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Figure 1. Point2CAD is a pipeline for reconstructing complex CAD models, including freeform surfaces, from 3D point clouds. A raw
point cloud is segmented into clusters corresponding to CAD faces, and each face is fitted either with a geometric primitive or with a
parametric freeform surface, using a novel, implicit neural representation. Due to the analytic representation the surfaces can be extended
and intersected, such that topology emerges, which is then used to clip the surface primitives.

Abstract

Computer-Aided Design (CAD) model reconstruction
from point clouds is an important problem at the inter-
section of computer vision, graphics, and machine learn-
ing; it saves the designer significant time when iterating
on in-the-wild objects. Recent advancements in this di-
rection achieve relatively reliable semantic segmentation
but still struggle to produce an adequate topology of the
CAD model. In this work, we analyze the current state
of the art for that ill-posed task and identify shortcom-
ings of existing methods. We propose a hybrid analytic-
neural reconstruction scheme that bridges the gap between
segmented point clouds and structured CAD models and
can be readily combined with different segmentation back-
bones. Moreover, to power the surface fitting stage, we pro-
pose a novel implicit neural representation of freeform sur-
faces, driving up the performance of our overall CAD re-
construction scheme. We extensively evaluate our method
on the popular ABC benchmark of CAD models and set a
new state-of-the-art for that dataset. Code is available at
https://github.com/YujiaLiu76/point2cad.

1. Introduction

The task of reverse engineering CAD models from 3D point
clouds has gained increasing attention in recent years due
to the rapid development of 3D scanning technologies. Re-
verse engineering involves transforming a physical object
into a digital model in an editing-friendly format, which can
be used for analysis, visualization, and manufacturing.

Most approaches to reverse engineering CAD models
follow a typical sequence of steps. First, data capture and
pre-processing are carried out to obtain point cloud data
sampled densely from the object’s surface. Subsequently,
the point cloud is segmented to identify individual regions
of interest. The regions are then classified to differentiate
between different types of surfaces and features. Analyti-
cal representations are generated based on the identified re-
gions, followed by the reconstruction of the model’s topol-
ogy. Commercial software systems offer interactive tools
and functions for each step, such as a dedicated segmenta-
tion or shape-fitting tool. Similarly, research that aims to au-
tomate the process has focused chiefly on individual steps,
whereas little work covers the complete workflow of CAD
model reconstruction. Furthermore, most existing work is
either limited to case studies of a few models or is still quite
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far from producing satisfactory results.

In particular, reconstruction with simple parametric sur-
face primitives has been studied extensively. For such sur-
faces, both fitting and computing intersections are compar-
atively straight-forward, and with sufficiently clean point
clouds, a boundary representation (B-rep) can be derived
with classical geometric methods [1, 4, 44]. On the con-
trary, while there are several works about fitting freeform
surfaces, often with various flavors of splines, they mostly
stop short of assembling individual surfaces into complete
B-reps [8, 39, 47]. In summary, geometrically complex
free-form surfaces and topologically complex assemblies of
simple surfaces have mostly been studied separately. The
present work addresses this gap by proposing Point2CAD,
a method that recovers complete CAD models, including
free-form surfaces, edges, and corners. Refer to Sec. Al of
sup.mat. for notation.'

Our proposed pipeline for CAD model reconstruction
from point clouds comprises several steps. First, a pre-
trained neural network segments the point cloud into clus-
ters corresponding to distinct surfaces. Second, surfaces are
fitted to the clusters, which involves both basic primitive
fitting and a novel neural fitting scheme for freeform sur-
faces. Third, adjacent surfaces are intersected to recover
edges, and adjacent edges are further intersected to recover
corners, thus obtaining a full B-rep. Taken together, these
steps form a comprehensive and versatile pipeline for re-
verse engineering point clouds into CAD models; see Fig. 1.
By combining modern, learning-based segmentation back-
bones with classical geometric primitive fitting and with re-
cent neural field methods, we get the best of both worlds
and obtain a reconstruction pipeline that sets a new state of
the art on the large and diverse ABC benchmark [19]. Our
contributions can be summarized as follows:

* We propose Point2CAD, a comprehensive workflow for
reconstructing complex free-form parametric CAD mod-
els from raw 3D point clouds;

* To power the surface fitting stage, we propose a novel
neural representation of freeform surfaces;

* We demonstrate the superior quantitative and qualitative
performance on the challenging ABC dataset.

