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Abstract

Despite the success of recent upsampling approaches,
generating high-resolution point sets with uniform distribu-
tion and meticulous structures is still challenging. Unlike
existing methods that only take spatial information of the
raw data into account, we regard point cloud upsampling
as generating dense point clouds from deformable topology.
Motivated by this, we present SPU-PMD, a self-supervised
topological mesh deformation network, for 3D densifica-
tion. As a cascaded framework, our architecture is formu-
lated by a series of coarse mesh interpolator and mesh de-
formers. At each stage, the mesh interpolator first produces
the initial dense point clouds via mesh interpolation, which
allows the model to perceive the primitive topology better.
Meanwhile, the deformer infers the morphing by estimat-
ing the movements of mesh nodes and reconstructs the de-
scriptive topology structure. By associating mesh deforma-
tion with feature expansion, this module progressively re-
fines point clouds’ surface uniformity and structural details.
To demonstrate the effectiveness of the proposed method,
extensive quantitative and qualitative experiments are con-
ducted on synthetic and real-scanned 3D data. Also, we
compare it with state-of-the-art techniques to further illus-
trate the superiority of our network. The project page is:
https://github.com/lyz21/SPU-PMD.

1. Introduction
As unordered sets of discrete elements, point clouds pro-
vide high flexibility for 3D data representation [7, 8]. Due
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Figure 1. Illustration of point cloud upsampling based on mesh de-
formation. Although the meshes constructed from the point cloud
topology coarsely locate the insertion points, the unconnected
meshes often result in unexpected vacancies and detail missing
(as shown in the lower left part of the figure). The proposed up-
sampling method that combines mesh interpolation with deforma-
tion successfully compensates for potential holes and maintains
descriptive structures.

to these properties, point clouds have been applied in a wide
variety of fields. However, the point clouds captured by 3D
scanning (e.g., LiDAR or RGB-D cameras) are often sparse
and fragmented, which affects downstream tasks such as
shape classification, object detection, and semantic segmen-
tation [2, 9, 30, 42]. Hence, point cloud upsampling is a
fundamental and crucial issue in 3D vision.

With the development of data-driven models, some
learning-based models [4, 12, 13, 17, 19–21, 27, 29, 40,
41, 44] have been proposed for point cloud upsampling.
The typical frameworks consist of three components: fea-
ture extraction (FE), feature expansion (FX), and coordi-
nate reconstruction (CR). Early, this upsampling problem
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was simplified as a variant of image super-resolution. Thus,
the pioneering works employ various extractors including
Multi-Layer-Perceptron (MLP) [13, 40, 41], Convolution
Neural Network (CNN) [5, 28], and Graph Convolutional
Network (GCN) [19, 27] to learn representative features for
estimating potential distribution. In feature expansion, most
existing methods [4, 12, 13, 17, 40, 44] adopt direct feature
duplication relying on the assumption that latent code am-
plification brings about spatial expansion of the correspond-
ing points. To better expand the feature, [19] utilizes hier-
archical folding to propagate features from sparse to dense.
Finally, the reconstruction module is applied to regress the
coordinates or offsets in the Cartesian system.

Although these approaches based on the FE-FX-CR ar-
chitecture can learn structures from raw data, they only take
spatial information into account and neglect the underlying
topology maintained, which often results in unexpected dis-
tortion and surface outliers. In other words, they have lim-
ited ability in high-fidelity expression and generation. Fur-
thermore, most of these approaches require dense point sets
as the ground truth in supervised training, making them un-
available for the 3D data scanned in the real world.

To address these problems, we propose a self-supervised
upsampling network, called SPU-PMD, that treats this task
as topology-based point propagation. Instead of the FE-FX-
CR, we devise a new pipeline of deformers based on mesh
interpolation and deformation, which can associate local
topology with spatial information and regulate the upsam-
pling. Specifically, we first propose an interpolation algo-
rithm that estimates the local centroids based on meshes and
takes them as the insertion points to achieve primary point
growth. Although this algorithm helps us construct the ini-
tial dense point cloud, the result produced by this interpo-
lation is coarse and non-uniform since the meshes are cre-
ated from sparse and irregular points. Therefore, we further
introduce a mesh deformer that predicts the optimal topol-
ogy modification to progressively generate the point clouds
with meticulous structures and build uniform distributions.
As shown in Fig.1, the mesh deformer architecture signifi-
cantly improves uniformity and structure preservation.

