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total_err = 0; body_mass = 60; ball_mass = 60
for frame in motions:
dist_err = |distToPoint(frame[‘l_hand’],

frame[‘r_hand’]) – 0.4|
hand_mid_point = midPoint(frame[‘l_hand’], frame[‘r_hand’])  
collision_err = max(0.2 + chest_thickness –

distToPoint(hand_mid_point, frame[‘chest’]), 0)
ball = Ball(center=hand_mid_point, diameter=0.4)
balance_err = outsideRegionError(projToGround(

massCtrTotal(frame, ball, body_mass, ball_mass)),
computeFootRegion(frame) )

total_err += dist_err + collision_err + balance_err

total_err = 0
for frame in motions:

total_err += |distToPoint(
frame[‘l_hand’], frame[‘head’]) – 0.1|

total_err = 0
for frame in motions:

for joint in frame:
total_err += 

max(-joint.x-1.0, 0)+max(joint.x-1.0, 0)+
max(-joint.z-1.0, 0)+max(joint.z-1.0, 0)

total_err = 0
for frame in motions:
dist_err = |distToPoint(frame[‘l_hand’],

frame[‘r_hand’]) – 0.4|
hand_mid_point = midPoint(
frame[‘l_hand’], frame[‘r_hand’])  

collision_err = max(0.2 + chest_thickness -
distToPoint(hand_mid_point, frame[‘chest’]), 0)

total_err += dist_err + collision_err

“walking” + holding a ball 
(diameter=0.4m)

Task: “walking” + left hand always   
touching head (radius=0.1m)

“walking and turning around”+ 
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1. Distance between both hands = 0.4 m
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Figure 1. We introduce Programmable Motion Generation as a solution for open-set human motion control. Unlike previous works
that treat a finite set of motion constraints as individual tasks, we attempt to solve vast and novel tasks in a unified framework. Through
Programmable Motion Generation, an arbitrary controlled motion generation task is effectively solved by simply programming an error
function rather than collecting training data and designing networks. The programming is also able to be implemented automatically.

Abstract

Character animation in real-world scenarios neces-
sitates a variety of constraints, such as trajectories, key-
frames, interactions, etc. Existing methodologies typically
treat single or a finite set of these constraint(s) as sepa-
rate control tasks. These methods are often specialized, and
the tasks they address are rarely extendable or customiz-
able. We categorize these as solutions to the close-set mo-
tion control problem. In response to the complexity of prac-
tical motion control, we propose and attempt to solve the
open-set motion control problem. This problem is charac-
terized by an open and fully customizable set of motion con-
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trol tasks. To address this, we introduce a new paradigm,
programmable motion generation. In this paradigm, any
given motion control task is broken down into a combina-
tion of atomic constraints. These constraints are then pro-
grammed into an error function that quantifies the degree
to which a motion sequence adheres to them. We utilize a
pre-trained motion generation model and optimize its la-
tent code to minimize the error function of the generated
motion. Consequently, the generated motion not only inher-
its the prior of the generative model but also satisfies the
requirements of the compounded constraints. Our exper-
iments demonstrate that our approach can generate high-
quality motions when addressing a wide range of unseen
tasks. These tasks encompass motion control by motion dy-
namics, geometric constraints, physical laws, interactions
with scenes, objects or the character’s own body parts, etc.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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All of these are achieved in a unified approach, without the
need for ad-hoc paired training data collection or special-
ized network designs. During the programming of novel
tasks, we observed the emergence of new skills beyond those
of the prior model. With the assistance of large language
models, we also achieved automatic programming. We hope
that this work will pave the way for the motion control of
general AI agents.

1. Introduction
Character animation techniques have extensive applica-
tions in the film and game industry, as well as in robotics
[27]. Recently, relying on large motion capture database,
AI-based human motion generation methods have demon-
strated their potentials when given multi-modal signals like
text [1, 12, 24, 33] or audio [3, 22]. However, in the practi-
cal applications of character animation, it is crucial to con-
sider various constraints of motions, since a character is
never isolated in space. These constraints typically include
joint trajectories, motion dynamics such as velocity or ac-
celeration, key-frames, interactions with scenes and objects,
self-contacts [26], laws of physics, etc., and their combina-
tions.