2. Related work

Our work aims to recover CAD models from raw point
clouds. Towards this goal, we draw inspiration from sev-
eral domains of computer vision and 3D data processing.

3D point cloud segmentation. Many studies segment point
clouds by assigning each point a class or instance label.
Neural architectures to learn feature embeddings of point
clouds include: unordered sets of neighbors [31, 32], graph

! A note on terminology: many different terms have been used to denote
the topological elements of CAD models, see list in the supplementary
material. We use the terms surface (2D), edge (1D) and corner (0D).

convolutions [22, 45], point convolutions [14, 24], point-
voxel learning [26, 34], and transformers [10, 49]. Several
authors use point-wise labeling as a mechanism to structure
point clouds into geometric primitives [11]. E.g., Primi-
tiveNet [15] segments point clouds into primitives via local
embedding and adversarial learning. In [27] graph convolu-
tion is used to detect surface boundaries in 3D point clouds.

Primitive fitting [5, 17] is a common way to abstract 3D
point clouds into CAD-like parametric elements. Classi-
cal solutions rely on robust statistical procedures like the
Hough transform to recognize geometric primitives in point
clouds despite the noise and missing data [35]. Several
learning-based approaches have also been proposed to fit
geometric primitives to point clouds. SPFN [23] is trained
to detect varying numbers of primitives at different scales,
supervised with ground truth surfaces and their member-
ship in the primitives. ParSeNet [39] finds parametric sur-
faces in point clouds, including basic geometric primitives
as well as B-spline surfaces, but does not put much ef-
fort into connecting them. HPNet [47] concentrates on
partitioning the point cloud into segments using seman-
tic and spectral features and edge information in the form
of an adjacency matrix but does not fit actual primitives.
Saporta et al. [37] proposed an unsupervised, recursive neu-
ral architecture that learns to fit geometric primitives to 3D
points, while Vasu et al. [43] develop a hybrid represen-
tation that combines explicit geometric shapes with signed
distance functions to represent and manipulate regular and
freeform 3D shapes. Besides conventional geometric prim-
itives, parametric freeform surfaces are an important build-
ing block of CAD systems. DeepSpline [8] utilizes a hierar-
chical RNN to reconstruct 2D spline curves, in conjunction
with an unsupervised learning approach to recover surfaces
of revolution and extrusion.

CAD representations. BRepNet [21] is a neural net-
work architecture that operates directly on B-rep data struc-
tures. UV-Net [16] introduces another neural architecture
that operates on B-rep data, without fitting to points. Join-
ABLe [46] starts from CAD primitives and learns to assem-
ble them and form joints, using weak supervision available
in standard CAD files. Another popular CAD representa-
tion is constructive solid geometry (CSG). CAPRI-Net [48]
learns to fit a collection of quadric 3D primitives, and an
associated CSG-tree, while CSGNet [38] learns to generate
CSG programs for given 2D or 3D shapes, using a convolu-
tional encoder and a recurrent decoder.

Generic CAD modeling. Reconstructing a complete CAD
model [3, 30] is challenging, as the output should include
both the geometric surface shapes and their connectivity.
Traditional methods for reverse engineering often employ
iterative RANSAC estimation to extract primitive shapes
from point clouds, e.g., [25]. Benko et al. [2] outline a
hand-engineered, sequential procedure to reconstruct CAD
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Figure 2. Visualization of open (left) and closed (right) surface
fitting with the proposed INR. Top: point cloud sampled from a
freeform surface; middle: INR fit, showing high or low principal
curvature; bottom: same fit with color indicating uv coordinates.
Our INR reproduces curvature where necessary and smoothly ex-
trapolates without oscillations to facilitate subsequent steps.

models via segmentation, surface and topology fitting, and
blending. Recent, learning-based approaches in the same
spirit include Point2Cyl [42], a neural network that trans-
forms a 3D point cloud into a set of extrusion cylinders
by predicting point segmentation, base labels, normals, and
extrusion parameters in closed form. ComplexGen [9] re-
constructs CAD models by autoregressively detecting geo-
metric primitives. The model consists of a sparse CNN en-
coder, three transformer decoders for geometric primitives
and topology, and post-processing with global optimization
to refine the rather rough transformer predictions.

