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Abstract

Model calibration, measuring the alignment between the
prediction accuracy and model confidence, is an important
metric reflecting model trustworthiness. Existing dense bi-
nary classification methods, without proper regularisation
of model confidence, are prone to being over-confident. To
calibrate Deep Neural Networks (DNNs), we propose a
Self-Calibrating Vicinal Risk Minimisation (SCVRM) that
explores the vicinity space of labeled data, where vicinal
images that are farther away from labeled images adopt
the groundtruth label with decreasing label confidence. We
prove that in the logistic regression problem, SCVRM can
be seen as a Vicinal Risk Minimisation plus a regularisa-
tion term that penalises the over-confident predictions. In
practical implementation, SCVRM is approximated using
Monte Carlo sampling that samples additional augmented
training images and labels from the vicinal distributions.
Experimental results demonstrate that SCVRM can signifi-
cantly enhance model calibration for different dense classi-
fication tasks on both in-distribution and out-of-distribution
data. Code is available at https://github.com/
Carlisle-Liu/SCVRM .

1. Introduction
Binary dense classification tasks [10, 54, 64] have ad-
vanced significantly since the debut of Deep Neural Net-
works (DNNs) associated with complex network architec-
tures and large numbers of trainable parameters. Increas-
ing model complexity has been shown to negatively impact
model calibration [14] which has remained under investi-
gated in the binary dense classification [29–31]. Miscal-
ibration, a mis-alignment between model confidence and
prediction accuracy [38], is an undesirable qualify that hin-
ders the deployment of DNNs, especially in safety critical
applications. In this work, we study the model calibration
for dense binary classification models.

The most commonly observed mis-calibration problem
is over-confidence, where the model confidence is signifi-

(x1, y1) (x2, y2)

(x3, y3) (x4, y4)

(x1, y1) (x2, y2)

(x3, y3)

(x4, y4)

Mixup

SCVRM

(x
4,

 y
4)

(x
2,

 y
2)

Inconsistent
label confidence
across pixels

Figure 1. An illustration of Mixup [69] and our proposed SCVRM.
Circles with solid boundary {(xi, yi)}4i=1 are labeled training im-
ages. Vicinal images of Mixup (circles with dashed boundary) are
only distributed along the vectors connecting the labeled images.
On the other hand, in SCVRM, the label of vicinal image adopts
the groundtruth category (shown in different colours) of the clos-
est labeled image, but with label confidence (shown in colour in-
tensity) reduced monotonically with increasing Euclidean distance
between vicinal and labeled images. The example sample

⊗
, with

Mixup/SCVRM vicinal image and augmented label shown on the
right, is selected at the same relative position to (x4, y4).

cantly higher than the accuracy of its predictions on a cohort
of samples [14]. Increasing research interest has been dedi-
cated to study model calibration methods that regularise the
probability associated with the prediction to be meaning-
ful in reflecting the chance of the prediction being correct.
The existing methods can be roughly categorised into three
groups: (i) training objective based [2, 8, 13, 21, 23, 38, 45];
(ii) post-processing based [14, 19, 47]; and (iii) label aug-
mentation based [31, 39, 43]. The first two categories focus
on penalising over-confident predictions while the third cat-
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egory directly moderates the confidence of training labels
for the DNN models to train on. They do not explore the
image space in improving the model calibration.

Vicinal Risk Minimisation (VRM) extends Empirical
Risk Minimisation (ERM) by introducing a vicinal distri-
bution around each labeled data in the image space [3, 52].
Mixup [69], a variant of VRM, assumes that vicinal im-
ages are only distributed along the vectors connecting the
labeled data (pair of image and label) pairs. In addition, in-
stead of letting vicinal images adopt the hard groundtruth
label of the nearest labeled image, Mixup assigns smoothed
versions of nearest groundtruth labels to the vicinal images.
In practice, it samples augmented data through the con-
vex combination of labeled data pairs: (x̃ = λxi + (1 −
λ)xi, ỹ = λyi+(1−λ)yj), where the combination factor is
sampled from a beta distribution: λ ∈ Beta(α, α). Follow-
up works [69, 73] show that Mixup is effective in improving
model calibration in the image classification task.

We propose a Self-Calibrating Vicinal Risk Minimisa-
tion (SCVRM) to calibrate the DNNs. Different from
Mixup [69], the vicinal distribution of SCVRM can use any
distribution that sufficiently covers the vicinity space with
reasonable probability density. We consider the case where
the vicinal distribution is assumed to be Gaussian with stan-
dard deviation being a random variable following a uniform
distribution. In addition, the labels assigned to the vicinal
images are softened versions of the groundtruth label as-
sociated with the labeled image at the distribution centre,
where the strength of softening is proportional to the L2
distance between the vicinal and labeled images. As shown
in Fig. 1, compared with Mixup [69], our proposed SCVRM
has the following advantages: (1) the vicinity image space
is not restricted by the pair-wise spatial relations of training
images; (2) consistent label confidence across the pixels in
the augmented label for dense prediction; and (3) defines
confidence boundaries beyond the training distribution to
better handle out-of-distribution samples.

