visualize 3D assets. In contrast, 3D modelers must be
skilled in 3D modeling tools and capable of interpreting and
translating multi-view concept drawings into life-like mod-

els, even when drawings contain inconsistencies or errors.
One-2-3-45++ aims to harness the rich 2D priors and the

valuable yet limited 3D data following a similar philoso-
phy. As shown in Fig. 2, with a single input image of an
object, One-2-3-45++ starts by generating coherent multi-
view images of the object. This is achieved by finetuning a
pre-trained 2D diffusion model and acts akin to the role of
a concept artist. These generated images are then input into
a multi-view conditioned 3D diffusion model for 3D mod-
eling. The 3D diffusion module, trained on extensive multi-
view and 3D pairings, excels at converting multi-view im-
ages into 3D meshes. Finally, the produced meshes undergo
a lightweight refinement module, guided by the multi-view
images, to further enhance the texture quality.

3.1. Consistent Multi-View Generation
Recently, Zero123 has demonstrated the potential of fine-
tuning a pretrained 2D diffusion network to incorporate
camera view control, thereby synthesizing novel views of
an object from a single reference image. While previous
studies have employed Zero123 to generate multi-view im-
ages, they often suffer from inconsistencies across different
views. This inconsistency arises because Zero123 models
the conditional marginal distribution for each view in isola-
tion, without considering inter-view communication during
multi-view generation. In this work, we present an innova-
tive method to produce consistent multi-view images, sig-
nificantly benefiting downstream 3D reconstruction.
Multi-View Tiling To generate multiple views in a single
diffusion process, we adopt a simple strategy by tiling a
sparse set of 6 views into a single image with a 3× 2 layout
as shown in Fig. 3. Subsequently, we finetune a pre-trained
2D diffusion net to generate the composite image, condi-
tioned on a single input image. This strategy enables multi-
ple views to interact with each other during the diffusion.

It’s nontrivial to define the camera poses of the multi-
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Figure 3. Consistent multi-view generation: We stitch multi-
view images into a single frame and fine-tune the Stable Diffusion
model to generate this composite image, using the input reference
image as conditions. We utilize predetermined absolute elevation
angles and relative azimuth angles. During 3D reconstruction, we
do not need to infer the elevation angle of the input image.

view images. Given that the 3D shapes within the training
dataset lack aligned canonical poses, employing absolute
camera poses for the multi-view images could lead to ambi-
guities for the generative model. Alternatively, if we were
to set the camera poses relative to the input view, as done in
Zero123, downstream applications would then be required
to infer the elevation angle of the input image to deduce the
camera poses of the multi-view images. This additional step
could introduce errors into the pipeline. To address these,
we opt for fixed absolute elevation angles paired with rel-
ative azimuth angles to define the poses of multi-view im-
ages, effectively resolving the orientation ambiguity with-
out necessitating further elevation estimation. To be more
precise, the six poses are determined by alternating eleva-
tions of 30◦ and −20◦, coupled with azimuths commencing
at 30◦ and incrementing by 60◦ for each subsequent pose,
as shown in Fig. 3.
Network and Training Details To fine-tune Stable Diffu-
sion for adding image conditioning and generating coherent
multi-view composite images, we employ three crucial net-
work or training designs: (a) Local Condition: We adopt
the reference attention technique [85] to incorporate the lo-
cal condition of the image patch features. Specifically, we
process the reference input image with the denoising UNet
model and append the self-attention key and value matrices
of the image tokens from the conditional reference image to
the corresponding attention layers of the denoising multi-
view image. (b) Global Condition: We leverage CLIP
image embedding as a global condition, by replacing the
text token features originally used in Stable Diffusion with
the duplicated CLIP image features. These global image
embeddings are multiplied by a set of learnable weights,
providing the network with an overall semantic understand-
ing of the object. (c) Noise Schedule: The original Sta-
ble Diffusion model was trained using a scaled-linear noise
schedule. We found it necessary to switch to a linear noise

scheme in our fine-tuning process.
We fine-tune the Stable Diffusion2 v-mode using 3D

shapes from the Objaverse dataset [11]. For each shape, we
generate three data points by randomly sampling the camera
pose of the input image from a specified range, and select-
ing a random HDRI environment lighting from a curated
set that offers uniform lighting. Initially, we fine-tuned only
the self-attention layers along with the key and value matri-
ces of the cross-attention layers using LoRA [22]. Subse-
quently, we fine-tuned the entire UNet using a conservative
learning rate. The finetuning process was conducted using
16 A100 GPUs and took approximately 10 days.