Manifold learning refers to a family of methods that aim to
discover a low-dimensional manifold underlying a higher-
dimensional, possibly noisy, data set. Manifold learning
methods can be understood as non-linear extensions of
PCA [6] attempting to “flatten” curved manifolds. Most
methods focus on visualization or fidelity to particular in-
put points, by explicitly using those points to construct the
mapping [28, 36, 41]. Autoencoders provide a natural way
to not only project data non-linearly to a lower-dimensional
latent space but also to decode back from the latent space to
the original data space [20]. We extend this approach with
the recent findings about implicit neural representations to
design a fitting method for freeform surfaces.

Implicit Neural Representations (INR) are a framework
to encode an arbitrary function, often observed in the form
of sparse samples, into the weights of a neural network. Re-
cent research about neural rendering has led to several use-
ful and transferrable insights about implicit neural fields,
for instance, the importance of positional encoding [29] and
new (e.g., sinusoidal) activation functions [40]. These find-
ings form the basis for our freeform surface fitting method.

3. Method

Contrary to the recent trend towards generic, end-to-end

deep learning pipelines, we found it advantageous to split

the reconstruction process into steps and only use neural
methods where necessary. Overall, our method consists of

the following stages, cf. Fig. 1:

1. Partition the point cloud into clusters corresponding to
the CAD model’s topological faces. We rely on existing
(pretrained) neural network methods for that step.

2. Fit an analytical surface primitive to each cluster. Here
we use a hybrid approach: First, we test a set of prevalent
geometric surface primitives that admit efficient closed-
form fitting. We propose a novel fitting scheme for
freeform surfaces based on neural representations.

3. Identify the effective area of each (finite) parametric sur-
face and clip it, leaving enough margin to ensure inter-
sections of adjacent surfaces.

4. Perform pairwise surface intersections to obtain a set of
topologically plausible object edges. Using these edges,
remove parts not supported by input points.

5. Perform pairwise edge intersection to identify a set of
topological corners. Clip edges based on proximity to
the remaining surface regions using these corners.

As aresult of applying Point2CAD, we obtain a CAD model

in B-rep format, which includes analytical surfaces to rep-

resent the model’s faces, compatible edges and corners, and
adjacency matrices that encode topology.

A cornerstone of the proposed pipeline is a novel, effi-
cient method for fitting the implicit neural representation of
a freeform, parametric 2D-manifold surface in 3D to an un-
ordered set of points. A particular difficulty in this context
is that the surface must be extrapolated beyond the support-
ing points to enable robust surface intersections, an ability
that tends to be challenging for neural surface estimators.
To that end, we design a novel freeform surface parameter-
ization, drawing inspiration from recent advances in neural
fields, positional encoding schemes, and efficient test-time
optimization. See Sec. 3.2 for details.

While using neural methods, INR is a pure test-time op-
timization. We effectively side-step learning priors from
training data except for the initial low-level segmentation.
We argue that simple analytical procedures like surface fit-
ting do not necessarily benefit from learned priors and that
an over-reliance on data-driven learning may have ham-
pered recent work on reverse engineering CAD models.
Moreover, separately predicting — rather than constructing —
the topology does not guarantee that it is consistent with the
geometry, e.g., edges could be instantiated such that they
do not lie in a surface, see Fig. 5. We empirically sup-
port this claim in our experiments, where we outperform
purely learning-based methods like [9], which are inher-
ently plagued by even slight differences between the train-
ing and test distributions. When designing Point2CAD, we
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Figure 3. Inspiration items of our INR surface fitting. UMAP [28] (1°* column, middle) learns the underlying 2D manifold of 3D points
along with the inverse mapping, but cannot capture its smooth analytic representation. Early experiments with ReLU activations confirmed
its low-frequency bias (1°* column, bottom) and piece-wise linearity. SiLU [12] (2" column) suffers from low-frequency bias, too. We
found that resolving it by adding positional encoding is challenging under our training protocol (3'¢ column). SIREN [40] (4" column)
fits the data precisely, however, does not extrapolate well. A combination of the best parts of these ingredients led us to our INR surface

fitting method, seen in Fig. 2 and discussed in Sec. 3.2.

