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Abstract

Referring Remote Sensing Image Segmentation (RRSIS)
is a new challenge that combines computer vision and natu-
ral language processing. Traditional Referring Image Seg-
mentation (RIS) approaches have been impeded by the com-
plex spatial scales and orientations found in aerial imagery,
leading to suboptimal segmentation results. To address
these challenges, we introduce the Rotated Multi-Scale In-
teraction Network (RMSIN), an innovative approach de-
signed for the unique demands of RRSIS. RMSIN incorpo-
rates an Intra-scale Interaction Module (IIM) to effectively
address the fine-grained detail required at multiple scales
and a Cross-scale Interaction Module (CIM) for integrating
these details coherently across the network. Furthermore,
RMSIN employs an Adaptive Rotated Convolution (ARC)
to account for the diverse orientations of objects, a novel
contribution that significantly enhances segmentation accu-
racy. To assess the efficacy of RMSIN, we have curated an
expansive dataset comprising 17,402 image-caption-mask
triplets, which is unparalleled in terms of scale and vari-
ety. This dataset not only presents the model with a wide
range of spatial and rotational scenarios but also estab-
lishes a stringent benchmark for the RRSIS task, ensuring
a rigorous evaluation of performance. Experimental eval-
uations demonstrate the exceptional performance of RM-
SIN, surpassing existing state-of-the-art models by a signif-
icant margin. Datasets and code are available at https:
//github.com/Lsan2401/RMSIN .

1. Introduction
Referring Remote Sensing Image Segmentation (RRSIS)

stands at the forefront of integrating computer vision with

natural language processing [18, 36–38], aiming to segment

*These authors contributed equally to this work.
†The corresponding author.
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Figure 1. Comparison between the newly constructed RRSIS-D

and conventional RIS datasets [62], highlighting the complex spa-

tial scales and orientations prevalent in aerial imagery. (a) Ex-

amples from our RRSIS-D, demonstrating the limitations of tradi-

tional RIS methods (e.g., LAVT [58]) in handling such complexi-

ties. (b) Examples from a standard RIS dataset [62].

specific areas from aerial images based on textual descrip-

tions. This sophisticated task goes beyond the capabilities

of traditional RIS [13, 25, 28], requiring an intricate under-

standing of the spatial and geographic nuances conveyed

from aerial perspectives. RRSIS plays a crucial role in a

wide range of applications, including land use categoriza-

tion [9], climate impact studies [44], and urban infrastruc-

ture management [8]. By pushing the boundaries of seman-

tic understanding in remote sensing data, RRSIS is advanc-

ing the possibilities in these domains. Despite this, the field

has been constrained by the limited scale and scope of ex-

isting datasets, which are insufficient for training models to

the level of accuracy required for these critical tasks.

In light of these requirements, our research introduces an

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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expansive new benchmark dataset, namely RRSIS-D, de-

signed to propel the development of RRSIS. This dataset

surpasses its predecessors* [63] in threefold size, encom-

passing not only higher resolution images but also a signif-

icantly broader range of geographic diversity. The devel-

opment of this dataset is guided by the Segment Anything

Model (SAM) [23], which facilitates a semi-automated an-

notation process, thereby mitigating the labor-intensive na-

ture of generating accurate pixel-level masks traditionally.

This process involves deriving initial segmentation masks

from bounding box prompts and refining them to ensure

high fidelity to the complex reality of aerial imagery. The

result is a comprehensive corpus of 17,402 remote sensing

image-caption-mask triplets, an invaluable resource aimed

at advancing the precision and utility of RRSIS.

Furthermore, although the existing RIS methodolo-

gies [17, 25, 29, 48] have demonstrated effectiveness in

specific domains [39, 41, 62], they face limitations when

applied to the diverse and intricate nature of remote sensing

imagery. As illustrated in Fig. 1, aerial images pose distinct

challenges that are not encountered in conventional image

datasets, including vast and diverse spatial scales, as well

as objects captured from multiple orientations. Current RIS

approaches typically excel in aligning visual and linguistic

elements in well-bounded contexts [16, 61] but falter when

faced with the chaotic and unstructured nature of aerial im-

ages. The inability of these methods to grapple with high

levels of spatial variation and rotational diversity results in

a notable performance gap in RRSIS tasks, highlighting the

need for a more robust and versatile approach.