Given a labeled training image set, SCVRM can be un-
derstood by the following principals: (1) the human visual
system is invariant to small random image changes [12] so
that images undergoing up to a certain level of transforma-
tion should remain correctly classified [3, 20, 52]. This is
also in line with adversarial robustness approaches that re-
quire images under small perturbations to maintain their
classifications [7]. However, they are no longer labeled
training data, so their label confidence should be slightly
reduced. (2) it is understood from information theory [16]
that we have no information at extreme distance where the
label should assume a uniform categorical distribution with
maximum entropy. Following the principal of VRM, we
propose this transition should be accomplished by a smooth
vicinal transition from the exact label for the labeled images
to a uniform categorical distribution at large distance from

the labeled data. (See Fig. 2 for examples.)
We summarise our contributions as: (1) propose a Self-

Calibrating Vicinal Risk Minimisation (SCVRM), where
the labels associated with vicinal images have reduced con-
fidence with increasing Euclidean distance between vicinal
and labelled images, to calibrate DNN models for the dense
binary classification task; (2) we approximate the vicinal
distribution with a Gaussian distribution whose standard
deviation is a random variable following a uniform distri-
bution, denoted as SCVRM-G; (3) we supply an example
showing that SCVRM is equivalent to VRM and a regu-
larisation term on prediction confidence under a simplified
model; (4) We realise SCVRM as a data augmentation tech-
nique, where augmented data are sampled from the vicinal
distributions with Monte Carlo methods. Finally, we show
state-of-the-art calibration results for salient object detec-
tion (main paper); and camouflage object and smoke detec-
tion, and semantic segmentation (Supp. 12 and Supp. 13).

2. Related Works
Model Calibration: aims to minimise the distributional
gap between model confidence and prediction accuracy.
Existing methods propose to align confidence with accu-
racy through (i) post-processing techniques, e.g., Tempera-
ture Scaling (TS) [14, 19], Platt Scaling [41, 47], Dirichlet
Scaling [22], Bayesian Binning [40, 67], Isotropic Regres-
sion [68], and Mix-and-Match [70]; and (ii) objective func-
tions including Brier Loss [2, 8], Confidence Penalty [45],
Maximum Mean Calibration Error (MMCE) [24], Soft Cali-
bration Objective [21] and Focal Loss [13, 38]. These meth-
ods emphasise on suppressing over-confident predictions to
alleviate the mis-calibration issue.

Research efforts have also been dedicated to investigate
the effect of data augmentation methods on the calibration
degree. Label augmentation methods align the confidence
distribution of the target label, to which the model predic-
tions converge through optimisation, with the prediction ac-
curacy distribution. Label Smoothing (LS) [39, 43] directly
softens the target label probability, preventing the model
from producing over-confident predictions. [31] presents an
alternative label augmentation solution that stochastically
perturbs the groundtruth label and aligns the confidence dis-
tribution of expected label with the prediction accuracy dis-
tribution. On the other hand, Mixup [69], which simultane-
ously augments both the input image and its corresponding
groundtruth label conditioned on the relative position be-
tween training data, has also been demonstrated to improve
the model calibration degree [51].
Vicinal Risk Minimisation: is proposed by [3, 52] to ex-
plore the vicinity of labeled data in hope of achieving a bet-
ter approximation of the expected risk. The vicinity space
is approximated with a vicinal distribution that can be ei-
ther estimated with sufficient unlabeled data, or otherwise
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assumed to follow certain prior distribution, e.g. Gaussian
distribution [3, 52]. Mixup [69] is an extension of VRM that
restricts the vicinal data to be distributed along the vectors
connecting the data pairs through convex combination. Fur-
ther, Mixup applies the convex combination in both image
and label spaces, resulting in the vicinal samples having a
softened version of the groundtruth label associated with the
nearest labeled image. VRM has also been applied in ran-
domised smoothing [7, 25, 66] to achieve certified adversar-
ial robustness, where a Gaussian kernel with fixed variance
is employed to approximate the vicinal distribution.
Salient Object Detection: is a dense binary classifica-
tion task. Conventional methods primarily depend on hard-
crafted features to identify salient objects [5, 17, 18, 44].
Early DNN based approaches employ learned features of
local regions, e.g., super-pixel, object proposal and image
patch, which need to be further sequentially processed [15,
26, 53]. The advent of Fully Convolutional Network (FCN)
shifted the research focus onto the network architecture de-
sign for better pixel-wise predictions. Multi-level feature
aggregation takes full advantage of spatial cues imbued in
low-level features and semantic information embodied in
high-level features [42, 72, 78]. Further, attention mech-
anisms, including spatial attention, channel attention, etc.,
have been leveraged to explore intra- and inter-feature map
correlations [33, 46, 77], with some works directly adopting
transformer backbones with self-attention [50, 71]. A dif-
ferent direction investigates auxiliary cues, e.g. boundary
and edge [59, 62], fixation [57].