aimed for a generalizable scheme that uses offline learning
where necessary — in particular, for feature learning and seg-
mentation, ill-posed tasks that are notoriously hard to engi-
neer heuristically; but that does not replace well-understood
analytical operations with less robust, data-driven feed-
forward modeling. As a side effect, obviating parameter-
heavy neural networks, where possible, also results in a
computationally less demanding method.

3.1. Parametrization of standard primitives

The geometric primitives that our current implementation
handles are planes, spheres, cylinders, and cones. The ex-
act parameterizations are taken as in [39], see Sec. A2 of
sup.mat.

We observed that utilizing the predicted surface type
may harm the reconstruction since the prediction is not al-
ways correct. Therefore, we circumvent that step and in-
stead rely on an exhaustive, data-driven comparison: we fit
each primitive type (including INR) to point clusters and se-
lect the simplest model with the lowest reconstruction error.

3.2. Freeform surface parametrization with INR

In the context of the overall CAD reconstruction pipeline,
this step should satisfy several requirements: (1) resilience
to noise in the input point cloud, which is inevitable with
real 3D sensors; (2) support for inverse mapping, to en-
able traversal of the latent space; (3) flexibility in interpo-
lation mode, to ensure high data fidelity and avoid over-
smoothing; (4) strong regularization in extrapolation mode,
required to construct smooth, plausible margins around the
observed data points for the subsequent surface intersection;
(5) fast fitting with low computational cost.

Existing manifold learning techniques that support the
inverse transform, such as UMAP [28], could not be read-
ily used for this task, as demonstrated in Fig. 3 (15! col-
umn, middle). We thus developed a custom neural autoen-
coder [20] with a single hidden layer, which is sufficient for
simple non-linear transforms [13].

We found that for our purposes, the choice of activation
function is critical: Besides causing a non-smooth, piece-
wise linear approximation, ReLLU activations [7] exhibit a
noticeable low-frequency bias [33], as can be seen in Fig. 3
(1%¢ column, bottom). High-frequency undulations are over-
smoothed, such that entire point cloud regions noticeably
deviate from the fit on either side. Replacing ReLU with
SiLU [12] enhances surface smoothness, but does not over-
come the low-frequency bias (2"¢ column). Adding posi-
tional encoding [29] in conjunction with SiLU resolves the
issue, as one would expect from the literature, but provokes
new artifacts, due to the fixed set of spatial frequencies (3"
column). Sinusoidal activations [40] (4" column) achieve
excellent data fitting, but impose little regularization when
not supported by data, and thus extrapolate poorly.

A combination of activations with desired properties
within the same layer overcomes these individual problems:
equipping some neurons with SiLU and the remaining ones
with sinusoidal activations produces geometrically faith-
ful fits that extrapolate smoothly, see Fig. 2. Remarkably,
this behavior emerges without any dedicated mechanisms
to steer the collaboration between the two types of neurons.

Fig. 4 depicts a block diagram of the proposed autoen-
coder. Each surface is autoencoded independently, by feed-
ing batches of its 3D points (X,Y,Z) through a 1-layer MLP
encoder and a corresponding decoder, with a 2D bottleneck
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Figure 4. Block scheme of our proposed INR for freeform surface
fitting. We encode groups of 3D surface points into a latent 2D
uv space. We use a mixture of activations to achieve high fidelity
of fitting and smooth extrapolation. Both open and closed surface
fitting is supported via preconfigured routing of activations in the
latent space. See Sec. 3.2 for more details.

corresponding to manifold coordinates (u,v). The 2D la-
tent space is regularized to a unit square [—1,1] x [—1, 1].
Both closed, and open surfaces (independently in the u and
v dimensions) are supported via pre-configured routing.