In mesh deformation, we devise a Recurrent Feature Ag-
gregation (RFA) module to infer the feature variation of
each mesh node in latent space. RFA counts on a feature
memory mechanism to utilize the information of different
deformation for guiding future modification. With the spa-
tiotemporal information of multi-step revision, this unit al-
lows the model to prevent redundant deformation and better
preserve descriptive geometries. We further design a motion
estimation module that associates the latent features with
mesh deformation in Cartesian space. In this motion com-
ponent, a unit, called Gate-based Coordinate Reconstruc-
tion (GCR) is applied to determine the movable points and
recover their spatial locations. Finally, the cascaded mesh

deformation network is constructed by serially connecting
a sequence of the deformers.

To validate the proposed model, we conduct extensive
experiments on both the synthetic data and the point clouds
captured in the real world. For synthetic data, we compare
our framework with state-of-the-art upsampling approaches
on public datasets PU1K [27] and PU-GAN [12]. For as-
sessing the effectiveness of SPU-PMD in processing real
data, the KITTI [6] dataset is employed. All the quantitative
and qualitative experiments demonstrate that our method is
competitive in the point cloud upsampling task. The com-
prehensive ablation study is also presented to exploit the
effects of different components on the overall architecture.

2. Related Work
2.1. Point Cloud Learning

As a way to represent discrete data, point clouds are unper-
muted and irregular, making their processing difficult. Early
methods [16, 23, 24, 24, 32, 34, 37] often map the 3D shape
into multi-views or voxel grid. However, these conversions
are time-consuming and cannot preserve complete informa-
tion. To overcome these problems, PointNet [25] directly
extract the raw point clouds features by MLPs. Inspired by
this, variant MLP-based networks [22, 26, 35, 39, 45, 46]
are proposed to improve global feature aggregation.

Since the graph is a natural representation of point cloud
structure, graph-based learning has been introduced in this
domain. As a pioneering work, Simonovsky et al. [31]
proposed Edge-Conditioned Convolution (ECC) that con-
ditions the filter weights on edge labels. Similarly, several
studies [2, 36, 38] highlight aggregated local information
based on graphs. Different from spatial convolution, spec-
tral convolution associates the Laplacian method with graph
signals. RGCNN [33] defines the spectral convolution on a
graph by Chebyshev polynomial approximation and adapts
it to point cloud learning.

With the advancement of Attention methods, Li et
al. [14, 15] combined spectral GCN with attention mech-
anism in unsupervised point cloud learning. As another
attention-based model, GAPNet [1] integrates graph atten-
tion mechanism into MLPs to learn local geometric repre-
sentation. In addition, some studies represent point clouds
as neural fields [43], limiting their applicable scenarios.

2.2. Supervied Point Cloud Upsampling Methods

Upsampling point clouds in a supervised manner requires
paired dense point sets as the ground truth for training. As
an early work, PU-Net [41] first establishes the FE-EX-CR
structure, which lays the foundation for upsampling frame-
works. PU-GCN [27] introduces graph convolution to en-
code local features from the neighborhood and incorporates
it into the upsampling framework. PU-Transformer [29] is
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Figure 2. Illustration of the proposed SPU-PMD. The left part presents the overall architecture of SPU-PMD, and the right part indicates
the internal details of our deformer consisting of several essential modules.

the first model that applies Transformer in point cloud up-
sampling, which relies on a new multi-head self-attention
approach to enhance both point-wise and channel-wise re-
lations of the features. PC2-PU [20] considers the point
and patch correlations. By expanding the perception range,
this model makes the generated points closer to the un-
derlying surface. Based on FE-EX-CR architecture, some
models [4, 13, 40] use cascade structure to improve perfor-
mance. Different from these networks that have PU-Net-
like architectures, [12, 17] take GAN as the basic pipeline.
To achieve flexible upsampling, [10] interpolates the input
points and refines their positions in an iterative process.