3. Preliminary

3.1. Settings and Notations

This papers deals primarily with dense binary classifica-
tion over the image space Rd with the corresponding la-
bel set of Y ∈ {0, 1}d, where d is the dimension of im-
age/label space, “0” and “1” represent the two categories.
Ys ∈ [0, 1]d denotes a soft label space, clearly we have
Y ⊂ Ys. Let D = {(xi, yi)}Ni=1 be a finite dataset with
image and label pairs (xi, yi) sampled i.i.d. from the joint
distribution p(x, y) defined on X × Y . The task is to ob-
tain an optimal classifier f∗ ∈ H in the Hypothesis space
H ⊂ {f : X → Y} that maximises the prediction accuracy
and model calibration performance. The dimensionality or
spatial index is omitted for simplicity wherever it is clear.

The model calibration degree over the joint distribu-
tion p(x, y) can be evaluated in terms of Expected Cal-
ibration Error (ECE) [14, 23]. Let S(x) ∈ (0, 1) be
the Sigmoid-activation value before classification: f(x) =
1(S(x) > 0.5), where 1(·) is an indicator function. The
prediction confidence c and accuracy a can be defined as:
c = |S(x) − 0.5| + 0.5, and a = 1(f(x) = y) respec-
tively. We further use pf,D(c, a) to denote the joint dis-

tribution of prediction confidence and prediction accuracy
of model, f(·), on dataset, D. Then, ECE can be de-
fined as: ECE(pf,D) = Epf,D(c)

[
|Epf,D(a|c)[a]− c|

]
, where

Pf,D(c) is a marginal distribution on prediction confidence,
and EPθ,D(a|c) is a conditional distribution of prediction
accuracy. For a well calibrated model, we should have:
pf,D(f(x)i = yi|c = r) = r, ∀r ∈ [0, 1].

3.2. Vicinal Risk Minimisation

We may formulate a learning problem as searching for
model f ∈ H that minimises expected risk R(f) over loss
function ℓ(f(x), y), which can be written as:

R(f) =

∫
X×Y

ℓ(f(x), y) · p(x, y)dxdy. (1)

Given a dataset D = {(xi, yi)}Ni , the Empirical Risk
Minimisation (ERM) approach approximates R(f) by:

RE(f) =

∫
X×Y

ℓ(f(x), y) · 1

N
δxi,yi(x, y)dxdy

=
1

N

N∑
i=1

ℓ(f(xi), yi),

(2)

where δxi,yi
(x, y) is the Dirac delta distribution over (x, y)

that can only adopts the value (xi, yi).
Based on ERM, the Vicinal Risk Minimisation (VRM)

approach [3, 52] approximates R(f) by

RV (f) =
1

N

N∑
i=1

∫
ℓ(f(x̃i), yi)p(x̃i|xi)dx̃, (3)

where p(x̃i|xi) denotes the Probability Density Function
(PDF) of vicinal images x̃i given labeled image xi.

In practice, VRM proposes to use isotropic Gaussian dis-
tributions as a choice of p(x̃i|xi). Specifically, VRM de-
fines x̃i = xi + ϵ, ϵ ∼ Nd(0, σ

2Id), where Id is a d × d
identity matrix and the variance σ2 is a fixed hyperparame-
ter. The corresponding RV (f) can then be written as:

RV−G(f ;σ) =
1

N

N∑
i=1

∫
ℓ(f(xi + ϵ), yi)p(ϵ)dϵ, (4)

where p(ϵ) = 1√
(2πσ2)d

exp
(
−∥ϵ∥2

2

2σ2

)
is the PDF of the ad-

ditive Gaussian noise ϵ.

4. Method
4.1. Self-Calibrating Vicinal Risk Minimisation

Our method is based on the principals that samples in the
proximity of labeled data should inherit their groundtruth
labels with reduced label confidence, while samples in the
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Figure 2. Examples of vicinal images and assigned labels under various standard deviation σ values. σ = 0 denotes the labeled data (x, y).
Vicinal images are generated via adding Gaussian noise ϵ ∼ N (0, σ2Id) to the labeled image as defined in Eq. 7. Their assigned labels,
being the softer versions of the groundtruth label y, are computed with the Eq. 8 and Eq. 9, whose plot are shown on the right.

extreme distance should have a near uniform categorical
distribution for their labels. As an extension of VRM, we
reduce label confidence for vicinal images based on the L2-
distance between vicinal and labeled images. Extending
the definition of VRM [3, 52], we propose a novel Self-
Calibrating Vicinal Risk Minimisation (SCVRM):

Definition 1. (SCVR) Let D = {(xi, yi)}Ni=1. For f ∈ H
and ℓ : f(X ) × Ys → R, Self-Calibrating Vicinal Risk is
defined as:

RSC(f) =
1

N

N∑
i=1

∫
ℓ
(
f(x̃i), g(yi, ∥x̃i − xi∥2)

)
×

p(x̃i|xi)dx̃i,

(5)

where g : Y ×R+ → Ys.