For each surface, the weights of a template INR are ini-
tialized randomly and optimized with standard mini-batch
(or full-batch) descent. We run Adam [18] for 1000 steps,
with 50 steps warm-up of the learning rate, followed by a
linear decay that reaches zero at the last step. The complete
optimization takes only a few seconds on a single GPU, and
multiple surfaces can be fitted in parallel.

For extrapolation and latent space traversal, we encode
all cluster points into the latent wv space and store the
bounding box parameters along with the autoencoder. We
reset the corresponding axis range for surfaces with closed
dimensions to [—1, 1]. To sample the extended surface with
the margin, we extend the bounding box by 10% in both di-
mensions and compute 3D surface points using the decoder.

3.3. Topology reconstruction

Following the instantiation of all individual surfaces, it
becomes necessary to establish their boundaries, which
amounts to finding the intersection curves between adjacent
surfaces. Since this step is crucial for subsequent stages
of CAD reconstruction, it is important to correctly identify
and recover the intersection curves. This requirement again
calls for deterministic geometric methods, as independent
detection can hardly guarantee a set of complete edges con-
sistent with the surfaces.

While it is theoretically possible to work out the surface
intersections analytically, multiple freeform surfaces lead
to extremely complicated, and potentially unstable calcula-
tions. Hence, we opt for a generic solver and convert all
surfaces to triangle meshes for this step to be accurately
intersected with mature, numerically stable computational
tools. For each surface, the (infinite) geometric primitive is

trimmed to form a margin of width e around the support-
ing points to ensure enough space for the subsequent steps
and then fed to a standard meshing algorithm by tessellation
and then triangulation. We identify all intersecting surfaces
for each meshed surface, compute the pairwise mesh inter-
sections to obtain poly-line edges, and re-mesh the surfaces
along those edges. Similarly, we intersect adjacent edge
poly-lines to obtain corner points and, in turn, use those
corners to trim the edges (which still extend beyond the sur-
faces since they were generated from unclipped surfaces).
See Sec. A3 of sup.mat. for a detailed algorithm.

Such a discretization step temporarily side-steps the B-
rep format. However, it is possible to compute the true an-
alytical intersections starting from the discrete approxima-
tions. This arguably simpler task is left for future work.

4. Experiments

The rather flexible constraints on the input to our method

permit employing it in various setups. Such may include:

— Evaluation of the ground truth point cloud clustering or
segmentation as a way to quantify the contribution of
point cloud sampling sparsity and sample noise on the
reconstruction quality (aliased “Point2CAD GT”);

— Usage of geometry fitting and topology extraction on top
of any pretrained point cloud clustering or segmentation
methods, such as ParSeNet [39] or HPNet [47] (aliased
“Point2CAD (method)”).

Under both setups, we first individually evaluate the surface

reconstruction quality of the most challenging freeform sur-

faces, which is one of the main contributions of our work.

We then analyze the geometry and topology of the entire

reconstructed CAD dataset. This enables us to provide an

overall assessment of the effectiveness of our approach in
reconstructing surfaces and CAD models from point clouds.

4.1. Dataset

To evaluate the performance of Point2CAD, we conduct ex-
periments on the ABC dataset [19], a large-scale collection
of CAD models (~1.000.000 models) widely used in geo-
metric deep learning. We use the same split as ParseNet,
where each model contains at least one freeform surface,
to facilitate a fair comparison with existing methods and to
better demonstrate the feasibility of our approach.

4.2. Evaluation metrics

— Residual error measures the discrepancy between the
reconstructed surface and the corresponding ground truth
surface obtained by Hungarian matching. Following the
established protocol [39, 47], we densely sample points
on the ground truth surface and evaluate their correspon-
dence with the reconstructed surface. Specifically, we
compute the distance between each sampled point and
its projected point on the reconstructed surface, which
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Figure 5. The final results gallery, with different colors denoting different topological surfaces, and edges and corners depicted in black.
The first three, left to right: input point cloud, ground truth mesh, and reconstruction with ComplexGen [9]. The last three are the proposed
Point2CAD method applied to different segmentation of the input points: with HPNet [47], ParSeNet [39], and Ground Truth. Our
method reconstructs the ground truth geometry and topology from the ground truth segmentation nearly perfectly. When applied on top of
pretrained segmentation modules, it outperforms the competition by a high margin.