2.3. Unsupervied Point Cloud Upsampling Methods

Because obtaining a large number of paired sparse and
dense point sets is expensive and tedious, some unsuper-
vised learning models have been proposed to avoid this bar-
rier. L2G-AE [18] builds an autoencoder to learn the local
and global features of point clouds through local-to-global
reconstruction and finally fuse the reconstruction results to
produce upsampled point clouds. This model is not specifi-
cally designed for point cloud upsampling, so its capability
in this task is limited. SAPCU [47] transforms point cloud
upsampling into finding the nearest projected seed points on
an implicit surface. However, the unexpected noise created
by this model makes it unavailable in practice. Afterward,
Liu et al. [19] proposed a self-supervised point cloud up-
sampling model, SPU-Net. This model uses sparse input as
the supervision and overlaps multiple reconstruction results
to obtain the final upsampled set like L2G-AE.

3. Methodology
In this work, we model the point cloud upsampling as in-
ferring dense sets from deformable meshes. Given a sparse
point cloud P = {pi}Ni=1, pi ∈ R3 as input, the proposed
model first generates a mesh M to present the topology of
the original shape and produces the initial upsampled set
through mesh interpolation. Then, it uses the deformers to
progressively revise M and densify the point cloud based
on the well-modified mesh. The pipeline of the SPU-PMD
model is shown in Fig.2, consisting of two deformers.

To incorporate point upsampling with mesh revision,
each deformer includes two stages of deformation. In de-
formation A, the feature of each point is first extracted by
an encoder, followed by an RFA that fuses the information
from different deformation stages to guide the movements
of mesh nodes. Subsequently, the interpolator expands the
features to correspond with the point clouds upsampled Pup

by mesh interpolation. After estimating the moving nodes,
the motion unit provides the new mesh M1. While defor-
mation A allows the model to expand features and perform
mesh reform, some unexpected node connections lead to
small holes and non-uniform point insertions. Hence, de-
formation B is applied to refine the mesh and upsampled
point distribution gives M2 and P ′

up. This refinement en-
ables our model to better recover precious details and close
off surface holes. In the following, we discuss the details of
the mesh interpolation and each module in the deformer.

3.1. Mesh interpolation

The mesh interpolation aims at increasing the point num-
ber on the basis of the initial structure. Specifically, we first
calculate the average distance d between each point p and
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Figure 3. Internal modules of deformer. In this figure, we present the details of different modules in the proposed deformer including the
encoder, interpolator, recurrent feature aggregation (RFA), and motion estimation unit.

its nearest neighbor p′, and use d as the radius R of the
ball query 𭟋 to construct meshes M ∈ RK×3×3. After
this, we calculate the centroid pc of each mesh and insert
it into the original point cloud Pin for coarse densification.
This mesh-based interpolation is repeated until the quan-
tity of points reaches or exceeds the expected number rN ,
where r is the upsampling ratio. Finally, we carry out the
farthest point sampling to downsample the point cloud to
Pup={pi}rNi=1, denoted as:

Pup = FPS(Φ(Pin)) (1)

where Φ presents the interpolation. The detailed algorithm
of our mesh interpolation is presented in Algorithm.1.

3.2. Mesh deformation

3.2.1 Encoder

For coding the input point cloud Pin into high-dimensional
features, we design a transformer-based encoder. As shown
in Fig.3, MLPs and max pooling are mixed to extract in-
dividual point and global features. After feature concate-
nation, an additional MLP block is employed for feature fu-
sion. At the end of the encoder, we adopt Point Transformer
[46] to refine the local shape context and provide the feature
F = {fi}Ni=1, fi ∈ RC for the following RFA. This design
facilitates the encoder to capture multiple-scale information
from the point cloud.

3.2.2 RFA

The main challenge of mesh deformation is effectively
merging the spatial-temporal deforming information to
guide the mesh change. To address this issue, we propose a
Recurrent Feature Aggregation (RFA) module that can rec-
oncile historical and current information to dominate the
offset of each mesh node and prevent contradictory motion

Algorithm 1: Mesh Interpolation.