To overcome the inherent limitations in existing ap-

proaches, we present the Rotated Multi-Scale Interac-

tion Network (RMSIN), a pioneering architectural solution

meticulously designed to tackle the complexities of RRSIS.

Our approach introduces a sophisticated Intra-scale Interac-

tion Module (IIM) that excels at extracting detailed features

within individual layers, as well as a Cross-scale Interac-

tion Module (CIM) that facilitates comprehensive feature

fusion across the entire network. Furthermore, we integrate

an Adaptive Rotated Convolution (ARC) into the decoder,

empowering the model to effectively handle the intricate ro-

tational variations exhibited by objects. By seamlessly in-

tegrating these modules, RMSIN proficiently extracts and

aligns features across diverse scales and orientations, result-

ing in remarkable performance enhancements for RRSIS.

To sum up, our key contributions are as follows:

• We introduce RRSIS-D, a novel benchmark dataset tai-

lored for Referring Remote Sensing Image Segmentation

(RRSIS). This dataset accommodates substantial varia-

tions in both spatial resolution and object orientation.

• We propose the Rotated Multi-Scale Interaction Network

*Known as RefSegRS, as of November 17, 2023, this dataset is not yet

publicly available.

(RMSIN) to address the challenges posed by the multiple

spatial scales and orientations prevalent in aerial imagery.

• We propose IIM and CIM to handle fine-grained informa-

tion within and across different scales. Meanwhile, We

design ARC to enhance the model’s robustness against

the ubiquitous rotational phenomena in RRSIS.

2. Related work
Referring Image Detection and Segmentation. Refer-

ring Image Detection aims to predict a bounding box corre-

sponding to a given referring expression. Existing works

can be classified into two-staged methods [12, 14, 65, 67]

which are based on region proposal ranking, and one-stage

methods [1, 24, 26, 33–35, 57, 66] which directly predict the

target bounding box. Referring Image Segmentation aims to

achieve pixel-level localization of target objects within im-

ages based on associated referring expressions, presenting a

more complex task [13]. Early works [25, 28, 41] leverage

convolution networks and recurrent neural networks to ex-

tract vision and language features, respectively. These fea-

tures are then fused by simple concatenation to generate fi-

nal predictions. Subsequent methods [2, 3, 6, 19, 20, 28, 29,

40, 47, 48, 51, 54] mainly focus on vision-language align-

ment to enhance predictions. Some employ recurrent refine-

ment [2, 28], while others utilize dynamic filters [3, 19, 40]

to fuse visual and linguistic features. Recently, leveraging

the Transformer’s outstanding performance, methods can

deviled into two categories: those performing cross-modal

decoder fusion based on Transformer [6, 20, 29, 48] and

those incorporating language-aware visual encoding instead

of post-feature fusion [22, 52, 58]. However, due to the spe-

cific characteristics of aerial images, these methods exhibit

limited performance in the Remote Sensing field. Some ap-

proaches [21, 42, 60] have introduced extra scale interaction

modules to enhance feature extraction. However, the ex-

treme semantic gap between natural images and aerial im-

ages still results in suboptimal performance.

Remote Sensing Referring Image Detection and Seg-
mentation. Referring Image Detection in Remote Sensing

field is a novel task with limited research. It was first intro-

duced by [45], where a new dataset and a baseline model

were proposed. Recently, the transformer-based method

RSVG [64] has been proposed. RSVG utilized the Vision

Transformer [7] and BERT [5] as backbones, incorporat-

ing the Multi-Level Cross-Modal feature learning module

to address multi-scale variations in aerial images. Remote

Sensing Referring Image Segmentation (RRSIS) is also a

nascent field owing to the aforementioned challenges. Yuan

et al. [63] constructed the first RRSIS dataset and proposed

a model that utilizes the deep and shallow feature interac-

tions to enhance the multi-scale feature extraction. How-

ever, this model encounters limitations in handling more

complex datasets. In an effort to address the existing gaps in
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Figure 2. Word cloud for top 100 words within the expressions of

RRSIS-D.

Figure 3. Distribution of image categories of RRSIS-D.