The difference between VRM (Eq. 3) and SCVRM lies
in the labels associated with the vicinal images. VRM as-
signs the exact groundtruth label yi paired with labeled im-
age xi to all its vicinal images x̃i, whereas we use soft-
ened versions of groundtruth label g(yi, ∥x̃i−xi∥2), whose
label confidence reduces with increases in the L2-distance
between the vicinal and labeled images. Following VRM to
represent the distribution of vicinal images conditioned on
the labeled image p(x̃|x) with an isotropic Gaussian distri-
bution with a fixed variance, our SCVRM can be written as:

RSC−V (f) =
1

N

N∑
i

∫
ℓ
(
f(xi + ϵ), g(yi; ∥ϵ∥2)

)
p(ϵ)dϵ,

(6)
where L2-norm of Gaussian noise equals the L2-distance
between vicinal and labeled images ∥ϵ∥2 = ∥x̃i − xi∥2.

We observe that the isotropic Gaussian noise ϵ ∼
Nd(0, σ

2Id) used in the VRM may face the problem of
a bubbling effect, that results in the probability density of
an isotropic Gaussian Nd(µ, σ

2Id) concentrating on a thin
spherical shell centred on µ ∈ Rd with radius σ

√
d in high

dimensional space d ≫ 1 [1, 36]. Following this obser-
vation: (a) we propose to let the scale of the standard de-
viation of the isotropic Gaussian distribution be a random

variable following a uniform distribution σ ∼ U(0, γ] to
prevent vicinal images x̃ from being distributed only near
a hypersphere centring on xi; and (b) we approximate the
L2-distance between the vicinal and labeled images with a
dummy variable ∥ϵ̃∥2 ≈ ∥ϵ∥2, which is set to ∥ϵ̃∥2 = σ

√
d

(See Supp. 8.1 for experimental justifications). Our imple-
mentation of SCVRM can then be defined as:

RSC−G(f) =
1

N

N∑
i

∫
ℓ
(
f(xi + ϵ), g(yi; ∥ϵ̃∥2)

)
×

p(ϵ)p(σ)dϵdσ,

(7)

where p(σ) = 1/γ is the PDF of the standard deviation σ.
There are many choices for the projection function from

hard label space to soft label space. The most straight-
forward solution is to apply the label smoothing [39] func-
tion: LS(y, β) = (1 − β) + β

K , β ∈ [0, 1] where K = 2
denotes the number of classes in a binary task. Then our
projection function can be defined as:

gLS(y;φ(∥ϵ̃∥2)) =
(
1− φ(∥ϵ̃∥2)

)
y +

φ(∥ϵ̃∥2)
2

, (8)

where we define φ(·) : R+
0 → [0, 1) to be a Gaussian func-

tion φG(·; ·), that is formulated as:

φG(∥ϵ̃∥2; η) = 1− exp

(
−∥ϵ̃∥2

η

)
, (9)

where η is a hyperparameter that scales the value of ∥ϵ̃∥2,
and we empirically set η =

√
d. Fig. 2 illustrates the re-

sultant groundtruth map assigned to vicinal images sam-
pled under various standard deviations. Please note that
the function φ can be an arbitrary function that satisfies:
φ : R+

0 → [0, 1). We investigate other options in Supp. 8.2.

4.2. Connection between SCVRM and VRM

We analyse the relationship between VRM and our pro-
posed SCVRM in a simple setting, where we find mathe-
matical connections between the two approaches. Specif-
ically, we consider the case of binary classification tasks,
where our RSC−G(f) in Eq. 7 adopts a single-layer logistic
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regression model and the binary cross entropy loss. In this
setting, we prove that if g(yi, ∥ϵ̃∥2) with ∥ϵ̃∥2 = σ

√
d is

a label smoothing function, RSC−G(f) can be written as a
combination of the Vicinal Risk RV−G(f ;σ) in Eq. 4 and a
regularization term that penalises overconfident predictions
of the model f (See proof in Supp. 7.1).