enables us to assess how well the fitting algorithm has
captured the underlying geometry of the original surface.
The residual error for ¢-th surface is:

1 r
Err; = ﬁz Z d(sir, S7), (1)

t
Si,kesf

where N; is the number of sampled points, s; ;. is the
k-th sampled point on the ¢-th ground truth surface Sft,
and its corresponding reconstructed surface is .S]. The
residual error E'rr; is computed as the average Euclidean
distance d(-,-) between the sampled points and their
corresponding projections on the reconstructed surface.
The residual error for i-th surface is a simple average
can provide an overall assessment of a CAD model,
Err = ; SM Err.

P-coverage. It quantifies the proportion of input point
cloud covered by the generated surface:

1P|

Pcov = ﬁ Z]I{d(pk, ST <r}, 2)
k=1

where | P| is the number of points in the entire input point
set P and S is all CAD reconstruction surfaces. r is a
distance threshold, set as 0.01 following previous works.
Surface precision, recall, F-score. We adopted sev-
eral evaluation metrics introduced in ComplexGen [9] to
assess the efficacy of our method in generating recon-

structed surfaces. A surface is considered a true posi-
tive if the distance between it and its closest ground truth
surface is below a certain threshold 8, which serves as a
measure of accuracy for the method in a geometric sense.
Edge precision, recall, F-score. The effectiveness of
the proposed method can also be assessed from a topo-
logical perspective, by computing the precision, recall,
and F-score on the edges resulting from pairwise surface
intersections. This evaluation strategy provides a reliable
measure of the method’s ability to capture the topology
of the reconstructed surfaces.

Corner precision, recall, F-score. Likewise, an accu-
rate estimation of corner positions resulting from edge
intersections is an essential indicator of overall accuracy.
Chamfer distance. This metric assesses the accuracy of
the reconstructed CAD model as a whole, without dis-
tinguishing between individual surfaces. To that end, we
sample the entire surface of both the reconstructed model
and the ground truth object and calculate the chamfer
distance between the two point sets.

4.3. Evaluation on freeform surfaces

Both ComplexGen [9] and ParseNet [39] have successfully
demonstrated the prediction of the freeform surfaces. Both
papers employ a custom parameterization that represents
any freeform surface as a structured grid of 20x20 control
points, regardless of the underlying scale.
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Table 1. Comparison of surface fitting. ComplexGen uses a trans-
former decoder to convert a surface latent code to a 20x20 control-
points grid. ParseNet employs a neural network for the same kind
of output. Our method utilizes the proposed INR surface format.

Open surfaces Closed surfaces

Res-err | P-cover? Res-err| P-cover 1

ComplexGen 0.021 0.938 0.023 0.900
ParseNet 0.006 0.930 0.008 0.902
Ours 0.002 0.999 0.003 0.998

Table 2. Ablation of INR design performance with and w/o noise
added to the input points. Our method demonstrates favorable
properties as measured by residual error and P-coverage.

Open surfaces Closed surfaces

Noise Activation Res-err | P-cover?T Res-err| P-cover T

ReLU 0.016 0.519 0.018 0.509

8 SiLU 0.024 0.522 0.030 0.543
<ID\ SiLU+PosEnc 0.014 0.561 0.015 0.516
o SIREN 0.012 0.524 0.014 0.521
Ours  0.011 0.585 0.013 0.581

ReLU 0.006 0.986 0.008 0.981

2 SiLU 0.020 0.905 0.023 0.887
2 SiLU+PosEnc 0.004 0.992 0.007 0.982
Z° SIREN 0.003 0.996 0.006 0.990

Ours 0.002 0.999 0.003 0.998

Table 3. Ablation of INR under surface margin extrapolation by a
fraction ¢ of model diameter. Point2CAD uses ¢ = 10%.

Res-err | c¢=0% c=20%

SiLU 0.0582 0.0565 0.0714
SIREN 0.0195 0.0376 0.1205
Ours 0.0052  0.0156 0.0474

Table 4. Geometric evaluation of reconstructed CADs. Segmen-
tation denotes the method used for point cloud clustering. “GT”
stands for oracle ground truth segmentation, which is also an up-
per bound of the performance of our method.

