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Abstract

In the realm of image composition, generating realistic
shadow for the inserted foreground remains a formidable
challenge. Previous works have developed image-to-image
translation models which are trained on paired training
data. However, they are struggling to generate shadows
with accurate shapes and intensities, hindered by data
scarcity and inherent task complexity. In this paper, we
resort to foundation model with rich prior knowledge of
natural shadow images. Specifically, we first adapt Con-
trolNet to our task and then propose intensity modulation
modules to improve the shadow intensity. Moreover, we
extend the small-scale DESOBA dataset to DESOBAv2 us-
ing a novel data acquisition pipeline. Experimental results
on both DESOBA and DESOBAv?2 datasets as well as real
composite images demonstrate the superior capability of
our model for shadow generation task. The dataset, code,
and model are released at https://github.com/bcmi/Object-
Shadow-Generation-Dataset-DESOBAv?2.

1. Introduction

Image composition [28] aims to merge the foreground of
one image with another background image to produce a
composite image, which has a wide range of applications
like virtual reality, artistic creation, and E-commerce. Sim-
ply pasting the foreground onto the background often re-
sults in visual inconsistencies, including the incompatible
illumination between foreground and background [3], lack
of foreground shadow/reflection [12, 34], and so on. In this
paper, we focus on the shadow issue, i.e., the inserted fore-
ground does not have plausible shadow on the background,
which could significantly degrade the realism and quality of
composite image.

As illustrated in Figure 1, shadow generation is a chal-
lenging task because the foreground shadow is determined
by many complicated factors like the lighting information
and the geometry of foreground/background. The exist-
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Figure 1. A composite image can be obtained by pasting the fore-
ground on the background. Shadow generation aims to generate

plausible shadow for the inserted foreground in the composite im-
age to produce a more realistic image.
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ing shadow generation methods can be divided into ren-
dering based methods [34-36] and non-rendering based
methods [12, 22, 53]. Rendering based methods usually
impose restrict assumptions on the geometry and lighting,
which could hardly be satisfied in real-world scenarios. Be-
sides, [35, 36] require users to specify the lighting infor-
mation, which hinders its direct application in our task.
Non-rendering based methods usually train an image-to-
image translation network, based on pairs of composite im-
ages without foreground shadows and real images with fore-
ground shadows. However, due to the training data scarcity
and task difficulty, these methods are struggling to generate
shadows with reasonable shapes and intensities.

Recently, foundation model (e.g., stable diffusion [32])
pretrained on large-scale dataset has demonstrated unprece-
dented potential for image generation and editing. In previ-
ous works [44, 48] on object-guided inpainting or composi-
tion, they show that the generated foregrounds are accom-
panied by shadows even without considering the shadow is-
sue, probably because of the rich prior knowledge of natural
shadow images in foundation model. However, they could
only generate satisfactory shadows in simple cases and the
object appearance could be altered unexpectedly.
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We build our method upon conditional foundation model
[52] and propose several key innovations. First, we mod-
ify the control encoder input and the noise loss to fit our
task. Then, we observe that the generated shadow intensity
(the level of darkness) is unsatisfactory. Especially when
the background objects has shadows, the intensity incon-
sistency between foreground shadow and background shad-
ows make the whole image unrealistic. Therefore, we intro-
duce another intensity encoder to modulate the foreground
shadow intensity. Specifically, the denoising U-Net is modi-
fied to output both noise map and foreground shadow mask.
The intensity encoder takes in the composite image and
background shadow mask, producing the scale/bias to mod-
ulate the predicted noise within the foreground shadow re-
gion. Finally, we devise a post-processing network to rec-
tify the color shift and background variation.

The model training requires abundant pairs of composite
images without foreground shadows and real images with
foreground shadows. The existing real-world shadow gen-
eration dataset DESOBA [12] is limited by scale (i.e., 1,012
real images and 3,623 pairs) due to the high cost of manual
shadow removal, which is insufficient to train our model. To
ensure sufficient supervision, we design a novel data con-
struction pipeline, which extends DESOBA to DESOBAv2
(i.e., 21,575 real images and 28,573 pairs) using object-
shadow detection and inpainting techniques. Specifically,
we first collect a large number of real-world images with
one or more object-shadow pairs. Then, we use pretrained
object-shadow detection model [41] to predict object and
shadow masks for object-shadow pairs. Next, we apply pre-
trained inpainting model [32] to inpaint the detected shadow
regions to get deshadowed images. Finally, based on real
images and deshadowed images, we construct pairs of syn-
thetic composite images and ground-truth target images.