3.2. 3D Diffusion with Multi-View Condition
While prior work utilizes generalizable NeRF methods for
3D reconstruction, it primarily depends on accurate local
correspondence of multi-view images and possesses limited
priors for 3D generation. This constrains their effectiveness
in lifting intricate and inconsistent multi-view images gen-
erated by the 2D diffusion network. Instead, we propose
an innovative way to lift the generated multi-view images
to 3D by utilizing a multi-view conditioned 3D generative
model. It seeks to learn a manifold of plausible 3D shapes
conditioned on multi-view images by training expressive
3D native diffusion networks on extensive 3D data.
3D Volume Representations As shown in Fig. 2, we rep-
resent a textured 3D shape as two discrete 3D volumes, a
signed distance function (SDF) volume, and a color vol-
ume. The SDF volume measures the signed distance from
the center of each grid cell to the nearest shape surface,
while the color volume captures the color of the closest sur-
face points relative to the center of the grid cells. Addition-
ally, we generate a discrete occupancy volume for the 3D
shape, where each grid cell stores a binary occupancy based
on whether the absolute value of its SDF is below a prede-
fined threshold. The occupancy volume depicts the shell of
the 3D shape.
Two-Stage Diffusion Capturing fine-grained details of 3D
shapes necessitates the use of high-resolution 3D grids,
which unfortunately entail substantial memory and com-
putational costs. We thus follow LAS-Diffusion [87] to
generate high-resolution volumes in a coarse-to-fine two-
stage manner. Specifically, the initial stage generates a
low-resolution (e.g., n = 64) full 3D occupancy volume
F ∈ Rn×n×n×1 to approximate the shell of the 3D shape.
The second stage then focuses on the occupied shell re-
gion only and aims to generate a high-resolution (e.g., 1283)
four-channel sparse volume S, which predicts fine-grained
SDF values and color for the sparsely occupied shell region.

We employ a separate diffusion network for each stage.
For the first stage, normal 3D convolution is used within the
UNet to produce the full 3D occupancy volume F , while for
the second stage, we incorporate 3D sparse convolution [62]
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Figure 4. Multi-view local condition: We employ a pre-trained
2D backbone to extract 2D patch features for each view. These
features are then aggregated using known projection matrices to
construct a 3D feature volume. The volume is further processed
by 3D convolutional neural networks, resulting in feature volumes
of varying resolutions. Subsequently, these volumes are concate-
nated with the corresponding feature volumes within the diffusion
U-Net to guide the 3D diffusion.

in the UNet to yield the 3D sparse volume S. Both diffusion
networks are trained using the denoising loss [20]:

Lx0
= Eϵ∼N (0,I),t∼U(0,1) ∥f (xt, t, c)− x0∥22

where ϵ and t are sampled noise and time step, x0 is a data
point (F or S) and xt is its noised version, c is the multi-
view condition, and f is the UNet. N and U denote Gaus-
sian and uniform distribution, respectively.
Multi-View Condition Training a conventional 3D native
diffusion network can be challenging to generalize due to
the limited availability of 3D data. However, the use of
generated multi-view images can provide a comprehensive
guide, greatly simplifying the imagination difficulty of 3D
generation. We integrate the multi-view images to guide the
diffusion process by initially extracting local image features
and subsequently constructing a conditional 3D feature vol-
ume, denoted as C. This strategy follows the rationale that
local priors facilitate easier generalization [87].

As shown in Fig. 4, given m multi-view images, we first
employ a pre-trained 2D backbone, DINOv2, to extract a set
of local patch features for each image. We then build a 3D
feature volume C by projecting each 3D voxel within the
volume onto m multi-view images using the known camera
poses. For each 3D voxel, we aggregate m associated 2D
patch features through a shared-weight MLP, followed by
max pooling. These aggregated features collectively form
the feature volume C.