Segmentation Res-err | P-covert Chamfer |

ComplexGen N/A 0.020 0.950 0.042
Point2CAD ParseNet 0.018 0.942 0.017
Point2CAD HPNet 0.020 0.937 0.018
Point2CAD GT 0.011 0.968 0.016

obtain the results of all three methods on distinct point cloud
clusters. While this is straightforward with ParseNet and
our method, ComplexGen does not operate on individual
clusters but instead requires the entire point cloud at once
and outputs all B-rep elements at once, too. Thus, to obtain
ComplexGen predictions for a particular cluster, we run it
with the entire point cloud input, find the nearest predicted
surface to the queried cluster out of all the predictions, and

perform the surface-to-surface evaluation on that pair.

We repeat this procedure for a subset of freeform sur-
faces of the ABC dataset and average the geometry metrics;
see Tab. 1 for quantitative evaluation. As can be seen, our
INR fitting method generates freeform surfaces that repre-
sent the underlying points more faithfully than prior param-
eterizations. Qualitative results of Point2CAD freeform sur-
face fitting confirm the qualitative study, which can be seen
in Fig. 2, and the side-by-side comparison is in Fig. 5.

Additionally, we studied the behavior of different INR
activations under noise-induced corruption of the input
point clouds (Tab. 2) and surface margin extrapolation
(Tab. 3), a crucial property of our pipeline. For the latter,
given a point cloud patch of a freeform surface, we select a
subset of points from the center of the patch for fitting, leav-
ing a margin of ¢% for extrapolation evaluation. OQur INR
design consistently performs well across various settings.

4.4. Reconstructed CAD evaluation

We conduct an evaluation of Point2CAD in terms of the
reconstruction quality for surfaces, edges, and corners.
We compare our results to those obtained with Complex-
Gen [9], which is also capable of generating all those geo-
metric elements and their topological relationships. How-
ever, it should be noted that the models generated by Com-
plexGen are often invalid, in the sense that the predicted ge-
ometry and topology are inconsistent. We are not aware of
an easy way to rectify this issue. A possible solution could
be only to utilize the surfaces generated by ComplexGen
and apply our method to refit and intersect them.

As seen in Tab. 4, Point2CAD outperforms ComplexGen
in most metrics. Furthermore, Point2CAD achieves excel-
lent results when fed with ground truth segmentations, in-
dicating that it will likely further improve as better point
cloud segmentation engines become available. We also ob-
served that our P-coverage results were slightly inferior to
ComplexGen’s. This can be attributed to the fact that, in
the final step of our reconstruction, we trim the margins
of the individual surfaces to establish a clear and well-
defined boundary. As a result, the coverage of our recon-
structed CAD models is somewhat reduced compared to
ComplexGen, which does not perform this step and typi-
cally generates more surfaces than the ground truth has. The
presence of numerous spurious surfaces naturally inflates
the P-coverage. This limitation of the metric is confirmed
by the fact that we obtain higher P-coverage if we evalu-
ate Point2CAD without clipping the surfaces at the edges
(Point2CAD+ParseNet: 0.956, Point2CAD+HPNet: 0.953,
Point2CAD+GT: 0.971).

We also employ several standard evaluation metrics, in-
cluding precision, recall, and F-score, to measure the ac-
curacy and completeness of the surfaces after the over-
all reconstruction of CAD under different distance thresh-
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Table 5. Evaluation on CAD Reconstruction of Surfaces, Edges and Corners from the aspects of accuracy and completeness. The surface
evaluation assesses the reconstruction performance in geometric terms, while these metrics on edges and corners reflect the performance
of reconstruction in terms of topological properties. Given that the distance calculation is based on sampling, we adopt various threshold
values for evaluating surfaces, edges and corners. Specifically, the threshold for a single-point corner is expected to be smaller than that of
edges, while the threshold for edges should be smaller than that of surfaces, which aligns with the intuitive expectations in CAD evaluation.