We conduct experiments on both DESOBAv2 and DES-
OBA datasets. The results reveal remarkable improvement
in shadow generation task, after leveraging the benefits of
large-scale data and foundation model. Our main contri-
butions can be summarized as follows: 1) We contribute
DESOBAV2, a large-scale real-world shadow generation
dataset, which could greatly facilitate the shadow genera-
tion task. 2) We propose a cutting-edge diffusion model
specifically designed to produce shadows for the compos-
ite foregrounds. 3) Through comprehensive experiments,
we validate the efficacy of our dataset construction pipeline
and the superiority of our proposed model.

2. Related Work
2.1. Image Composition

Image composition aims to overlay a foreground object on
a background image to yield a composite result [20, 22,
42, 46, 47]. Previous research works have tackled differ-

ent issues that can compromise the quality of composite im-
ages. For instance, image blending methods [31, 42, 49, 51]
target at combining the foreground and background seam-
lessly. Image harmonization methods [3-6, 40] aim to
rectify the illumination disparity between foreground and
background. Nonetheless, the above methods largely over-
look the shadow cast by the foreground onto the back-
ground. Recently, generative image composition methods
[38, 44, 48] can insert a foreground object into a bounding
box in the background and the inserted object is likely to
have shadow effect. However, they could only generate sat-
isfactory shadows in simple cases and the object appearance
could be altered unexpectedly.

2.2. Shadow Generation

In this paper, the goal of shadow generation task is gener-
ating plausible shadow for the composite foreground. Ex-
isting methods can be broadly categorized into rendering
based methods and non-rendering based methods. The ren-
dering based methods necessitate a comprehensive under-
standing of factors like illumination, reflectance, material
properties, and scene geometry to produce shadows for the
inserted objects. However, such detailed knowledge re-
lies on user input [15, 16, 21, 35, 36] or model predic-
tion [1, 7, 19, 50], which is either labor-intensive or unreli-
able [53]. For example, [35, 36] could produce compelling
results with user control. However, in the composite im-
age, the lighting information should be inferred automati-
cally from background instead of requested by users.

Non-rendering based methods [12, 22, 25, 53] aim to
translate an input composite image without foreground
shadow to an output with foreground shadow, bypassing
the need for explicit knowledge of the aforementioned fac-
tors. For instance, ShadowGAN [53] utilizes both global
and local conditional discriminator to enhance the realism
of generated shadows. ARShadowGAN [22] emphasizes
the importance of background shadow and uses it to guide
foreground shadow generation. SGRNet [12] encourages
the information exchange between foreground and back-
ground, and employs a classic illumination model for bet-
ter shadow effect. The work [25] produces multiple under-
exposure images and fuses them to get the final shadow re-
gion. DMASNet [39] decomposes shadow mask prediction
into box prediction and shape prediction, achieving better
cross-domain transferability.

To the best of our knowledge, we are the first diffusion-
based method focusing on shadow generation.

2.3. Diffusion Models

In recent years, diffusion models have emerged as a pow-
erful tool in image generation and image editing. These
models approach image generation as a series of stochastic
transitions, moving from a basic distribution to the desired
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Figure 2. The pipeline of dataset construction. We use object-shadow detection model [41] to predict pairs of object and shadow masks
in the real image I.. Then we obtain the union M of all shadow masks as the inpainting mask and apply inpainting model [32] to get a
deshadowed image I,. After designating a foreground object, we replace the background shadow regions My in I4 with the counterparts
in I, to synthesize a composite image I, and replace all the shadow regions M in I; with the counterparts in I,- to obtain the ground-

truth target image I,.

data distribution [11]. Diffusion models can be divided into
unconditional diffusion models [11, 37] and conditional dif-
fusion models [27, 32, 52]. Unconditional diffusion models
focus on generating realistic images by capturing the dis-
tribution of natural images, without the need of any specific
input conditions. Conditional diffusion models are designed
to produce images under the guidance of specific condi-
tional inputs, such as text descriptions, semantic masks, and
so on. ControlNet [52] is a popular conditional diffusion
model, which equips large pretrained text-to-image diffu-
sion models with spatial-aware and task-specific conditions.
We build our model upon ControlNet and propose several
innovations to meet the specific requirements of shadow
generation.