RRSIS, we propose a more extensive and intricate dataset,

RRSIS-D, alongside a novel model named RMSIN and con-

duct a comparative evaluation of the performance of Yuan

et al. [63]’s model on our dataset.

3. RRSIS-D
We present a new large-scale benchmark, called RRSIS-

D, specifically designed for the RRSIS task. Fig. 2 depicts

the word cloud representation of this dataset. Motivated by

the exceptional segmentation performance achieved by the

Segment Anything Model (SAM) [23], we adopt a semi-

automatic approach that capitalizes on bounding boxes and

SAM to generate pixel-level masks, resulting in cost savings

during the annotation process. Specifically, we follow the

steps outlined below to generate pixel-wise annotations for

language expressions:

• Step 1. Pixel-level masks for all images in the dataset are

generated by leveraging the bounding box prompts pro-

vided by the RSVGD Dataset [64] through the employ-

ment of SAM. It is noteworthy, however, that the perfor-

mance of SAM may exhibit variability in accuracy when

applied to partial images, owing to the inherent domain

gap between aerial and natural images.

Proportion of Mask Size

N
um

be
r o

f M
as

ks

~
Ship

Overpass

Ground 
track field

Stadium

Vehicle

Expressway 
toll station 

<< ..
Airplane

Chimney

<< .. >> ..>> ..

Figure 4. Distribution of mask sizes, with the horizontal axis

showing mask coverage percentage in images (θ) and the verti-

cal axis representing total mask count, illustrated with varied-size

ground truth examples.

• Step 2. We undertake a manual refinement process for

masks associated with problematic aerial images. This re-

finement involves the utilization of a filling algorithm to

address hollow problems within the masks. Subsequently,

a meticulous curation of the dataset is conducted to iden-

tify problematic data, and manual annotation is employed

to generate masks aligned with annotation standards. This

manual annotation process is facilitated by the software

tool [59] designed in accordance with the principles of

SAM, ensuring the accurate generation of masks corre-

sponding to linguistic expressions.

• Step 3. To enhance the compatibility of RRSIS-D with

natural RIS models, finally, the annotations are converted

into RefCOCO dataset [27] format for better usability.

The benchmark statistics, as presented in Tab. 1, ex-

hibit notable distinctions from the existing RefSegRS

dataset [63]. Our proposed dataset, RRSIS-D, comprises

a comprehensive collection of 17,402 images, accompanied

by their corresponding masks and referring expressions. A

standardized resolution of 800px in height and 800px in

width has been uniformly applied to all images. Further-

more, the semantic labels comprise 20 categories, supple-

mented by 7 attributes, thereby enhancing the semantic rich-

ness of the referring expressions. To illustrate the preva-

lence of each category, the category distribution is graphi-

cally represented in Fig. 3. For instance, the category “Air-

plane” accounts for 15.6% of the total, ranking highest in

terms of quantity. It is worth noting that our dataset offers

enhanced flexibility in terms of mask resolution, surpassing

that of RefSegRS.

The statistics of the generated masks are depicted in

Fig. 4. Notably, a significant portion of the targets is ex-

tremely small, occupying only a fraction of the overall im-

age. However, there are also instances of large-scale ob-

jects exceeding 400,000 pixels in size. Some examples of

masks with different sizes are illustrated in the figure, high-

lighting the substantial variability in scale across different

categories in the dataset. This presents a challenging task,

as it involves predicting images with significant large-scale

variations and numerous small targets.
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Dataset
Number

of images

Image

size

Spatial

resolution

Attributes

of expression

Mask

generation

RefSegRS [63] 4420 512 × 512 0.13m 3 Manually

RRSIS-D 17402 800 × 800 0.5m ∼ 30m 7
Semi

automatically

Table 1. Compare our dataset with the previous dataset.

4. RMSIN
4.1. Overview

The pipeline of our proposed model is depicted in Fig. 5.