Example 1. In RSC−G(f) defined in Eq. 7, suppose:
• Data: {(xi, yi)}Ni=1 with xi ∈ Rd and yi ∈ {0, 1},
• Model: f(x) = 1/(1 + e−wT x) with w ∈ Rd,
• Loss: ℓ(f(x), y) = −y log f(x)− (1− y) log(1− f(x)),
• g(y, ∥ϵ̃∥2) = (1− 2σ)y+ σ, σ ∼ U(0, γ] and γ ∈ (0, 1

2 ].
then we have:

RSC−G(f) =

∫ γ

0

1

γ
RV−G(f ;σ)dσ + τ(f), (10)

where

τ(f) =
γ

2N

N∑
i=1

(2yi − 1) · wTxi, (11)

and the first term of the RHS in Eq. 10 is equivalent to intro-
ducing our design of σ ∼ U(0, γ] into RV−G(f ;σ) which
is the VRM with Gaussian kernel defined in Eq. 4.

Note that the label satisfies yi ∈ {0, 1}, therefore in the
term τ(f) in Eq. 11 we have:

(2yi − 1) · wTxi =

{
wTxi, yi = 1,

−wTxi, yi = 0.
(12)

In this sense, the term τ(f) penalises high wTxi when
yi = 1 and penalises low wTxi when yi = 0. Since high
wTx will lead to f(x) = 1/(1 + ew

T x) approaching 1 and
low wTx will lead to f(x) approaching 0, τ(f) actually
penalizes overconfident predictions of the model f .

Remark 1. In this simplified case, minimising the Self-
Calibrating Vicinal Risk defined in Eq. 7 equivalently min-
imises the Vicinal Risk defined in Eq. 4 incorporating our
design of σ ∈ U(0, γ] and a regularisation term defined in
Eq. 11, where the former improves the model classification
accuracy the latter prevents the model from becoming over-
confident on vicinal samples.

4.3. Practical Model

In practical implementation, we approximate the intractable
SCVRM defined in Eq. 7 with the Monte-Carlo (MC) Sam-
pling. More specifically, it is formulated as a data aug-
mentation technique where, based on the labeled dataset

D = {(x1, yi)}Ni=1, we sample an augmented dataset:

Dsc =

N⋃
i=1

{
(x̃j

i , ỹ
j
i )

∣∣ x̃j
i = xi + ϵji , ϵ

j
i ∼i.i.d N (0, σ2

i,jId),

σi,j ∼i.i.d U(0, γ],

ỹji = gLS

(
yi;φG(∥ϵ̃∥2; η)

)}M

j=1
,

(13)
where x̃j

i is the jth augmented image sampled from the
vicinity of the ith labeled image, ỹji is a smoothed ver-
sion of the groundtruth label yi, M is a hyperparameter
being the number of augmented data from the vicinity of
each labeled data, and we set ∥ϵ̃∥2 = σ

√
d to approxi-

mate the L2-distance between the vicinal and labeled im-
ages σ

√
d ≈ ∥ϵ∥2 which relieves the computational bur-

den of computing an L2-norm in high-dimensional space.
The model is trained on both the labeled dataset D and the
augmented dataset Dsc using a Binary Cross Entropy loss:
Lbce(f(x), y) = −y log(f(x))−(1−y) log(1−f(x)). The
training loss can be defined as:

L =
1

N

N∑
i=1

(
Lbce

(
f(xi), yi

)
+

M∑
j=1

Lbce

(
f(x̃j

i ), ỹ
j
i

))
.

(14)
Note that the augmented dataset defined in Eq. 13 is re-
sampled after each training epoch.

5. Experiments and Results
The main paper presents results on Salient Object Detec-
tion. Results for other dense classification tasks, e.g., Cam-
ouflaged Object Detection (binary) and Smoke Detection
(binary), and semantic segmentation (multi-class) can be
found in Supp. 12 and 13 respectively.

5.1. Implementation Details

Evaluation Metrics: We employ bin-based Expected Cal-
ibration Error (denoted ECEEW [14]) and Over-confidence
Error (OEEW [51]) with B = 10 bins, to evaluate model
calibration. (See Supp. 9.1 for implementation details.)
Datasets: Following [31] we divide DUTS-TR [54] into a
train (DTR) and validation set (DVAL), 9,553 and 1,000 im-
ages respectively. We evaluate model calibration degree us-
ing SOD test datasets, DUTS-TE [54], DUT-OMRON [65],
PASCAL-S [28], SOD [37], ECSSD [63], HKU-IS [26].
Model Architecture: The U-Net based model consists of a
ResNet50 encoder and a decoder that are initialised with
ImageNet pretrained weights and by default respectively.
The implementation uses the Pytorch framework. Experi-
ments with different encoders, e.g. VGG16 [49] and Swin
transformer [34] are detailed in Supp. 11.
Hyperparameters: Optimal calibration performance of
model is achieved by setting γ = 2, η =

√
d and M = 3.
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Table 1. Salient object detection model calibration benchmark. Results are evaluated with ECEEW and OEEW with 10 bins (units in %).
Methods DUTS-TE [54] DUT-OMRON [65] PASCAL-S [28] SOD [37] ECSSD [63] HKU-IS [26]