3. Dataset Construction

The pipeline of our dataset construction is illustrated in Fig-
ure 2, which will be detailed next.

3.1. Shadow Image Collection

We harvest an extensive collection of real-world outdoor
images with natural lighting across various scenes from two
sources. On one hand, we crawl online images from public
websites that have licenses for reuse. On the other hand, we
hire photographers to capture photos in the outdoor scenes
that satisfy our requirements. We only preserve the images
with at least one object-shadow pair, arriving at 44,044 im-
ages.

3.2. Shadow Removal

Given a real image I, with object-shadow pairs, we use the
pretrained object-shadow detection model [41] to predict K

pairs of object and shadow masks. We use M, ; (resp.,
M ;) to denote the object (resp., shadow) mask of the k-
th object. We refer to one detected object-shadow pair as
one detected instance. We eliminate the images without any
detected instance.

Subsequently, we attempt to erase all the detected shad-
ows. We have tried some state-of-the-art shadow removal
models [8, 9], but the performance in the wild is below our
expectation due to poor generalization ability. Considering
the recent rapid advance of image inpainting [14, 23, 29, 32,
45, 56] techniques, we resort to image inpainting to remove
the shadows. Although image inpainting cannot preserve
the background information precisely, we observe that the
background textures in the shadow region are usually very
simple, and the inpainted result has similar textures with the
original background. Thus, we roughly treat the inpainted
results as deshadowed results.

‘We obtain the union of all detected shadow masks M, =
M, UM, 2U---UM; g as the inpainting mask and apply
the pretrained inpainting model [32] to get a deshadowed
image I;. In practice, we observe that the inpainting model
is prone to generate low-quality shadow in the inpainted re-
gion in some cases. To prevent the inpainting model from
generating undesirable shadows in the inpainted region, we
adopt some tricks like dilating the inpainting mask and flip-
ping images vertically, which can effectively obstruct un-
desirable shadow generation during inpainting. However,
there may still exist undesirable shadows or noticeable arti-
facts in the inpainted region.

After inpainting, we manually filter the object-shadow
pairs according to the following rules: 1) We remove
the object-shadow pairs with low-quality object masks or
shadow masks. 2) We remove those object-shadow pairs
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with generated shadows or noticeable artifacts in the in-
painted region. After manual filtering, we refer to the re-
maining object-shadow pairs as valid instances. We have
21,575 images with 28,573 valid instances.

3.3. Composite Image Synthesis

Given a pair of a real image I,- and a deshadowed image
I;, we randomly select the k-th foreground object from
valid instances and synthesize the composite image. M, ;,
(resp., M 1) is referred to as the foreground object (resp.,
shadow) mask M, (resp., My,). One strategy is replacing
the shadow region M, of this foreground object in I, with
the counterpart in I to erase the foreground shadow. How-
ever, this strategy may leave traces along the shadow bound-
ary, in which case the model may find a shortcut to generate
the shadow. Another strategy is replacing the shadow re-
gions My = M1 U-- - UM, 1 UM, 11 U--- UM,
of the other objects in I; with the counterparts in I, to syn-
thesize a composite image I., in which only the selected
foreground object does not have shadow while all the other
objects have shadows. We adopt the second strategy.

After inpainting, the background may undergo slight
changes, so the background of I, may be slightly different
from that of I,.. To ensure consistent background, we obtain
the ground-truth target image I, by replacing the shadow
regions M of all objects in I; with the counterparts in I,..
Then, I, and I, form a pair of input composite image and
ground-truth target image. So far, we obtain tuples in the
form of {I., My,, Mys, My, I,}, which will be used for
model training. Example images and more statistics of our
dataset can be found in the supplementary.

4. Background

Stable Diffusion [32] is latent diffusion model operating in a
latent space. First, 512x 512 images are converted to 64 x 64
latent images using VAE [18] with encoder F,. and decoder
D,.. The image space is projected to the latent space using
FE,., and back to the image space using D,. Then, the for-
ward diffusion process and backward denoising process are
performed in the latent space. The denoising U-Net [33]
consists of an encoder with 12 blocks, a middle block, and
a skip-connected decoder with 12 blocks.