Initially, given the input image I ∈ R
H×W×3 and the lan-

guage expression E = {ωi}, i ∈ {0, . . . , N}, where H and

W represent the height and width of the input image, and N
is the length of the expression, the input language expres-

sion E is transformed into the feature space F� ∈ R
N×C via

the backbone f�. The following Compounded Scale Interac-

tion Encoder (CSIE), which is composed of an Intra-scale

Interaction Module (IIM) at each stage, and a Cross-scale

Interaction Module (CIM), is applied to generate the fused

features with sufficient semantics across multiple scales. Fi-

nally, we propose an Adaptive Rotated Convolution (ARC)

based Oriented-Aware Decoder (OAD) to generate the seg-

mentation mask by the parallel inference on the features

from the multiple stages of the CSIE.

4.2. Compounded Scale Interaction Encoder

To effectively locate diverse targets with the guidance of

the referred texts, the information for multi-scale is just as

important as the referring expressions. Given the language

features F� and the input image I ∈ R
H×W×3, the Com-

pounded Scale Interaction Encoder (CSIE) brings about the

fusion across vision-language modality in a multi-stage way

with both intra- and inter-perspective.

Specifically, the CSIE is constructed with two compo-

nents, Intra-scale Interaction Module (IIM) and Cross-scale

Interaction Module (CIM).

4.2.1 Intra-scale Interaction Module

The first part of each stage in CSIE, the Intra-scale In-

teraction Module (IIM) is designed to further excavate the

rich information within each scale and facilitate interac-

tion between the vision and language modalities. Based

on a hierarchy of four stages, IIM could be denoted as

{φi}i∈{1,2,3,4}. After obtaining the language features F� ∈
R

N×C through the text backbone, where C denotes the

number of channels, the output features F i
e of IIM at stage

i could be described as:

F i
e = φi(F

i−1
e , F�), (1)

where F 0
e is extracted from the vision backbone fv with

the input I . More detailed, during the stage i, the input

features F i−1
e undergo a combination of downsampling and

MLP [31] to reduce the scale and unify the dimension of

features, resulting in F̂ i−1
e . The downsampled input F̂ i−1

e is

fed into two branches for enhancing visual priors and fusing

cross-modal information individually.

Various Receptive Branch is the first branch. The fea-

ture F̂ i−1
e is transformed through multiple branches with

different settings of convolution kernels to yield features

with various receptive fields, which could be formulated as:

ωi = σ

⎛⎝ J∑
j=0

(
1

C

C∑
kij ∗ F̂ i−1

e

)⎞⎠ , (2)

where the kij means the j-th branch of convolution and the σ
is the Sigmoid Function. The above formulation indicates

that the different convolution setting is utilized to balance

the weight ωi ∈ (0, 1)H×W between all the pixels. The

weight is taken to enhance the features by:

F̂ i−1
e1 = ωi ⊗ F̂ i−1

e . (3)

In addition, the output is regulated by a Visual Gate,

adding to the raw image features as a complement to lo-

cal detail information. The specific implementation of the

gate is:

α = Tanh(Linear(ReLU(Linear(F̂ i−1
e1 )))), (4)

where Linear(·) denotes the linear projection, and Tanh(·)
and ReLU(·) represent the activation functions.

Cross-modal Alignment Branch is designed for multi-

modal alignment, which is the key to enabling the model to

comprehend natural language.

Concretely, taking the input F̂ i−1
e and language features

F�, the module first implements scaled dot-product atten-

tion [46] using F̂ i−1
e as the query and F� as the key and

value to obtain the multi-modal features:

Ai = attention(F̂ i−1
e W i

q , F�W
i
k, F�W

i
v), (5)

where W i
q , W i

k and W i
v are the linear projection matrices.

Subsequently, the attention Ai is combined with F̂ i−1
e to

obtain language-guided image features:

F̂ i−1
e2 = Proj(AiW i

w ⊗ F̂ i−1
e W i

m), (6)

where W i
w and W i

m are the projection matrices, and ⊗ de-

notes element-wise multiplication. The obtained result is

passed through a final 1×1 convolution, denoted as Proj(·),
to produce the final output.

Similar to the operation performed on the output of

F̂ i−1
e1 , the result is regulated by β from the Linguistic Gate

shares an identical structure with the Visual Gate and is

added to the raw image features, serving as supplementary

linguistic features. Consequently, the overall output fea-

tures of IIM at stage i can be illustrated as:

F i
e = F̂ i−1

e + αF̂ i−1
e1 + βF̂ i−1

e2 . (7)
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Figure 5. Overview of the proposed RMSIN.