Input: a sparse point set: Pin ∈ RN×3

upsampling rate: r ∈ R
Output: a dense point set: Pup ∈ RrN×3

1 Pup ← Pin ; Nup ← N
2 Padd ← ∅
3 while Nup < rN do
4 d =

∑N
i=1 ∥pi − p′i∥2 / N ;

5 R = [ d, 1.3× d ] ;
6 M = 𭟋 ( Pin, R ) ; // M∈ RK×3×3

7 for i ∈ {1, 2, · · · ,K} do
8 x =

∑2
j=0 M [ i, j, 0 ] / 3 ;

9 y =
∑2

j=0 M [ i, j, 1 ] / 3 ;
10 z =

∑2
j=0 M [ i, j, 2 ] / 3 ;

11 pic = [ x, y, z ] ;
12 end
13 Obtain: Padd =

{
p0c , p

1
c , · · · , pKc

}
14 Pup = Pup ∪ Padd // Pup ∈ RNup×3

15 end
16 Pup = FPS( Pup ) // Pup ∈ RrN×3

decisions. The internal architecture of RFA is illustrated in
the right part of Fig.3. At first, RFA combines the current
information Fk

l (feature of l-th level at k-th stage) with the
historical memory featureHk−1, which is defined as:

Vk
1 = Concat(Fk

1 ,Hk−1) (2)

Vk
2 = Concat(r ⊙Fk

1 ,Hk−1) (3)

where Concat denotes concatenation, and r is defined as:

r = σ(h(Vk
1 ,Wr,br)) (4)
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In this equation, σ is the sigmoid function and h presents
the MLP. Then, we compute the current memory featureHk

in accordance with the input Fk
1 and previous information

Hk−1as:
Hk = φ(h(Vk

2 ,W,b)) (5)

where φ is tanh function. By fusing the current memory
feature with Vk

1 updated from F k
l and Hk−1, we get the

final output of RFA:

Fk
l+1 = z ⊙Hk + (1− z)⊙Fk

l (6)

given that
z = σ(h(Vk

1 ,Wz,bz)) (7)

As a variant of Gate Recurrent Unit (GRU), RFA computes
the gates z and r to embed the historical information into the
current feature. Unlike GRU, RFA utilizes the reset gate r
to manage the input Fl instead of the historical information
Hk−1 since maintaining the complete historical information
in memory feature estimation enables the module to better
supervise mesh deformation and prevent contradictory mo-
tion.

3.2.3 Interpolator

To incorporate the point clouds upsampled by mesh inter-
polation with fitting features, we propose an interpolator
(as shown in the upper part of Fig.3). Unlike traditional
FX which directly expands the features in latent space, our
unit associates feature interpolation with the spatial neigh-
borhood of points. In particular, the feature corresponding
to the insertion point generated by mesh interpolation is es-
timated from the nearest neighboring point’s feature. Our
interpolation can be expressed as:

Fk
I = {fpi | fpi ∈ Npi(Fk

l−1), pi ∈ Pup}rNi=1 (8)

where Fk
I is the new features produced by the interpola-

tor. Meanwhile, Fk
l−1 = {fpi

}Ni=1. Note that Npi
presents

searching for the nearest neighbor features of pi in the fea-
ture space.

3.2.4 Motion estimation

After corresponding the features with upsampled points, we
use a motion estimation unit with a gate mechanism called
GCR to realize the mesh deformation by moving the mesh
nodes. This module employs two branches to separately
process the input features. In the lower branch, we compute
a soft gate to decide whether the point needs to be moved as
follows:

G = γ(h(Fk
I ,Wg,bg)) (9)

where γ is sign function. Parallelly, the upper branch re-
gresses the input features into spatial offset:

∆Pup = φ(h(Fk
l+1,Wo,bo)) (10)

Relying on the estimated gate and offset a new point cloud
is obtained:

P ′
up = Pup + τ · (G ⊙∆Pup) (11)

where τ is the moving radius set for controlling the move-
ment range of mesh nodes. The detailed design of the mo-
tion estimation module is indicated in the lower left side of
Fig.3.

3.3. Loss

To train the proposed model, we apply the Chamfer Dis-
tance (CD) and uniform losses. The CD loss evaluates the
difference between point sets by calculating the average
shortest distance. It forces the upsampled point clouds to
maintain the original geometry and is defined as:

LCD (P,Q) =
1

|P|
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥p− q∥22

(12)
Where Q and P represent the upsampled point cloud and
the corresponding ground truth. Due to the mesh-based
method, the upsampled points are often located in the neigh-
borhood of initial mesh nodes, which allows us to directly
use the initial input as P .