Artists often use Inverse Kinematics (IK) systems in
Digital Content Creation (DCC) software to modify mo-
tions to meet customized constraints. However, due to the
absence of motion priors, IK cannot ensure spatial valid-
ity among joints or temporal coherence among frames, thus
usually yielding unsatisfactory results. On the other hand,
as shown in Fig. 1, existing AI-based animation methods
typically pre-define single or a finite set of constraint(s)
and formulate it as individual tasks, such as trajectory
and velocity control [5, 17, 19, 35], motion in-betweening
[14, 34, 40], human-scene/object interactions [4, 7, 37, 45],
physics-based animation [29, 30, 41, 46], etc. Under such
task-specific paradigm: first, for each task, the dataset and
the methodology are specifically designed and individu-
ally trained; second, those methods intrinsically cannot deal
with customized constraints or arbitrary combinations of
them, thus being seldom extendable or customizable. We
classify those individual tasks as close-set motion control
problem.

In this paper, to confront the complexity of practical mo-
tion control, we pose a new problem, i.e. open-set motion
control, where the set of motion control tasks is open and
fully customizable. For example, as shown in Fig. 1, the
generated motions of “walking” can be accompanied by
any arbitrary constraint, such as “left hand always touch-
ing head”, “limited in a given square”, “holding a ball”, etc,
without special training data or network designs. To the
best of our knowledge, this problem has never been solved
by previous works.

To address this challenging problem, our key observa-

tions are: (1) a complicated motion control task can be bro-
ken down into several constraints; (2) almost all constraints
can be measured via errors, e.g., using distance as an error to
measure the “contact of both hands” constraint, and (3) the
errors are mathematically additive. Based on these obser-
vations, we propose a new motion generation paradigm, i.e.
programmable motion generation, where an arbitrary con-
trolled motion generation task is unifiedly solved by simply
programming the error function. Specifically, given an arbi-
trary motion control task, we formulate it as combinations
of atomic constraints, and program them into an error func-
tion that measures how much the generated motion follows
those constraints. Taking human-object interaction as an ex-
ample in Fig. 2, given a task that a person is walking while
holding a 0.4 meter diameter ball, we break it down into two
atomic constraints: (1) contact of hands and the ball: the
distance of both hands keeps 0.4 meter; (2) avoiding col-
lision between the ball and the chest: the distance between
the mid-point of both hands and the chest joint is larger than
the radius plus chest thickness. Afterwards, we program the
function to compute the total error. As long as such error
function is differentiable, there are many ways to optimize
a pre-trained motion generation model to minimize the er-
ror. According to our statistics, almost all commonly-used
constraints can be programmed as differentiable functions.
In this way, the motion is optimized to satisfy the constraints
while still inheriting the prior from the pre-trained genera-
tive model.

This paradigm is extendable, e.g., if the ball is heavy,
we can simply add another constraint to keep balance when
walking, i.e., the ground projection point of the overall cen-
ter of gravity should fall within the convex hull formed by
the outline of both feet.

Additionally, to facilitate programming, we provide an
atomic constraint library comprising of common atomic
constraints. We also design a motion programming frame-
work that pre-defines the input, output, as well as usable
logical operations. Under the programming framework, by
combining modules from the library, one can easily build
complex constraints to solve customized tasks, just like
building blocks. The framework and the library also make
automatic programming easier. We instruct a large language
model (LLM) to understand the task description and use the
programming framework and the library to generate code
of the error function. One can choose to automatically pro-
gram for convenience or manually program for controllabil-
ity and interpretability.

In summary, the contributions are as follows:
• We pose the new problem of open-set motion control,

hoping to open up new research areas for pursuing an om-
nipotent and generalizable intelligent agent, and provid-
ing more powerful tools for character animation develop-
ers and artists.
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Open-set task: 

A person is 
walking while 
holding a 0.4-
meter diameter 
ball. Motion generation 

networkZ*

Atomic constraint library

1. Distance of both hands = 0.4 m

2. Distance of hand middle point 
and chest > 0.2 m + chest_thickness

Constraints

Prompt: 
A person is walking.