Category Name Year ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

SOD
Methods

MSRNet [27] 2017 2.57 2.34 3.32 3.16 3.44 3.23 6.42 6.14 0.97 0.94 0.92 0.87
SRM [55] 2017 4.02 3.72 4.19 3.96 4.88 4.59 9.93 9.58 2.53 2.35 1.86 1.72
Amulet [74] 2017 5.67 5.28 5.84 5.49 5.76 5.43 10.03 9.59 2.56 2.42 1.98 1.87
BMPM [72] 2018 3.74 3.52 4.52 4.37 4.88 4.68 8.16 7.93 1.95 1.89 1.58 1.53
DGRL [56] 2018 4.12 3.86 4.41 4.21 5.01 4.77 8.44 8.20 2.13 2.02 1.63 1.53
PAGR [75] 2018 4.04 3.79 5.14 4.96 5.64 5.37 12.17 11.87 2.84 2.70 1.62 1.54
PiCANet [33] 2018 5.12 4.90 4.84 4.70 8.14 7.92 10.50 10.30 3.48 3.39 2.55 2.47
CPD [61] 2019 3.97 3.78 4.20 4.06 5.37 5.17 9.65 9.39 2.29 2.19 1.99 1.90
BASNet [48] 2019 5.00 4.86 4.93 4.83 6.50 6.36 10.40 10.27 2.74 2.70 2.30 2.26
EGNet [76] 2019 3.33 3.14 3.66 3.50 5.42 5.19 8.04 7.79 1.98 1.88 1.47 1.40
AFNet [11] 2019 3.95 3.74 4.25 4.09 5.06 4.84 8.15 8.02 2.38 2.27 1.87 1.78
PoolNet [32] 2019 3.33 3.12 3.86 3.70 5.32 5.07 8.14 7.87 2.00 1.90 1.82 1.75
GCPANet [4] 2020 3.18 2.99 3.99 3.84 4.16 3.97 7.05 6.88 1.61 1.54 1.27 1.21
MINet [42] 2020 3.65 3.48 4.45 4.29 4.94 4.75 8.01 7.89 2.13 2.03 1.74 1.65
F3Met [58] 2020 3.67 3.50 4.25 4.10 4.85 4.67 7.95 7.78 2.26 2.16 1.92 1.83
EBMGSOD [71] 2021 3.45 3.29 4.11 3.95 4.79 4.61 7.48 7.30 2.14 2.05 1.79 1.70
ICON [79] 2021 2.89 2.76 3.84 3.71 4.08 3.95 6.70 6.55 1.56 1.49 1.38 1.32
PFSNet [35] 2021 2.94 2.72 3.95 3.81 4.45 4.27 7.59 7.39 2.41 2.25 2.06 1.96
EDN [60] 2022 3.62 3.47 4.02 3.90 4.89 4.74 8.81 8.66 2.20 2.13 1.65 1.58

Model
Calibration
Methods

Brier Loss [2] 1950 2.77 2.58 3.55 3.38 3.90 3.70 6.40 6.16 1.37 1.30 1.04 0.99
Temperature Scaling [14] 2017 2.53 2.34 3.18 3.03 3.56 3.36 6.32 6.05 0.96 0.93 0.83 0.70
MMCE [23] 2018 2.86 2.67 3.56 3.41 4.00 3.81 6.85 6.63 1.41 1.35 1.18 1.13
Label Smoothing [39] 2019 2.00 1.79 2.89 2.71 3.04 2.83 5.97 5.69 0.83 0.68 0.82 0.47
Mixup [51] 2019 2.45 2.25 3.41 3.23 3.13 2.99 5.82 5.70 1.41 0.18 3.83 0.05
Focal Loss [38] 2020 2.25 2.08 3.10 2.82 3.40 3.13 6.21 5.98 1.41 1.03 1.24 0.77
AdaFocal [13] 2022 1.61 1.41 2.31 1.84 2.53 2.27 5.88 5.47 1.63 0.79 1.35 0.52
ASLP [31] 2023 1.40 1.22 1.99 1.83 2.31 2.10 5.50 5.17 0.48 0.20 0.79 0.17

Ours SCVRM 2023 0.78 0.61 1.64 1.49 1.91 1.75 3.90 3.60 0.44 0.19 0.78 0.10

Optimisation Details: The model is optimised for 30
epochs with an initial learning rate of 2.5×10−5 that decays
by a factor of 0.9 per epoch after the 10th epoch. During
each epoch, M = 3 augmented data are sampled from each
vicinity space. Image size is set to 3 × 384 × 384 and the
batch size is 8. Basic data augmentation techniques includ-
ing random flipping, translation and cropping are applied.