The uniform loss is applied to measure the uniformity of
the upsampled result. It calculates the distance between the
points in each patch:

Lu(Q) =

M∑
j=1

 (|Sj − n̂|)2

n̂
×

|Sj |∑
j=1

(
dj,k − d̂

)2

d̂

 (13)

where M is the sample number, and Sj is the subset ob-
tained by performing a spherical query with radius rd on the
M sample points. Additionally, n̂ = N × r2d is the number
of expected points in Sj . dj,k is the distance to the nearest

neighbor of the kth point in Sj , and d̂ =

√
2πr2d

|Sj |
√
3

is the

corresponding expected distance. The first part of this for-
mula accounts for the nonlocal uniformity, and the second
part measures the local uniformity.

To preserve the original structure, we take both the CD
and uniformity evaluations as the loss in deformation A:

La = LCD + αLu (14)

where α is a hyperparameter used to weight the uniform
loss. Different from this, only uniformity loss is applied
in deformation B for further constraining the point distribu-
tion. Overall, the total training loss function is defined as:

Ltotal = La(P1,P) + Lu(P2)

+ La(P3,P) + Lu(P4)
(15)

Among them, P1, P2, P3, and P4 represent the point clouds
updated at different stages.
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Figure 4. Visualization comparison with other methods. From these results, we can see that our model outperforms other methods in
uniform generation and meticulous structure preservation.

4. Experiments

In this section, we compare SPU-PMD with state-of-the-
art (SoTA) supervised and unsupervised methods to validate
the effectiveness of our method. All quantitative and qual-
itative experiments are conducted on the synthetic (PU1K
[27] and PU-GAN [12]). The real scanned KITTI [6] is ap-
plied to analyze the performance of SPU-PMD in practice.
We also provide deformation analysis and various ablation
studies to exploit the mesh deformation property of SPU-
PMD and the contributions of different modules.
Datasets. We evaluate different upsampling techniques on
PU1K [27] and PU-GAN [12]. PU1K contains 1147 3D
models, of which 1020 are used for training and 127 are for
testing. In comparison with PU-GAN, PU1K is more chal-
lenging as it has a larger amount of data and more diverse
models. The PU-GAN dataset contains 147 objects that 120
are used in training. Besides the synthetic datasets, the Li-
DAR data from KITTI [6] is applied for further evaluation.
Experimental Setting. We train the proposed network us-
ing an Aadm optimizer with a learning rate of 0.00001. The
max training epoch of our model is 100 and the batch size
we employed is 32. The hyperparameter α in Eq.14 is set
as 0.1. For a comprehensive comparison, all models are
retrained following their respective paper settings. This en-
ables us to standardize the indicators across both datasets.
The GPUs utilized in this work are two NVIDIA 2080TI.
Evaluation Metrics. Following recent point cloud up-
sampling works [10, 21, 27], we choose Chamfer distance

(CD), Hausdorff distance (HD), and point-to-surface dis-
tance (P2F) as the evaluation metrics. In the quantitative
evaluation tables, a smaller metric means better results.
Meanwhile, the bolded values represent the optimal results,
and the underlined ones are suboptimal.

4.1. Comparison with SoTA methods

Evaluation on PU1K Dataset. To fairly compare SPU-
PMD with SoTA approaches, we follow the setting of PU-
CRN [4] and experiment on the PU1K point clouds [27]
with different densities: sparse, medium, and dense (As
shown in Table.1). These quantitative results demonstrate
that our model significantly surpasses both compared super-
vised (PU-Net [41], MPU [40], PU-GAN [12], Dis-PU [13],
PU-GCN [27], and PU-CRN [4]) and unsupervised models
(SAPCU [47] and SPU-Net [19]) in HD and P2F metrics.
Only PU-CRN slightly outpaces our model in CD results.

In Fig. 4, we present the visual results produced by dif-
ferent upsampling methods to illustrate their performance in
uniform generation and detail preservation. To the ring (the
upper row), most SoTA methods provide results with non-
uniform distributions and surficial fluctuations. By contrast,
SPU-PMD generates a much smoother and more uniform
point cloud. From the headphone results (the lower row),
we can discern that only SPU-PMD maintains a meticulous
structure close to the ground truth. More visual comparison
is presented in the supplementary material.