(Section 3.2)
(Section 3.3)

(Section 3.4)

optional

# Compute total error. Input: motions, parameters. Output: total_err

total_err = 0

for frame in motions:

# first constraint

dist_err = |distToPoint(frame[‘l_hand’], frame[‘r_hand’]) - 0.4|

# second constraint

hand_mid_point = midPoint(frame[‘l_hand’], frame[‘r_hand’])
collision_err = max(0.2 + chest_thickness –

distToPoint(hand_mid_point, frame[‘chest’]), 0)
total_err += dist_err + collision_err

Motion Programming: /

Figure 2. Overview of Programmable Motion Generation. Given an arbitrary task, we formulate it as a combination of motion constraints.
Under our programming framework, by combining modules from our atomic constraint library, it is easy to program the error function to
solve complex tasks just like building blocks. The programming also supports to be performed automatically by LLMs via simply providing
textual descriptions of the task. Finally, the latent code z of a pre-trained motion generation network is optimized to minimize the error
function, thus producing motions in high quality as well as satisfying the constraints. The prompt is optional if we use text-to-motion
network as the pre-trained generative model.

• To address the above problem, we propose programmable
motion generation, a novel, flexible, customizable and
versatile paradigm and its implementation.

• Extensive experiments show its feasibility and high mo-
tion quality for a wide range of tasks. We also observe
emergence of new skills from novel tasks.

• Its compatibility with LLMs makes automatic execution
of arbitrary open-set tasks possible, showing bigger imag-
ination space in the future.

2. Related Work

Human Motion Generation. Deep learning-based hu-
man motion generation has achieved great progress. Var-
ious network structures are proposed for motion generation
including convolutional auto-encoder [16, 18], variational
auto-encoder (VAE) [32], generative adversarial network
(GAN) [43] and diffusion models [8, 9, 38, 49]. Apart
from generating isolated human motions with text input
[1, 12, 24], many researches focus on generating humans
that interact with the surroundings and common objects
[4, 11, 15, 39, 48]. Note that these approaches usually re-
quire specific network designs for different types of condi-
tioning signals. They are task-specific and usually incorpo-
rate task-specific domain knowledge. In this paper we aim
to find a versatile approach that works on multiple tasks.
Human Motion Editing and Control. There are also
works focusing on editing or adding control to human mo-
tion generation [17, 19, 35, 38]. MDM [38] naturally sup-
ports local trajectory editing for a certain joint in a simi-
lar manner of image inpainting [25]. PriorMDM [35] ex-
tends MDM and further exploits the correlation between
the edited joints and the rest of the body with an additional
finetuning process to alleviate artifacts like foot skating and

motion breaking. However, those inpainting-based meth-
ods only support local trajectory editing and cannot well
handle global trajectories when interacting with surround-
ing scenes and objects. They also fail when dealing with
very sparse control signals [19]. PFNN [17] focuses on root
trajectory control but still relies on training with condition-
ing signals.

An alternative solution is to cast motion control as an
optimization problem. Essentially inverse kinematics (IK)
supports arbitrary motion editing, but it cannot guarantee
high motion quality as no prior or learning is involved. The
recent GMD [19] follows classifier guidance but only sup-
ports root trajectory control. The very recent OmniCon-
trol [42] takes trajectories of arbitrary joints as control sig-
nals, but it still only receives trajectories as control signals
and involves network training. In contrast our work studies
a broader and more fundamental problem by allowing any
forms of constraints on arbitrary joints without re-training.

Human Motion Priors. Various forms of human motion
priors are proposed to help generate more plausible hu-
man poses and motions for pose estimation tasks. Tem-
poral consistency priors are applied on velocity and accel-
eration [23, 50], feature space [47], and DCT [2]. Other
forms of learned priors include VPoser [28], MPoser [21],
and adversarial motion priors [10, 21, 31]. Recently a few
motion priors are introduced for motion generation tasks.
The inpainting-based editing [38] uses motion prior learned
from the motion diffusion model (MDM). PriorMDM [35]
further uses frozen MDM as a generative motion prior to
generate long sequences and multi-person interactions. We
also utilize pre-trained MDM as a strong motion prior.
However, we adopt a different approach by imposing con-
straints and guiding it to generate motions that fit the prior.
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3. Programmable Motion Generation
3.1. Overview

Given an open-set motion control task, we aim to generate
a motion sequence x ∈ RN×D which contains N frames
of D-dimensional poses. It is usually expressed as the ro-
tation and position of each joint at each frame. As in Fig.
2, we first break down the task to several motion constraints
and the optional condition C. The form of C depends on
the motion generation network we use. For example, when
we use the text-to-motion network, C can be text prompt or
left empty. Afterwards, these constraints are programmed
as an error function F (·) that quantifies the degree to which
a motion sequence adheres to them. We provide an atomic
constraint library (Section 3.2) and fundamental rules for
motion programming F (Section 3.3). This process can be
conducted manually, and we also show the potential of us-
ing LLM (e.g. GPT [6]) to automatically write code for F .