4.2.2 Cross-scale Interaction Module

While the IIM adequately extracts localized multi-scale

information guided by linguistic features, we additionally

design a Cross-scale Interaction Module (CIM) to further

enhance the interaction between the coarse and fine stages,

particularly in response to the scale variation challenge ob-

served in aerial images. Specifically, the module takes fea-

tures collected from each stage of the IIM, i.e., the previ-

ously mentioned F i
e , i ∈ {1, 2, 3, 4} as input and performs

multi-stage interaction. The structure is depicted schemati-

cally in Fig. 5.

Multi-stage Feature Combination is first performed,

where the features F i
e are downsampled to the same size

and concatenated along the channel dimension. The for-

mula expression is as follows:

F i
d = downsample(F i

e), i ∈ {1, 2, 3, 4},
F ∗
c = concat

c
(F 1

d , F
2
d , F

3
d , F

4
e ),

(8)

where F i
d represents the downsampled features, and F ∗

c rep-

resents the multi-stage feature concatenated along the chan-

nel dimension. downsample(·) is typically implemented

through average pooling.

Multi-scale Attention Layer is subsequently imple-

mented. Specifically, we design various perceptive fields

for the concatenated feature F ∗
c to achieve deep multi-

scale interaction. F ∗
c is resized to different scales through

the depth-wise convolutions with diverse kernel sizes and

strides, defined as follows:

Fm
c = km ∗ F ∗

c ,

hm = �h− 1

m
+ 1�, wm = �w − 1

m
+ 1�,

(9)

where m ∈ {1, . . . ,M}, M is the number of resized scales,

km is the m-th depth-wise convolution and hm and wm are

the corresponding height and weight of the Fm
c . With the

set {Fm
c |m ∈ {1, . . . ,M}}, we flatten all the elements on

the size dimension and concatenate them as a sequence fea-

tures F̂ ∗
c ∈ R

(
∑M

1 hm×wm)×C . Similar to vanilla atten-

tion [46], we take the origin feature F ∗
c as the query, and

the multi-scale-aware feature F̂ ∗
c as the key and value to

perform cross-scale interaction:

F̃ ∗
c = softmax(

F ∗
c Wq · F̂ ∗

c W
T
k√

C
) · F̂ ∗

c Wv. (10)

For better preservation of local details, following inspiration

from HRViT [10], a local relationship compensation called

LRC is incorporated to regulate the output of the multi-scale

attention. Consequently, the final output of the Multi-scale

Attention Layer is expressed as:

Fc = F̃ ∗
c +DWConv(Hardswish(F ∗

c )), (11)

where DWConv(·) represents depth-wise convolution, and

Hardswish(·) is the activity function, implemented in ac-

cordance with [10] to enhance the extraction of multi-scale

local information.

The Feed Forward Layer follows the Multi-scale At-

tention layer which is identical to the standard attention

block [46]. The feature Fc is divided into four parts to re-

vert to the size of F i
e by upsampling and subsequently fed

into the Scale-aware Gate to obtain the final output.

Scale-aware Gate is employed to alleviate the semantic

gap before and after multi-scale attention. Specifically, for

each part from Fc, we implement the corresponding part

from Fe to measure the weight of the cross-scale interac-

tion. This weight is considered as the assistance residual

for the features from IIM. The formulation is as follows:

F i
o = sigmoid(F i

eW1)⊗ F i
cW2 + F i

eW3, (12)

where i ∈ {1, 2, 3, 4}. The output of the Scale-aware Gate

is utilized in the decoder for final mask prediction.
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4.3. Oriented-aware Decoder

The set of features {F i
o|i ∈ {1, 2, 3, 4}} from the CSIE

are used to generate the segmentation. Considering that

object instances in aerial images often exhibit various ori-

entations, using static horizontal convolution kernels for

mask generation may result in a loss of precision. In-

spired by oriented object detection, where the problem

has been researched for decades and achieved considerable

progress [43, 53, 55, 56], we incorporate the Adaptive Ro-

tated Convolution (ARC) into the segmentation decoder tai-

lored for the specific needs of RRSIS task to achieve better

mask prediction.