5.2. Model Calibration Degree Performance

The calibration degrees of existing SOD and model cali-
bration methods, and our proposed SCVRM, evaluated in
terms of ECEEW and OEEW, are presented in Tab. 1. It can
be observed that SOD methods without regularisations on
prediction confidence are, in general, less well calibrated
than the models equipped with calibration methods. On
the other hand, our proposed SCVRM achieves the low-
est calibration errors across all six testing datasets among
the model calibration methods. Largest improvements over
the second-best model are obtained on DUTS-TE, DUT-
OMRON, PASCAL-S and SOD datasets, reducing the ECE
by 44.3%, 17.6%, 17.3% and 29.1% respectively. There is
little room for improvement on ECSSD and HKU-IS, where
ASLP is already well calibrated. On these datasets, our pro-
posed SCVRM maintains the high calibration degrees that
are comparable with those of ASLP.

Fig. 3 depicts the joint distribution of prediction confi-
dence and prediction accuracy of some model calibration

methods on the DUTS-TE [54] dataset. The joint distri-
bution of better calibrated models become more closely
aligned with the oracle line, which indicates a perfectly cal-
ibrated model. Our SCVRM has its joint distribution al-
most completely aligned with the oracle line. In compar-
ison, Mixup is more over-confident with the high-density
area of its joint distribution slightly to the bottom-right of
the oracle and the low-density area deviating even more.
This further demonstrates the effectiveness of exploring a
continuous vicinal image space with softened labels.

Table 2. Existing model calibration methods and our proposed
LSR evaluated on the 500 Out-of-Distribution texture images [31]
selected from the Describable Texture Dataset [6] in terms of
ECEEW and OEEW with 10 bins, and Accuracy (ACC).

Method
Evaluation (%)

ECE ↓ OE ↓ ACC ↑

Baseline 52.36 51.05 41.88

Brier Loss [2] 38.85 37.18 53.62
Temperature Scaling [14] 51.95 50.46 41.59
Label Smoothing [39] 37.22 35.48 55.41
MMCE [23] 40.64 39.67 54.39
Mixup [51] 31.07 29.10 58.71
Focal Loss [38] 40.01 38.43 49.71
AdaFocal [13] 27.55 25.07 55.39
ASLP [31] 18.31 16.37 61.93

SCVRM 11.93 8.26 83.93
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Figure 3. Joint distribution of prediction accuracy (vertical axis) and prediction confidence (horizontal axis) of model calibration methods
on DUTS-TE [54]. The dashed red diagonal line represents the perfectly calibrated oracle model.
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Figure 4. Joint distribution of prediction accuracy (vertical axis)
and prediction confidence (horizontal axis) of model calibration
methods on the 500 Out-of-Distribution texture images [31] se-
lected from the Describable Texture Dataset [6]. The dashed red
diagonal line represents the perfectly calibrated oracle model.

5.3. Model Calibration on Out-of-Distribution Data

The calibrating ability of existing model calibration tech-
niques and our proposed SCVRM on Out-of-Distribution
(OoD) samples are evaluated on the 500 texture images [31]
selected from the Describable Texture Dataset [6]. These
texture images, not including any salient (foreground) ob-
ject, demonstrates certain level of distributional shift from
both training and testing distributions of SOD. As shown
in Tab. 2, SCVRM achieves the lowest calibration errors
on OoD data. Compared with the second-best model, it

reduces ECE by 34.8% and OE by 49.5%. The im-
provements are also reflected in the joint distribution plot
in Fig. 4, where the distribution area of SCVRM is signifi-
cantly better aligned with the oracle line. Further, SCVRM
significantly outperforms Mixup in terms of both calibra-
tion and classification. Its superior performance can be at-
tributed to more effective utilisation of vicinity space, and
a distance-based label augmentation technique that yields
consistent label confidence across the pixels.

5.4. Ablation Study

We investigate the effect of SCVRM and its hyperparame-
ters including γ, η and M which adopt the default setting
specified in Sec. 5.1 unless stated otherwise.

Effect of SCVRM: We compare our SCVRM with
ERM, the baseline model, VRM with a fixed standard devi-
ation, and VRM∗ with our design of σ ∼ U(0, γ] (see im-
plementation detail in Supp. 8.3). Tab. 3 shows that VRM
(see implementation detail in Supp. 8.3) does not reduce
calibration error over ERM in general, producing mixed im-
pacts across the testing datasets. Introducing our design of
σ ∼ U(0, γ] also does not alleviate VRM’s over-confidence.
On the other hand, SCVRM significantly improves the
model calibration over ERM, VRM and VRM∗. In addi-
tion, SCVRM also achieves improved classification accu-
racy than ERM (see Supp. 10.1), which can be attributed to
more effective utilisation of vicinity space with our design
of σ ∼ U(0, γ]. It also enables VRM∗ to achieve better
classification accuracy compared to VRM (see Supp. 10.1).