After motion programming, we formulate this motion
control task as an optimization problem:

min
z

F (Gθ(z, C), p), (1)

where θ is the frozen weight of a motion generation model
Gθ and p is the parameters affiliated to this task. Our goal
is to optimize the latent vector z for the generative model so
that the generated motion sample x = Gθ(z, C) adheres to
those constraints. We present the solution for this optimiza-
tion problem in Section 3.4.

3.2. Atomic Constraints

Theoretically, the total error function F can be composed of
any error E(x) that is differentiable with respect to x. Here
we introduce an atomic constraint library in a modular and
systematic way to support various tasks. They are represen-
tative spatial and temporal constraints that serve as building
blocks for the error function F . For convenience, we denote
the motion of j-th joint as xj , the position of j-th joint in
the global coordinate system as xpos

j = T (xj), where T
transforms the motion xj to global joint positions and it is
differentiable.
Absolute Position Constraint requires the trajectory xpos

j

of j-th joint to be close to a given trajectory x̂pos
j and is in

the form of L-n norms, i.e., E(xpos
j , x̂pos

j ) = |xpos
j −x̂pos

j |n.
Existing trajectory-based motion control tasks [19, 35, 42]
constitute a subset of this constraint. It can also serve as a
regularization term if we do not wish to change too much
from the motion generated by original Gθ.
High-order Dynamics Constraint constrains motion dy-
namics of joints instead of positions. A typical example is
to constrain the magnitude and orientation of velocity or ac-
celeration for certain joints. This constraint is in the form
of E(x

(k)
j , x̂

(k)
j ) by taking the k-th numerical differential of

xj and x̂j .

Atomic 
Constraints

Logical 
Operations

Programming Modules

Input: motions, parameters Output: a scalar value
def computeTotalError(motions, parameters):

diameter, chest_thickness = parameters
total_err = 0
for frame in motions:

dist_err = |distToPoint(frame[‘l_hand’], frame[‘r_hand’]) - diameter|
hand_mid_point = midPoint(frame[‘l_hand’], frame[‘r_hand’])
collision_err = max(diameter / 2 + chest_thickness -

distToPoint(hand_mid_point, frame[‘chest’]), 0)
total_err += dist_err + collision_err

return total_err

Constraint Error Function F

Geometric 
constraint

High-order 
dynamics

Absolute 
position

Relative 
distance

Directional 
constraint
Keyframe 
constraint

“>”
max(margin-E,0)

“<”
max(E-margin,0)

AND
E1+E2

…

OR
min(E1,E2)

NOT
-E

“=”
E

…

Figure 3. The programming framework that pre-defines the input,
output, atomic constraints and the redesigned logical operations
as building blocks for motion programming. The example code
corresponds to the task of “holding a ball”.

Geometric Constraints constrain a joint xpos
j on a geo-

metric primitive P in the global coordinate system, such
as a curve or a surface, denoted by E(xpos

j , P ). As com-
mon cases, we implement distToLine, distToPlane, etc. in
our constraint library. Note that constraining a joint on a
line differs from the aforementioned point-wise trajectory
constraint, and the latter is stricter than the former.
Relative Distance Constraint models relationships be-
tween two joints, e.g., the distance of any two joints is de-
noted by E(xpos

j , xpos
k ). Similarly, the angle between two

joints also belongs to this category.
Directional Constraint requires a bone consisting of xj

and its parent joint parent(xj) to point at a given direction
d, denoted by E

(
xpos
j − parent(xpos

j ), d
)
.

Key-frame Constraint enforces constraint at certain times-
tamps. For this purpose, we can define the aforementioned
constraints at some certain timestamps t only, in the form
of E (Espatial (x, ∗) , t), where Espatial is any constraint irrel-
evant to time.