4.3.1 Adaptive Rotated Convolution

The ARC captures angle information from input features

and dynamically re-parameterizes the kernel weights to fil-

ter out redundant features. Specifically, it extracts orien-

tation features and predicts n angles θ ∈ {1, . . . , n} and

corresponding weights λ ∈ {1, . . . , n} based on the input.

For the input X , the θ and λ are predicted as:

θ, λ = Routing(X), (13)

where the concrete structure of the Routing Block is il-

lustrated in Fig. 5. The static convolution kernel weights

can be viewed as specific sampling points from the two-

dimensional kernel space. Thus, the rotation of the convolu-

tion kernel is the process of rotary resampling. Specifically,

the convolution kernel weights Wi are re-parameterized ac-

cording to the predicted angels as follows:

Y
′
i = M−1(θi)Yi,

W
′
i = interpolation(Wi, Y

′
i ),

(14)

where Yi is the coordinates of original sampling points,

M−1(θi) is the inverse matrix of the rotation matrix for

affine transformation by angle θ around the origin, and

interpolation(·) is implemented as bilinear interpolation.

Finally, the features are filtered by the obtained convolution

kernel and subjected to a weighted sum operation to pro-

duce orientation-aware features:

X∗ = X ∗
n∑

i=1

λiW
′
i . (15)

The overall top-down process of mask prediction can be

concluded as follows:

D4 = F 4
o ,

Di = Seg(ARC([Di+1; F
i
o])), i ∈ {1, 2, 3},

D0 = Proj(D1),

(16)

where Seg(·) refers to a nonlinear block comprising a 3× 3
convolution layer, a batch normalization layer, and a ReLU

activity function to enhance the nonlinearity of the segmen-

tation feature space. And Proj(·) is implemented as a lin-

ear projection function to map the final feature D1 into two

class scores. It is notable that half of the convolution layers

are replaced by the ARC to leverage orientation information

in the feature space, thereby eliminating redundancy for en-

hanced accuracy in boundary details.

5. Experiments
5.1. Implementation Details

Experiment Settings. In our experiments, the visual back-

bone utilizes Swin Transformer [31], pre-trained on Ima-

geNet22K [4], while the language backbone employs the

base BERT model from HuggingFace’s library [49]. The

model is trained for 40 epochs using AdamW [32] with a

weight decay of 0.01 and a starting learning rate of 3e-5,

reducing according to polynomial decay. The setup ran on

four RTX 2080 GPUs with a batch size of 8.

Metrics. We utilize Overall Intersection-over-Union

(oIoU), Mean Intersection-over-Union (mIoU), and Preci-

sion@X (P@X) as evaluation metrics, similar to prior stud-

ies [50, 64].

5.2. Comparison with state-of-the-art RIS methods

In our experiments, we compared RMSIN’s performance

with existing state-of-the-art referring image segmentation

methods on the validation and test subsets of our RRSIS-D

dataset (see Tab. 2). For a fair comparison, we adopted the

original implementation details of these competing meth-

ods. Notably, RMSIN outperforms its counterparts across

almost all metrics on both subsets, marking a significant

improvement with a 3.64% and 3.16% increase in mIoU on

the validation and test subsets respectively over the closest

competitor, LAVT. This leap in performance is particularly

evident in complex scenarios, such as detecting small or ro-

tated objects, where it secured over 3.0% gains in Precision

at IoU thresholds of 0.5, 0.6, and 0.7.

5.3. Ablation study

We have performed various ablation experiments on the

validation subset of RRSIS-D to assess the efficacy of the

pivotal components within our proposed network.

Effictiveness of IIM and CIM. To validate the efficacy

of our proposed two-scale interaction modules in CSIE, we

conduct ablation studies on all the combinations of IIM and

CIM. As illustrated in Tab. 3, The introduction of the IIM

brings about discernible improvements in precision at lower

IoU thresholds, while the incorporation of the CIM further

refines predictions across various IoU levels. The combined

effect of both modules demonstrates a synergistic enhance-

ment, yielding the highest performance across all evalu-

ated metrics, particularly in P@0.5, P@0.7, and mIoU, with
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Method
Visual