Effect of γ: The hyperparameter γ suggests the explo-
ration radius around the training images. As illustrated in
Fig. 5a, SCVRM can reach optimal calibration performance
in a wide range γ = [1, 10]. When γ is too small, e.g. 0.5,
SCVRM achieves limited improvements on model calibra-
tion as the vicinal images are too close to the labeled im-
ages, and their corresponding augmented labels retain rel-
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Table 3. Ablation study on SCVRM.

Method ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

DUTS-TE [54] DUT-OMRON [65] PASCAL-S [28]

ERM (Baseline) 3.05 2.89 3.80 3.68 4.14 3.98
VRM 3.54 3.37 4.35 4.21 4.39 4.24
VRM∗1 3.18 3.03 3.90 3.79 4.13 3.98
SCVRM 0.78 0.61 1.64 1.49 1.91 1.75

Method SOD [37] ECSSD [63] HKU-IS [26]

ERM (Baseline) 7.07 6.85 1.82 1.76 1.38 1.34
VRM 6.60 6.42 1.67 1.62 1.30 1.26
VRM∗1 7.35 7.16 1.72 1.68 1.28 1.23
SCVRM 3.90 3.60 0.44 0.19 0.78 0.10
1 VRM∗ incorporates our design of σ ∼ U(0, γ].

atively high label confidences (see Fig. 2). As γ grows,
the augmented vicinal images can get sufficiently far away
from the labeled images to set up label confidence contours
of various levels and obtains optimal model calibration.

Effect of η: The hyperparameter η is part of the Gaus-
sian equation (Eq. 9) that affects the strength of smooth-
ing factor. (See Supp. 8.4 for example vicinal data under
different η.) At η = 0.1

√
d, the resultant augmented la-

bel is overly softened, leading to the trained model becom-
ing under-confident1. When η is too large, e.g. 5

√
d and

10.0
√
d, vicinal images all retain a relatively high label con-

fidence, resulting in insufficient calibration regularisation.
We find that η works well in [0.5

√
d, 2

√
d], leading consis-

tently to near-optimal calibration results.
Effect of M : We ablate the number of augmented im-

ages sampled from the vicinal distribution of each labeled
image per training epoch, setting M = {1, 2, 3, 4, 5}. Re-
sults in Fig. 5c show that SCVRM is not very sensitive to
the number of augmented data sampled M .

5.5. Discussion

We further demonstrate the effectiveness and generalisation
ability of SCVRM in calibrating DNNs via additional ex-
periments. The default training setting specified in Sec. 5.1
is adopted unless specified otherwise.

Effectiveness in Multi-Class Dense Classification:
SCVRM can also be generalised to semantic segmenta-
tion [9]. We demonstrate its effectiveness in calibrating
multi-class dense classification model (See Supp. 13).

Effectiveness in Other Binary Dense Classification
Tasks: We verify the effectiveness of SCVRM in im-
proving model calibration degree and dense classification
accuracy of DNNs on additional binary dense classifica-
tion tasks, such as Camouflaged Object Detection [10] and
Smoke Detection [64] (See Supp. 12).

Effectiveness with Different Base Models: SCVRM is
also effective in calibrating different base models while im-
proving their dense classification accuracy. across a range
of base models. We show its compatibility with VGG16
[49] and Swin transformer [34] (See Supp. 11).

1Under-confidence occurs when ECE − OE > OE.
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Figure 5. ECEEW and OEEW scores on the DUTS-TE [54]
testing dataset under different choices of hyperparameters: (a)
γ = {0.5, 1.0, 2.0, 3.0, 5.0, 10.0}; and (b) η = {i

√
d | i =

0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0}; and (c) M = {1, 2, 3, 4, 5}.

Effectiveness on Existing SOD Models: SCVRM can
be utilised by various existing SOD models, e.g., EBMG-
SOD [71], EDN [60] and ICON [79] (See Supp.14).

6. Conclusion
We propose a Self-Calibrating Vicinal Risk Minimisation
(SCVRM) to calibrated DNNs via exploring the vicinity
space of labeled data. Vicinal images adopt the groundtruth
label of the labeled image at the centre of vicinal distribu-
tion, but with diminishing label confidence as they get far-
ther away. In a simplified setting, SCVRM is proved equiv-
alent to a Vicinal Risk Minimisation plus a regularisation
term, where the former improves model classification ac-
curacy and the later penalises over-confident predictions.
In practice, SCVRM is implemented as a data augmenta-
tion technique where MC sampling is applied to sample
augmented data from the vicinal distribution. Experimen-
tal results on various dense classification tasks demonstrate
the effectiveness of SCVRM in improving not only model
calibration, but also dense classification accuracy. We also
thoroughly study its compatibility with different backbone
models and existing methods.
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