One can always write customized constraints to extend
the library if necessary. For example, if we want the
agent to maintain body balance when performing a cer-
tain task, Centor-of-mass Constraint is required. It means
the ground projection point of the overall center of grav-
ity should fall within the convex hull formed by the outline
of both feet. It is quite extendable by using your imagina-
tion. For example, what if the agent is subjected to some
additional external forces while maintaining balance, such
as pull force or centrifugal force?
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3.3. Motion Programming

To further facilitate programming, we provide a motion pro-
gramming framework consisting of the following rules.
Input and output. The input consists of “motions” and
“parameters”. The “motions” is a list of dictionaries con-
taining information of joints. The “parameters” includes
task-related constants. The output is a scalar value repre-
senting the total error.
Logical operations. We redesign some of the logical oper-
ations in standard programming language to better support
motion programming.
• “>” implemented by max(margin − E, 0), means the

error should be larger than a given margin. It is commonly
used in obstacle avoidance.

• “<” implemented by max(E − margin, 0), means the
error should be less than a given margin.

• “AND” implemented by E1+E2, means both constraints
are satisfied.

• “OR” implemented by min(E1, E2), means one of the
constraints is satisfied.

• “NOT” implemented by −E, means the error should be
as large as possible. It is used to keep the agent as far
away as possible from some geometric objects.

Other programming rules. Conditions like “if-elif-else”
and loops like “for” are supported. It means we allow the
constraints to be triggered by some customized conditions,
and repeatedly applied to different frames and joints. At
last, the error function is required to be differentiable to the
input motion.

A template of the error function is shown in Fig. 3.

3.4. Latent Noise Optimization

As for the optimization in Eq. (1), we utilize a pre-trained
motion diffusion model (MDM) [38] in our experiments as
the prior model. Specifically, we adapt MDM to its DDIM
[36] form so that the latent noise z is a single vector. We use
Adam [20] as the optimizer in all the experiments, though
other optimizers such as L-BFGS are also supported.

The human motion has invariance in translation and ro-
tation on the horizontal plane. For tasks with constraints
related to horizontal positions or rotations, we can relax the
constraint by transforming it to an equivalent constraint us-
ing spatial transformation. This reduces the difficulty for
the original optimization problem. For example, the con-
straint “touching a vertical plane whose equation is z = 10”
is firstly transformed to “touching a vertical plane whose
equation is z = 0”; after optimization, the motion is then
transformed back to satisfy the original constraint.

4. Task and Applications
In this section, we show how to combine atomic constraints
to constitute a wide range of open-set motion control tasks

and applications. For each task category we present several
specific sub-tasks for the later evaluation.

4.1. Motion Control with High-order Dynamics

The tasks related to velocity or acceleration can be solved
via high-order dynamics constraints. We conducted the fol-
lowing specific task in our experiments:
Task HOD-1: specifying the velocity (both magnitude and
orientation) for several key-frames. This task uses “high-
order dynamics constraint” and “key-frame constraint”.

4.2. Motion Control with Geometric Constraints

Geometric constraints are common in the real world such as
hand touching a wall, feet on a balance beam. These tasks
are supported by calling geometric constraints. They are
significantly different from trajectory control tasks which
are required to specify the exact joint positions at each
timestamp. Geometric constraints, as looser constraints, are
more suitable for such tasks like hand touching a wall that
do not need to pre-define the trajectories. Note that the con-
straint relaxation strategy can be applied in these tasks. The
representative tasks in our experiments include:
Task GEO-1: walking with hand touching a vertical wall.
Task GEO-2: walking with feet on a balance beam.

4.3. Human-Scene Interaction

Tasks related to human-scene interactions can be solved by
combining multiple constraints and logical operations. The
representative tasks conducted in the experiments include:
Task HSI-1: constraining the head heights on the first, cen-
tral and last frames. This task uses “geometric constraint”
and “key-frame constraint”.
Task HSI-2: head avoiding an overhead barrier on a spec-
ified key-frame. This task uses “geometric constraint”, “<
operation”, and “key-frame constraint”.
Task HSI-3: constraining a human to walk inside a square
area. This task uses “geometric constraint”, “< operation”
and “> operation”.
Task HSI-4: avoiding an overhead barrier specified by its
position on the z-axis. This task uses “geometric constraint”
and “< operation”.
Task HSI-5: constraining a human to walk in a narrow gap
between two walls specified by the x-axis. This task uses
“geometric constraint”, “< operation” and “> operation”.