Encoder

Text

Encoder

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 oIoU mIoU

Val Test Val Test Val Test Val Test Val Test Val Test Val Test

RRN [25] R-101 LSTM 51.09 51.07 42.47 42.11 33.04 32.77 20.80 21.57 6.14 6.37 66.53 66.43 46.06 45.64

CSMA [61] R-101 None 55.68 55.32 48.04 46.45 38.27 37.43 26.55 25.39 9.02 8.15 69.68 69.39 48.85 48.54

LSCM [17] R-101 LSTM 57.12 56.02 48.04 46.25 37.87 37.70 26.37 25.28 7.93 8.27 69.28 69.05 50.36 49.92

CMPC [16] R-101 LSTM 57.93 55.83 48.85 47.40 38.50 36.94 25.28 25.45 9.31 9.19 70.15 69.22 50.41 49.24

BRINet [15] R-101 LSTM 58.79 56.90 49.54 48.77 39.65 39.12 28.21 27.03 9.19 8.73 70.73 69.88 51.14 49.65

CMPC+ [30] R-101 LSTM 59.19 57.65 49.36 47.51 38.67 36.97 25.91 24.33 8.16 7.78 70.14 68.64 51.41 50.24

LGCE [63] Swin-B BERT 68.10 67.65 60.52 61.53 52.24 51.45 42.24 39.62 23.85 23.33 76.68 76.34 60.16 59.37

LAVT [58] Swin-B BERT 69.54 69.52 63.51 63.63 53.16 53.29 43.97 41.60 24.25 24.94 77.59 77.19 61.46 61.04

RMSIN (Ours) Swin-B BERT 74.66 74.26 68.22 67.25 57.41 55.93 45.29 42.55 24.43 24.53 78.27 77.79 65.10 64.20

Table 2. Comparison with state-of-the-art methods on the proposed RRSIS-D dataset. R-101 and Swin-B represent ResNet-101 [11] and

base Swin Transfomer [31] models, respectively. The best result is bold.
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“The vehicle at 
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“The basketball court is 
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the vehicle on the top”

“A baseball field is on the 
right of the green ground 
track field in the middle”

Large-Scale Object Tiny-Scale Object Rotated Object

Figure 6. Qualitative comparisons between RMSIN and the previous SOTA LAVT. The left part illustrates the predictions of large-

scale objects, while the middle part offers exceedingly diminutive objects amidst a highly noisy background. The right part exhibits the

predictions for scenarios wherein objects are situated at diverse angles.

IIM CIM P@0.5 P@0.7 P@0.9 oIoU mIoU

� � 69.54 53.16 24.25 77.59 61.46

� � 71.09 53.45 24.71 77.68 62.27

� � 73.68 56.67 25.69 77.40 64.25

� � 74.14 57.59 25.69 77.91 64.91

Table 3. Ablation on the scale interaction modules IIM and CIM.

margins ranging from 3.5% to 4.5%. These findings affirm

the pivotal role played by the IIM and CIM in capturing

multi-scale features from images, thus substantiating their

efficacy in advancing the overall segmentation capabilities.

Design options of CIM. To further substantiate the effec-

tiveness of CIM, we conduct a detailed analysis of its main

components, as outlined in Tab. 4. The most substantial en-

hancement in results is observed upon the inclusion of the

complete module, showcasing the highest metric enhance-

ment of over 4.14%. This confirms the role of CIM in pre-

serving local details and extracting multi-scale information.

Design options of Decoder. We explore the design of the

segmentation decoder structure as demonstrated in Tab. 5.

The CIM yields output features with robust semantics and

Options P@0.5 P@0.7 P@0.9 oIoU mIoU

Default 69.54 53.16 24.25 77.59 61.46

+ Multi-scale Attention 68.91 53.68 25.11 77.61 61.46

+ Feed Forward 69.83 52.70 25.57 77.85 61.46

+ LRC 73.68 56.67 25.69 77.40 64.25

Table 4. Ablation on options design of CIM. Default means the

vanilla self attention and we reintroduce all the designs cumula-

tively to demonstrate the effectiveness of each major component.