In the diffusion network, the UNet consists of several
levels. For example, the occupancy UNet in the initial stage
has five levels: 643, 323, 163, 83, and 43. Initially, we
construct a conditional feature volume C that matches the
starting resolution, as outlined earlier. A 3D convolution
network is then applied to C, producing volumes for the
subsequent resolutions. The resultant conditional volumes
are then concatenated with the volumes inside the UNet to

guide the diffusion process. For the second stage, we con-
struct sparse conditional volumes and utilize 3D sparse con-
volution. To benefit the diffusion of color volume, we also
concatenate 2D pixel-wise projected colors to the final layer
of the diffusion UNet. Moreover, we integrate the CLIP fea-
ture of the input image as a global condition. For a detailed
explanation, please refer to the supplementary materials.
Training and Inference Details We train the two diffusion
networks using 3D shapes from the Objaverse dataset [11].
For each 3D shape, we first convert it to a watertight man-
ifold before extracting its SDF volume. We unproject the
multi-view renderings of the shape to get a 3D colored point
cloud, which is used to build the color volume. During
training, we utilize the ground truth renderings to serve as
the multi-view conditions. Since two diffusion networks are
trained separately, we introduced random perturbations to
camera poses and infused random noises to the initial occu-
pancy of the second stage to enhance robustness. We train
the two diffusion nets using 8 A100 GPUs for about 10 days
for each stage. Please refer to the supplementary materials
for more details.

During inference, a 643 grid is first initialized with Gaus-
sian noise and then denoised by the first diffusion net.
Each predicted occupied voxel is further subdivided into 8
smaller voxels, used to construct a high-resolution sparse
volume. The sparse volume is initialized with Gaussian
noise and then denoised with the second diffusion net, re-
sulting in predictions for the SDF and color of each voxel.
The Marching Cubes algorithm is finally applied to extract
a textured mesh.

3.3. Texture Refinement
Given that multi-view images possess higher resolution than
the 3D color volume, we can refine the texture of the gener-
ated mesh through a lightweight optimization process. To
achieve this, we fix the geometry of the generated mesh
while optimizing a color field represented by a TensoRF [4].
In each iteration, the generated 3D mesh is rasterized, and
the color network is queried to produce 2D renderings.
We leverage the predicted consistent multi-view images to
guide the texture optimization using a l2 loss. Lastly, we
bake the optimized color field onto the mesh, with the sur-
face normal serving as the viewing direction.

4. Experiments
4.1. Comparison on Image to 3D
Baselines: We evaluate One-2-3-45++ against both
optimization-based and feed-forward methods. Within
the optimization-based approaches, our baselines include
DreamFusion [49] with Zero123 XL [34] as its backbone,
as well as SyncDreamer [36], and DreamGaussian [63].
For feed-forward approaches, we compare with One-2-3-
45 [33] and Shap-E [25]. We employ the ThreeStudio [18]
implementation for Zero123 XL [18] and the original offi-
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Figure 5. Qualitative results of various single image to 3D approaches. Input images, textured meshes, and normal maps are shown.

Table 1. Comparison on single image to 3D. Evaluated on the
GSO [13] dataset, which contains 1,030 3D objects.

Method F-Sco. (%)↑ CLIP-Sim↑ User-Pref. (%)↑ Time↓

Zero123 XL [10] 91.6 73.1 58.6 30min
One-2-3-45 [33] 90.4 70.8 52.7 45s

SyncDreamer [36] 84.8 68.9 28.4 6min
DreamGaussian [63] 81.0 68.4 31.5 2min

Shap-E [25] 91.8 73.1 40.8 27s
Ours 93.6 81.0 87.6 60s

cial implementations for the other methods.
Dataset and Metrics: We assess the performance of the
methods using the entire set of 1,030 shapes from the GSO
dataset [13], which were not exposed to any of the meth-
ods during training to the best of our knowledge. For each
shape, we generate a frontal view image to serve as the in-
put. In line with One-2-3-45 [33], we employ the F-Score
and CLIP similarity as our evaluation metrics. The F-Score
evaluates the geometric similarity between the predicted
mesh and the ground truth mesh. For the CLIP similarity
metric, we render 24 different views for each predicted and
ground truth mesh, compute the CLIP similarity for each
corresponding pair of images, and then average these val-
ues across all views. Prior to metric computation, we align
the predicted mesh with the ground truth mesh using a com-
bination of linear search and the ICP algorithm.
User Study: A user study was also carried out. For each