4.4. Human-Object Interaction

Humans usually interact with objects by hands in actions
like holding, carrying and some other body parts like hips
in actions like sitting. These tasks can be solved via combi-
nations of constraints and logical operations. The represen-
tative tasks in our experiments include:
Task HOI-1: moving an object from one place to another.
Both starting and end positions for the controlled hand are
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Task HSI-1: head height constraint

Method Foot Skate ↓ Max Acc. ↓ C.Err. ↓ Unsucc. Rate ↓ FID ↓ Diversity → R-prec. (Top3) ↑

MDM (Unconstrained) [38] 0.086 0.097 0.118 0.718 0.545 9.656 0.610

MDM Edit [38] 0.094 0.148 0.109 0.645 0.554 9.656 0.614
IK 0.093 0.414 0.012 0.088 0.545 9.653 0.610
IK+Reg. 0.269 0.121 0.012 0.088 0.782 9.509 0.603

Ours 0.075 0.094 0.012 0.088 0.556 9.611 0.597

Table 1. Comparison with other methods with constraints sampled from groundtruth HumanML3D test set. The constraints are imposed
on the first, central and last frames. MDM (Unconstrained) serves as a numerical reference. The failure of any single indicator (marked in
red) means the failure of the entire task. Baseline methods always fail in certain metrics while ours performs generally well on all metrics.

Task HSI-2: avoiding barrier Task HSI-3: walking inside a square

Method Foot Skate ↓ Max Acc. ↓ C.Err. ↓ Foot Skate ↓ Max Acc. ↓ C.Err. ↓

MDM (Unconstrained) [38] 0.096 0.126 0.454 0.096 0.126 0.301

IK 0.132 1.919 0.047 0.139 0.292 0.015
IK+Reg. 0.589 0.361 0.047 0.215 0.128 0.015

Ours 0.189 0.150 0.097 0.125 0.093 0.012

Task GEO-1: hand touching wall Task HOI-1: moving object

Method Foot Skate ↓ Max Acc. ↓ C.Err. ↓ Foot Skate ↓ Max Acc. ↓ C.Err. ↓

MDM (Unconstrained) [38] 0.096 0.126 0.233 0.029 0.026 1.701

MDM Edit [38] 0.161 0.147 0.141 0.029 0.032 1.739
PriorMDM [35] 0.350 0.197 0.185 0.327 0.213 1.884
IK 0.147 0.187 0.010 0.408 0.919 0.011
IK+Reg. 0.536 0.117 0.010 0.405 0.037 0.011

Ours 0.110 0.104 0.023 0.114 0.068 0.028

Table 2. Comparison with other methods on unseen tasks. MDM Edit and PriorMDM cannot address these tasks natively. We adapt them
with ad-hoc tricks to fit these tasks. MDM (Unconstrained) serves as a numerical reference. The failure of any single indicator (marked
in red) means the failure of the entire task. Baseline methods always fail in certain metrics while ours achieves good balance on motion
quality and reaching the given constraints.

specified. This task uses “absolute position constraint” and
“key-frame constraint”.
Task HOI-2: carrying a large ball with its diameter spec-
ified. This task uses “relative distance constraint” and “>
operation”.

4.5. Human Self-Contact

Moreover, we handle human self-contact by applying rel-
ative distance constraint on those joints that are in contact
with each other. The task in our experiment is:
Task HSC-1: walking with a hand always touching the
head. This task uses “relative distance constraint”.

4.6. Physics-based Generation

Lastly, our framework supports complex physics-based
generation. For example, given the mass of each bone for a

body and using center-of-mass constraint, we can generate
physically plausible motions that conform to the physical
law of gravity. The tasks conducted in our experiments are:
PBG-1: standing with single foot and keep balanced. This
task uses “absolute position constraint” and “center-of-mass
constraint”.
PBG-2: carrying a heavy ball and keeping balanced at the
same time. This task uses “relative distance constraint”,
“center-of-mass constraint” and “> operation”.

5. Experiments

As our open-set motion control problem deviates from stan-
dard text-to-motion generation [12] and trajectory-based
motion control [35], we evaluate our method on a set of
pre-defined sub-tasks defined in Section 4. Details for each
sub-task are provided in the supplementary material.
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“walk” + velocity specified at first, 
middle and last frames

Task: “walk” 
+ both feet on a balance beam

Geometric constraint

Human-scene interaction

Velocity constraint

Physics constraintGeometric constraint

Human-object interactionHuman-scene interaction

Human self-contact

# P is a plane
total_err = 0
for frame in motions:

total_err += distToPlane(frame[‘r_hand’], P)