Surfaces Osurface = 0.08 Osurface = 0.06 Osurface = 0.03
Method Segmentation precision T recall T F-score T precision T recallT F-score{ precision? recallT F-score 1
ComplexGen N/A 0.732 0.732 0.731 0.633 0.641 0.637 0.370 0.388 0.379
Point2CAD ParseNet 0.817 0.750 0.782 0.764 0.693 0.727 0.624 0.562 0.591
Point2CAD HPNet 0.836 0.745 0.788 0.796 0.695 0.742 0.697 0.593 0.641
Point2CAD GT 0.976 0.920 0.947 0.962 0.898 0.929 0.873 0.801 0.836
Edges Ocgge = 0.05 BOegge = 0.03 BOegge = 0.02
Method Segmentation precision T recall T F-score T precision T recallt F-score ! precisiont recallT F-score 1
ComplexGen N/A 0.620 0.576 0.597 0.421 0.397 0.409 0.291 0.279 0.285
Point2CAD ParseNet 0.636 0.596 0.615 0.523 0.486 0.504 0.440 0.414 0.427
Point2CAD HPNet 0.637 0.586 0.611 0.526 0.473 0.498 0.449 0.397 0.421
Point2CAD GT 0.863 0.774 0.816 0.766 0.673 0.717 0.686 0.597 0.639
Corners Ocomer = 0.03 Ocomer = 0.02 Ocomer = 0.01
Method Segmentation precision T recall T F-score T precision T recallT F-score{ precision? recall T F-score 1
ComplexGen N/A 0.667 0.633 0.650 0.483 0.454 0.468 0.217 0.203 0.210
Point2CAD ParseNet 0.661 0.641 0.651 0.553 0.529 0.541 0.398 0.392 0.395
Point2CAD HPNet 0.646 0.613 0.629 0.549 0.521 0.535 0.389 0.386 0.388
Point2CAD GT 0.780 0.696 0.736 0.704 0.662 0.661 0.581 0.515 0.546
olds Ogyface, see Tab. 5 (top). The results suggest that CAD reconstruction is actually segmentation, whereas sub-
Point2CAD with HPNet segmentation backbone achieves sequent steps are adequately solved by classical geometric
the highest overall performance, while reconstruction based operations and may not always require learning.
on the ground truth point cloud segmentation provides the
best results, as expected. Limitations While our method offers a solution to CAD
We utilize the precision, recall, and F-score of the re- model reconstruction, it is subject to certain limitations.
constructed curves and corners as metrics to evaluate the Notably, our method is sensitive to the quality of the point
topological reconstruction performance; results are shown cloud segmentation. A number of outliers in the predic-
in Tab. 5 (middle, bottom). tion of points belonging to the same surface can adversely

impact the subsequent surface fitting and topology recon-
struction. Despite the fact that our method is not end-to-

5. Conclusion : N L o
end-trainable, the main guideline in our design is to divide

We present Point2CAD7 a comprehensive and versatile ap- the pipeline into isolated, accountable steps and only em-
proaeh for reverse engineering CAD models from p()int plOy neural methods where needed. While this runs against
clouds, which can yield various types of surfaces and topo- a puristic deep learning spirit, our modular pipeline outper-
logically correct reconstructions. The proposed method forms the end-to-end learned solutions. We see this as an
segments point clouds with a pre_trained Segmentation important message, although we do not rule out that it could
backbone but then emp]oys learning_free optimization serve as a foundation for future end-to-end works.

methods to fit geometric primitives, including freeform sur-

faces that are optimized with a novel neural surface estima- Future work One promising direction would be to exploit
tion scheme. The recovered surfaces are analytically inter- the proposed INR fitting scheme in a feedback loop of
sected to obtain the edges and corners of the model. Em- any other algorithm to drive point cloud partitioning into
pirically, our proposed method qualitatively and quantita- clusters, thus lifting the dependence of the reconstruction
tively outperforms prior art on the popular ABC dataset of pipeline on the quality of point cloud segmentation. Differ-
CAD models. In our view, these results support our hypoth- ently, bringing back learned priors and the end-to-end prop-
esis that the main role of machine learning in the context of erty should make it possible to further improve the results.
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