Figure 6. Results of a user study involving 53 participants.
Each cell displays the probability or preference rate at which one
method (row) outperforms another (column).

participant, 45 shapes were randomly selected from the en-
tire GSO dataset, and two methods were randomly sampled
for each shape. Participants were asked to choose the re-
sult from each pair of comparative outcomes that exhibits
superior quality and better aligns with the input image. The
preference rate for all methods was then tallied based on
these selections. In total, 2,385 evaluated pairs were col-
lected from 53 participants.
Results: As presented in Tab. 1, One-2-3-45++ surpasses
all baseline methods regarding F-Score and CLIP similar-
ity. The user preference scores further highlight a signif-
icant performance disparity, with our method outperform-
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Figure 7. Our qualitative results: top row displays input images; subsequent rows show multi-view renderings of the generated meshes.

Table 2. Quantitative comparison with various text to 3D methods.
Evaluated on 50 text prompts from DreamFusion [49].

Method CLIP-Sim↑ User-Pref.↑ Runtime↓

ProlificDreamer [71] 25.7 39.5 10h+
MVDream [61] 24.8 66.2 2h

Shap-E [25] 22.3 11.1 27s
Ours 26.8 84.1 60s

ing competing approaches by a substantial margin. Refer
to Fig. 6 for an in-depth confusion matrix, which illus-
trates that One-2-3-45++ outperforms One-2-3-45 92% of
the time. Moreover, when compared to optimization-based
methods, our approach demonstrates notable runtime ad-
vantages. Fig. 5 and 7 show qualitative results.

4.2. Comparison on Text to 3D
Baselines: We compared One-2-3-45++ with optimization-
based methods, specifically ProlificDreamer [71] and MV-
Dream [61], as well as a feed-forward approach, Shap-
E [25]. For ProlificDreamer, we utilized the ThreeStudio
implementation [18], while for the remaining methods, we
employed their respective official implementations.
Dataset and Metrics: Given that many baseline ap-
proaches necessitate hours to produce a single 3D shape,
our evaluation was conducted on 50 text prompts, sampled
from DreamFusion [49]. We utilize CLIP similarity, cal-
culated by comparing 24 rendered views of the predicted
mesh against the input text prompt and then averaging the
similarity scores across all views.
User Study: The user study, akin to the image-to-3D evalu-
ation, involved 30 pairs of outcomes randomly selected for
each participant. In total, 1,590 evaluation pairs were col-
lected from 53 participants.
Results: As illustrated in Tab. 2, One-2-3-45++ outper-
forms all baseline methods in terms of CLIP similarity. This
is further corroborated by user preference scores, with our

Table 3. Ablation studies of different modules. Evaluated on the
complete GSO [13] dataset. “MultiView”, “Reconstruction”, and
“Texture” indicate multi-view generation, sparse view reconstruc-
tion, and texture refinement modules, respectively.

MultiView Reconstruction Texture F-Sc.↑ CLIP-Sim↑ Time↓

Zero123 XL [10] Ours w/o 92.9 71.9 14s
Ours SparseNeuS [38] w/o 81.2 67.2 15s
Ours Ours w/o 93.6 73.4 20s
Ours Ours w/ 93.6 81.0 60s

method significantly outshining rival techniques. See Fig. 6
for an in-depth analysis. When directly comparing One-2-
3-45++ with the second-best method, MVDream [61], our
approach commands a 70% user preference rate. Moreover,
while our method delivers prompt results, MVDream [61]
requires about 2 hours to generate a single shape. Fig. 8
shows qualitative results.