Evaluation on PU-GAN Dataset. To assess the gener-
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Figure 5. Visualization on real-scanned scene. Our model achieves competitive results especially in preserving the initial structure details.

Table 1. Quantitative results on the PU1K dataset

Methods GT
Sparse (512) input Medium (1,024) input Dense (2,048) input

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PU-Net [41] ✔ 2.999 36.129 11.077 1.899 24.754 7.321 1.155 15.170 4.847
MPU [40] ✔ 2.803 30.843 8.334 1.679 21.119 5.450 0.935 13.327 3.560

PU-GAN [12] ✔ 1.991 22.642 6.979 1.132 14.809 4.530 0.707 10.411 2.963
Dis-PU [13] ✔ 3.616 37.134 9.911 2.265 24.455 6.120 1.380 16.524 3.880

PU-GCN [27] ✔ 1.817 19.153 6.104 1.035 12.032 3.946 0.585 7.577 2.504
PU-CRN [4] ✔ 1.611 18.835 5.161 0.861 12.214 3.246 0.499 8.068 2.027

SAPCU [47] ✘ 2.973 30.237 9.030 1.754 21.292 4.712 1.130 14.903 2.462
SPU-Net [19] ✘ 2.863 63.031 10.262 1.338 37.368 6.444 0.955 21.058 4.083

Ours ✘ 1.690 13.568 4.082 0.892 8.252 2.765 0.544 4.926 1.861

alization of the proposed model, we directly evaluate the
model trained with PU1K data on the PU-GAN dataset [12].
From Table.2, we can see that SPU-PMD outperforms all
the other methods in HD and P2F assessments. The CD re-
sults of our model are only worse than PU-CRN which is a
supervised network. This additional test demonstrates that
our network can be well generalized to unseen data.

Table 2. Quantitative results on the PU-GAN dataset

Methods GT
Sparse (512) input Medium (1,024) input Dense (2,048) input

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PU-Net [41] ✔ 2.619 33.877 20.075 1.309 19.138 11.970 0.817 11.150 7.838
MPU [40] ✔ 2.268 24.651 13.522 1.236 16.116 8.449 0.713 10.614 5.381

PU-GAN [12] ✔ 1.478 16.807 10.859 0.768 12.250 6.593 0.469 8.220 4.047
PU-GCN [27] ✔ 1.504 18.105 10.414 0.774 9.594 6.197 0.401 5.630 3.650
PU-CRN [4] ✔ 1.167 19.238 7.635 0.537 8.819 4.165 0.289 4.175 2.369

SAPCU [47] ✘ 2.490 28.215 16.236 1.183 19.986 7.670 0.443 10.397 3.446
SPU-Net [19] ✘ 2.799 69.416 17.895 1.104 39.023 10.289 0.509 23.497 6.106

Ours(PUGAN) ✘ 1.186 10.603 6.554 0.602 5.762 4.040 0.314 3.320 2.441
Ours(PU1K) ✘ 1.226 10.626 6.675 0.612 5.724 4.124 0.318 3.317 2.508

Evaluation on KITTI Dataset. Apart from synthetic data,
we compare our unsupervised method with SoTA using the
real-world KITTI dataset [6]. In particular, the supervised

Table 3. Analysis of Every Stage.

Stage CD ↓
(10−3)

HD ↓
(10−3)

P2F avg ↓
(10−3)

P2F std ↓
(10−3)

Deformer 1-A 1.586 11.811 1.503 2.903
Deformer 1-B 1.279 9.776 1.672 2.940
Deformer 2-A 0.551 4.950 1.828 3.204
Deformer 2-B 0.544 4.926 1.861 3.239

models are trained on the PU1K dataset since there is no
paired ground truth for supervision. The visual results gen-
erated are presented in Fig. 5, which exhibits that our model
exceeds others in conserving the initial structures such as
the fence and car emphasized by the red and blue frames.

4.2. Mesh deformation analysis

To exploit the property of mesh deformation, we visual-
ize the mesh changing in different deformation steps in
Fig. 6. According to these visual results, the meshes gradu-
ally become more compact and uniform, which is consistent
with the expectation. With the mesh deforming, the holes
and surface fluctuations are disposed of, resulting in much
smoother objects with more precise details.