# L is a line
total_err = 0
for frame in motions:

total_err += distToLine(frame[‘r_foot’], L)
+distToLine(frame[‘l_foot’], L)

total_err=0; barrier_h=1.3; barrier_st=2; barrier_ed=3
for frame in motions: 
for idx in [‘head’, ‘spine’]:
joint_height = frame[idx].y; walk_dist = frame[idx].z 
if barrier_st <= walk_dist <= barrier_ed: 

total_err += max(joint_height+body_width-barrier_h, 0) 

total_err = 0
for frame in motions:
for joint in frame:

total_err += max(-joint.x-0.2,0)+
max( joint.x-0.2,0)

total_err = 0
for frame in motions:

total_err += |distToPoint(frame[‘l_hand’], 
frame[‘head’])–0.1|

pA = (0,0.5,0.2); pB = (2.0,0.5,0.2)
t_st = 0; t_ed = n_frames - 1
frame_st=motions[t_st]; frame_ed=motions[t_ed]
total_err = distToPoint(frame_st[‘l_hand’],pA)+

distToPoint(frame_ed[‘l_hand’],pB)

t0=0; t1=n_frames//2; t2=n_frames-1
v0=(0,0,0.05); v1=(0.05,0,0); v2=(0,0,-0.05)
total_err = |getVel(motions[t0][‘pelvis’])-v0|+ 

|getVel(motions[t1][‘pelvis’])-v1|+
|getVel(motions[t2][‘pelvis’])-v2|

total_err = 0; t0 = 0; frame0 = motions[t0]
for frame in motions:
fixed_err = distToPoint(frame[‘r_foot’],frame0[‘r_foot’])
physics_err = distToPoint(
projToGround(massCtr(frame)), frame[‘r_foot’])

total_err += fixed_err + physics_err

“walk” 
+ right hand always touching a wall

“walk” + through the gap 
between two walls(-0.2<x<0.2)

“walk” + avoiding overhead barrier 
between(2<z<3) with height 1.3m

“walk” + left hand 
always touching head (radius=0.1m)

“pick an object from A and move it to B”
+ A(0, 0.5, 0.2), B(2, 0.5, 0.2)

“balance on a leg with arms stretched” 
+ center of gravity on right foot

Figure 4. Qualitative examples of our method for diverse open-set motion control tasks. The task, error function code and generated motion
are demonstrated for each example. The code labeled with GPT marker is generated by GPT given the task description in text.

5.1. Evaluation Metrics

For measuring non-semantic motion quality, we use foot
skating ratio (Foot Skate) proposed in [19] to measure
the motion coherence and over-smoothing artifacts, and use
maximum joint acceleration (Max Acc.) max{ẍpos

i } in
a generated sample to measure frame-wise inconsistency.
For semantic-related motion quality, we adopt commonly-
used Frechet Inception Distance (FID), Diversity and R-
Precision as in [35]. Moreover, we use constraint error
(C. Err) in MAE to measure how well the generated mo-
tion satisfies the given constraints. The unsuccess rate is
defined as the percentage of the generated samples which
fail to meet all the constraints within 5 cm threshold. Note
that the semantic-related metrics require that the imposed
constraints also come from the groundtruth data distribu-
tion. Therefore, for unseen constraints we only evaluate on
non-semantic motion quality metrics and constraint errors.

5.2. Baselines

We compare our method with several baseline methods. (1)
Inverse Kinematics (IK). The optimization process is per-
formed on the motion x instead of backpropagating to the

latent noise z. (2) Inverse Kinematics with regularization
(IK+Reg.). The L2-norm regularization |x[i+1] − x[i]|2 is
added to help alleviate the frame inconsistency. (3) Motion
editing of Motion Diffusion Model (MDM Edit) [38].
We first use MDM to generate trajectories for both root
joint and controlled joint that meet the given constraint and
then perform inpainting using these trajectories. However,
as retrieving joint positions directly leads to invalid bone
lengths, we choose to recover the final result from joint ro-
tations with a skeleton template. (4) PriorMDM finetuned
control [35]. It builds on MDM Edit and further finetunes
the model parameters to capture the relationship between
the clean controlled joint and the remaining joints.