intricate spatial details. Thus our proposed Oriented-aware

Decoder straightforwardly concatenates the features and ex-

tracts angular information through ARC to obtain more ac-

curate predictions better suited to RS tasks. We also ex-

periment with two alternative decoder structures. The ex-

ceptional results of our proposed decoder, surpassing others

across all metrics, underscore the significance of incorpo-

rating angle information in the decoding process. This out-

come firmly reaffirms the efficacy of our approach in cus-

tomizing mask predictions for remote sensing applications,

where the inclusion of precise angular information emerges

as a critical factor for optimizing segmentation accuracy.
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Decoder Design P@0.5 P@0.7 P@0.9 oIoU mIoU

Sum 72.36 55.23 24.89 76.11 62.76

Concat 70.34 53.33 24.66 77.74 61.56

Oriented-aware 73.85 56.84 25.40 77.76 64.15

Table 5. Ablation study examining decoder designs. “Sum ” de-

coder employs summation instead of concatenation for cross-stage

feature connection, while “Concat ” decoder substitutes ARC in

“Oriented-aware ” decoder with static convolutions.

Options P@0.5 P@0.7 P@0.9 oIoU mIoU

(a) Replacement of ARC in the Oriented-aware Decoder

L = 1 71.72 54.94 24.43 75.93 62.53

L = 2 72.18 55.29 24.66 76.37 62.48

L = 3 72.36 55.98 25.00 77.06 63.81
(b) Predicted number of angles in ARC

n = 1 72.36 55.98 25.00 77.06 63.81

n = 2 72.24 54.48 24.02 77.39 63.14

n = 4 73.85 56.84 25.40 77.76 64.15

Table 6. Ablation studies of ARC. L=1 indicates the replacement

of the first layer in the decoder with Adaptive Rotated Convo-

lution. Experiments on the predicted number of angles are per-

formed under L=3.

Design options of ARC. We further investigate the impact

of the Adaptive Rotated Convolution (ARC) replacement

strategy on the results, as demonstrated in Tab. 6 (a). We

progressively replace the convolution layers in each stage

of the decoder, and the result exhibits a consistent upward

trend. Consequently, we opt to replace all three layers of the

decoder. Additionally, we explore the influence of varying

the number of prediction angles for ARC on the prediction

results illustrated in Tab. 6 (b). The decoder showcases a

consistent improvement in performance with an increase in

the predicted number of angles, resulting in a performance

boost of approximately 1% when seated to 4 compared to 1.

5.4. Visualization

5.4.1 Quantitative Results

We qualitatively compare our model with the baseline

to provide a comprehensive understanding. As shown in

Fig. 6, our model excels at identifying targets across var-

ious scales accurately, even within noisy backgrounds and

at different angles. In contrast, the baseline model exhibits

shortcomings such as missing parts and noticeable shifts in

predicted masks.

5.4.2 Visualization of Features from Encoder

In Fig. 7, we visualize the feature maps from the RMSIN

during training under the ablation of ARC and CSIE. It’s ob-

vious that RMSIN can accurately capture boundary infor-

Expression:
“The gray basketball court.”

Image
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Prediction

R
M

SI
N

w
/o

 A
R

C
w

/o
 C

SI
E

Figure 7. Visualization of predictions and feature maps across

stages, where F i
0 denotes the feature map for stage i. Each row

shows the outcomes from progressively adding modules.

mation with the assistance of scale interaction and rotated

convolution. With the scale interaction performed by CSIE

and the orientation extraction performed by ARC, RMSIN

can focus more keenly on the referred targets. Compared

with the first row, CSIE provides more accurate semantics

in the deeper layer, and ARC supplies the space prior, which

is important for rotated object segmentation.

These qualitative comparisons underscore the efficacy of

our approach in addressing challenges related to scale vari-

ations and orientation robustness, affirming its capabilities

in diverse scenarios.

6. Conclusion
In this paper, we propose RMSIN, a novel method adept

at navigating the complex scales and orientations prevalent

in RRSIS. By integrating the IIM and CIM, RMSIN capa-

bly addresses the wide range of spatial scales encountered

in aerial imagery. Additionally, the implementation of the

ARC offers a solid strategy for tackling various orientations.

The construction of our expansive RRSIS-D dataset, featur-

ing 17,402 image-caption-mask triplets provides an unpar-

alleled resource in terms of scale and variety for rigorous

evaluation. The comprehensive validation on the RRSIS-

D dataset not only underscores RMSIN’s superior perfor-

mance but also establishes a new benchmark for future re-

search in this domain.
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