We compare the CD, HD, P2F (avg), and P2F (std) met-
rics estimated from the point clouds generated in different
deformation steps to further evaluate the effect of each de-
formation. From Table. 3, both CD and HD results are
significantly improved by the mesh deformation, meaning
this approach effectively rectifies the point distribution. Be-
cause the insertion point locations are determined by the ap-
proximated surface mesh, P2F metrics increase in the sec-
ond deformer. Nevertheless, our model provides the best
results in P2F in comparison with other methods.

Fig. 7 shows the morphing of the mesh nodes. To clearly
show the node movements, we use different colors to rep-
resent the moving magnitude of mesh nodes. For instance,
purple indicates a small motion range and the lighter colors
mean apparent movements. Like the mesh analysis, the de-
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Figure 6. Mesh deformation analysis.

Figure 7. Visualization of node motion.

formers gradually improve the distribution and compactness
of the upsampled points by revising the regional topology
based on meshes. More experimental results of deforma-
tion analysis are discussed in the supplementary material.

4.3. Ablation Study

We perform the ablation study on the PU1K dataset to eval-
uate the contributions of different components.
Network architecture. In rows 2-4 of Table. 4, we evaluate
how the performance varies with different network config-
urations. At first, RFA is removed from our network. With-
out this module, all quantitative metrics increase obviously.
Then, we replace the RFA with GRU, which provides better
results than the network without RFA. To assess the con-
tribution of GCR in the motion estimation unit, we remove
it and only retain the coordinate regression branch to pre-
dict the node movement. This study indicates that all the
proposed modules are beneficial to SPU-PMD.
Interpolation. This study is conducted to explore the pre-
interpolation required in our framework. We employ two

Table 4. Ablation Study.

Methods
Sparse (512) input Medium (1,024) input Dense (2,048) input

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

w/o RFA 1.722 13.957 4.179 0.894 8.343 2.844 0.560 5.074 1.909
GRU 1.711 13.687 4.106 0.889 8.288 2.789 0.554 5.024 1.875

w/o GCR 1.716 13.845 4.252 0.887 8.210 2.889 0.553 4.945 1.962

LI 11.228 63.876 0.473 11.616 73.153 0.352 12.994 81.709 0.259
PD 3.162 17.502 0.508 1.903 11.869 0.367 1.401 8.507 0.269

Lcd + Lu 1.965 15.054 3.767 1.060 9.125 2.571 0.657 5.476 1.733
Lcd 2.000 15.273 3.734 1.085 9.194 2.558 0.695 5.723 1.723

baseline 1.690 13.568 4.082 0.892 8.252 2.765 0.544 4.926 1.861

interpolation methods: linear interpolation (LI) and point
duplication (PD) to coarsely upsample the point cloud. In
this experiment, we respectively integrate these two interpo-
lation approaches with the learnable deformers. According
to the results in rows 5 and 6 in Table. 4, none of them can
work well as mesh interpolation in our framework. Except
for P2F, all the other metrics are negatively affected. Un-
der our analysis, LI and PD provide the results with lower
P2F values on account that they are performed on the same
planes, reducing the distances from individual points to the
underlying surface.
Loss functions. We examine the performance of different
loss combinations. To compare with the baseline, we con-
duct two separate comparative experiments: (1) La is used
in each stage; (2) only Lcd is applied. It can be observed
from rows 7 and 8 of Table. 4 that adding Lu is useful in
optimizing the model. Among the variations, equipping La

with deformation A andLu with deformation B (the loss ap-
plied in the baseline) provides the best results in both met-
rics. This demonstrates that constraining the uniformity in
deformation A is more effective.

5. Conclusion

In this paper, we propose a novel self-supervised point
cloud upsampling model, SPU-PMD, which utilizes the
topology presented by mesh to guide the point cloud upsam-
pling. Different from traditional FE-FX-CR architecture,
this network locates the upsampled points through progres-
sive mesh deformation. Relying on the proposed deformer,
this new upsampling mechanism allows SPU-PMD to ame-
liorate uniformity, and recover rich structural details as well.
We present comprehensive experiments to demonstrate the
effectiveness of our model in the upsampling task. In com-
parison with SoTA techniques, SPU-PMD significantly out-
performs them in most evaluation metrics. Even though
some compared methods are supervised, our model is su-
perior to them in uniform generation and structure preser-
vation.
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