5.3. Implementation Details

We use the official weight of MDM [38] pre-trained on
HumanML3D [12] and keep it frozen. We use its DDIM
version with a step of TMDM = 100, which makes our la-
tent noise optimization faster. For a fair comparison, all
the baseline methods also use the same DDIM model. We
find that optimizing with learning rate 0.005 and 100 opti-
mization steps generally works well for a majority of tasks.
More details are provided in the supplementary material.
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5.4. Results and Evaluation

Quantitative Evaluation. We evaluate on tasks with both
known constraints (Table 1) and unseen constraints (Ta-
ble 2). As in Table 1, we show high-quality and coherent
motion over baselines including IK and MDM Edit meth-
ods, which always fail in some certain metrics (marked
in red background in the table). Similarly, comprehensive
evaluation on four unseen sub-tasks (Table 2) shows that our
method achieves good balance between motion quality and
constraint errors. Especially, IK produces inconsistent mo-
tion (failed in Max. Acc.) when the added constraints are
sparse, and generates over-smooth motion (failed in Foot
Skate) if imposing regularization terms for frame consis-
tency. Inpainting methods are not able to produce motions
that are faithfully constrained.
Qualitative Evaluation. In Fig. 4, we demonstrate the
versatility of our approach by solving a series of open-set
tasks described in Sec. 4. Our method generates high qual-
ity and visually coherent motions under various constraints.
Moreover, our method performs well for tasks with both
single and complicated multiple constraints. Especially,
inpainting-based methods are unable to deal with inequal-
ity constraints and those constraints in which all body joints
need to be edited, such as center-of-mass constraint.
Motion Control for Unseen Tasks. If we construct a set
of unseen constraints that are new to the generation model,
our method is still able to generate quite reasonable actions.
For example, for “walking between two walls”, the arms are
brought together and the shoulders are shrank to adapt to
the narrow space. This suggests that the proposed approach
intriguingly demonstrates a certain level of proficiency in
fostering the emergence of new skills for motion generation.
Motion Programming by LLM. Apart from manually pro-
gramming the task into constraints, in Fig. 4 we show the
potential for an LLM with reasoning ability to translate task
description into constraints and code the error function F ,
which is similar to [13, 44]. We observe that GPT under-
stands concept like touching wall by picking the correct
distToPlane constraint, and picks correct inequality oper-
ations for tasks like avoiding overhead barrier and walking
inside a square. More evaluation is in the supplementary.

5.5. Analysis

Effect of motion prior. As in Fig. 5, in the task of walk-
ing inside a square, our method generates valid poses while
IK and IK+Reg. produce invalid ones. Moreover, this type
of whole-body inequality constraint cannot be handled by
inpainting-based methods like MDM Edit and PriorMDM.
In the task of head height constraint, IK generates inco-
herent motion, and IK+Reg. generates over-smooth motion
with massive foot skating. Our method generates coherent
motion while adhering to the given constraint.

To show the effect of bone length preserving, we fur-

Task: “walking and turning around” + inside a square (-1<x<1, -1<z<1)

Task: “walking” + head height for the keyframe = 0.8 m

IK+Reg.IK Ours

IK IK+Reg. Ours

Figure 5. Effect of our motion prior. Top row: Ours generates
valid poses while IK and IK+Reg produce invalid ones. Bottom
row: IK generates incoherent motion and IK+Reg generates over-
smooth motion with massive foot skating. Our method generates
coherent motion while adhering to the given constraint.

Method Bone Length Incorrect Ratio

MDM (Unconstrained) 0.048
MDM Edit (Position) 0.525
Ours 0.051

Table 3. Comparison of effect on bone length preservation in the
task head height constraint. The inpainting-based method fails to
preserve correct bone lengths if recovering from local joint posi-
tions. Ours well preserves bone lengths for the generated motions.

ther analyze the correctness of neck lengths in the gener-
ated motions for the task head height constraint in Table 1.
As shown in Table 3, we can preserve bone lengths even if
we recover from local joint positions. The inpainting-based
method MDM Edit struggles with local joint positions con-
verted from global trajectories. The denoising process can-
not remedy sparse and invalid inpainting signals, therefore
generating motions with invalid bone lengths.

6. Conclusion
In this work, we present the new problem of open-set mo-
tion control. We propose a new paradigm for this problem,
namely programmable motion generation. The key idea is
to formulate an arbitrary task as an error function built from
atomic constraints and logical operations and use it to guide
a pre-trained motion generation model to generate motion
that meets these constraints. In the future work, we will ex-
tend the current framework to whole-body generation which
allows more details, and study how to enable automatic con-
straint generation in large and rich semantic scenes.
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