4.3. Analyses
Ablation Studies of Overall Pipeline One-2-3-45++ is
comprised of three key modules: consistent multi-view gen-
eration, multi-view conditioned 3D diffusion, and texture
refinement. We conducted ablation studies on these mod-
ules using the complete GSO dataset [13], with results de-
tailed in Tab. 3. Replacing our consistent multi-view gener-
ation module with Zero123XL [10] led to a noticeable per-
formance decline. Furthermore, substituting our 3D diffu-
sion module with the generalizable NeRF used in One-2-3-
45 [33] resulted in an even more significant performance
drop. However, the inclusion of our texture refinement
module markedly improved texture quality, yielding higher
CLIP similarity scores.
Ablation Studies of 3D Diffusion Tab. 4 presents the re-
sults of an ablation study of the 3D diffusion module. The
study highlights the importance of multi-view images for
the module’s efficacy. When the module operates without
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Figure 8. Qualitative results of various text to 3D approaches. Input images, textured meshes, and normal maps are shown.

Table 4. Ablation study of the 3D diffusion module. 3D IoU of
the initial-stage occupancy prediction is reported. Note that the
3D IoU is computed for the 3D shell, excluding the solid interior.

id multi-view cond. global cond. image source proj. perturb. 3D IoU ↑

a w/o w/ rendering N/A 18.3
b global w/ rendering N/A 24.4
c local w/o rendering w/o 41.4
d local w/ prediction w/o 41.9
e local w/ rendering w/o 44.1
f local w/ rendering w/ 45.1

multi-view conditions, relying solely on the global CLIP
feature from a single input view (rows a and f), there is a sig-
nificant decline in performance. Conversely, the One-2-3-
45++ approach leverages multi-view local features by con-
structing a 3D feature volume with known projection ma-
trices. A mere concatenation of global CLIP features from
multiple views also impairs performance (rows b and f), un-
derlining the value of multi-view local conditions. Global
CLIP features of the input view, however, provide global
shape semantics; their removal results in decreased perfor-
mance (rows c and e). Although One-2-3-45++ uses pre-
dicted multi-view images for 3D reconstruction, incorpo-
rating these predicted images during training of the 3D dif-
fusion module can lead to a performance downturn (rows d
and e) due to the potential mismatch between the predicted
multi-view images and actual 3D ground truth meshes. To
train the module effectively, we utilize ground truth render-
ings. Recognizing that predicted multi-view images may
be flawed, we introduce random perturbations to projection
matrices during training to enhance robustness when pro-
cessing predicted multi-view images (rows e and f).
Comparison on Multi-View Generation We also evalu-
ate our consistent multi-view generation module against
existing approaches, namely Zero123 [34] and its scaled
variant [10], alongside two concurrent works: Sync-
Dreamer [36] and Wonder3D [39]. Our comparison uti-
lizes the GSO [13] dataset, where for each object, we render
a single input image and task the methods with producing

Table 5. Comparison of different multi-view generation methods.
Evaluated on the complete GSO [13] dataset.

Target Elevations PSNR ↑ LPIPS ↓ Mask IoU ↑

Zero123 [34]
30◦ and −20◦

20.32 0.110 0.856
Zero123 XL [10] 20.11 0.113 0.869

Ours 22.12 0.110 0.878
SyncDreamer [36] 30◦ 21.67 0.095 0.894

Wonder3D [39] 0◦ 18.67 0.130 0.635

multi-view images. For Zero123 and Zero123 XL, we uti-
lize the same target poses as our approach. However, for
Wonder3D and SyncDreamer, we employ the target poses
preset by these methods, as they do not support altering
camera positions during inference. As presented in Tab. 5,
our approach surpasses current methodologies in PSNR,
LPIPS, and foreground mask IoU. Notably, Wonder3D [39]
employs orthographic projection in its training phase, which
compromises its robustness when dealing with perspective
images during inference. SyncDreamer [36] only generates
views at an elevation of 30◦, a simpler setting than ours.
Moreover, since these metrics do not assess 3D consistency
across views, please refer to supplementary for additional
qualitative comparisons and discussions.

5. Conclusion
In this paper, we introduced One-2-3-45++, an innovative
approach for transforming a single image of any object into
a 3D textured mesh. This method stands out by offer-
ing more precise control compared to existing text-to-3D
models, and it is capable of delivering high-quality meshes
swiftly—typically in under 60 seconds. Additionally, the
generated meshes exhibit a high fidelity to the original in-
put image. Looking ahead, there is potential to enhance the
robustness and detail of the geometry by incorporating addi-
tional guiding conditions from 2D diffusion models, along-
side RGB images.
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