During training, random Gaussian noise € is added to the
latent image z( in the denoising step ¢, producing a noisy
latent image z;. Given time step ¢ and text prompt ¢,
the denoising U-Net with model parameters eg is trained to
predict the added noise €.

To support spatial conditional information (e.g., edge,
pose, depth), ControlNet [52] integrates a control encoder
FE,. with pre-trained Stable Diffusion. Specifically, the
control encoder contains trainable replicas of its 12 en-
coding blocks and middle block across four resolutions

(64 x 64,32 x 32,16 x 16,8 x 8). It takes a 512 x 512
conditional image as input.

The conditional feature maps c¢;,,,4 output from control
encoder are used to enhance the 12 skip-connections and
middle block in denoising U-Net via zero convolution lay-
ers. While the original Stable Diffusion is fixed to retain
prior knowledge, control encoder could incorporate addi-
tional conditions to guide image generation. The objective
could be rewritten as

Ectrl — IEit,ew./\/(O,l) |:H€ - Ee(zt; t7 Cixt, cimg)”% . (1)
5. Method

Given a composite image I, without foreground shadow as
well as the foreground object mask M, our Shadow Gen-
eration Diffusion (SGDiffusion) model aims to produce I g
with plausible foreground shadow. We will adapt Control-
Net [52] to shadow generation task in Section 5.1, and pro-
pose novel modules to improve the shadow intensity in Sec-
tion 5.2. Finally, we will briefly introduce post-processing
techniques to enhance the image quality in Section 5.3.

5.1. Adapting ControlNet to Shadow Generation

For shadow generation task, the useful conditional infor-
mation is input composite image I and foreground object
mask M ,, in which the foreground object mask indicates
the target object we need to generate shadow for. We con-
catenate I, with M, as the input of control encoder E..
The control encoder outputs the conditional feature maps
Cs4, Which are injected into the denoising decoder to pro-
vide guidance. For the text prompt, we have tried sev-
eral variants like “the [object category] with shadow”, but
they have no significant impact on the generated shadows.
Therefore, we use null text prompt by default.

Given a set of conditions including time step ¢ and con-
ditional feature maps c,g4, the denoising U-Net with model
parameters eg predicts the noise € added to the noisy latent
image z;:

,ng = Et,ewN(O,l) {”6 - fo(zta tv csg))”%] (2)

To enforce the model to place more emphasis on the fore-
ground shadow region, we introduce weighted noise loss,
which assigns higher weights to the foreground shadow re-
gion. We expand the foreground shadow mask by a dilated
kernel to get the expanded mask M ts- The weights in the
expanded foreground shadow region are w while the other
weights are 1, leading to the weight map Wy,. If we do
not expand the foreground shadow region, the model will
be misled to generate large shadows, overlooking the de-
tails of shadow shapes and boundaries. By applying weight
map Wy, to the noise loss, we can arrive at

ﬁwsg = Eif,ew./\f(O,l) |:||Wfs o (6 - Ce(ztv ta ng)) ||§ 5 (3)
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Figure 3. The framework of our SGDiffusion. We adapt ControlNet (Control Encoder and Denoising U-Net) to shadow generation task.
We also introduce an intensity encoder to modulate the foreground shadow region in the noise map €, leading to €. The output noise € is
supervised by weighted noise 10ss L9 based on the expanded foreground shadow mask M s,

where o denotes element-wise multiplication.

During inference, to retain more information of input
composite image I, in the initial noise, we obtain zp by
adding noise to the latent image of I., rather than directly
sampling from the Gaussian distribution A/(0, 1).

5.2. Shadow Intensity Modulation

By using the adapted ControlNet in Section 5.1, we ob-
serve that the intensity of generated foreground shadow is
unsatisfactory. Especially when the background has object-
shadow pairs, the generated foreground shadow is often no-
tably darker or brighter than background shadows. Such in-
consistency between foreground shadow intensity and back-
ground shadow intensity makes the whole image unrealistic.

Therefore, we introduce another intensity encoder to
modulate the foreground shadow intensity. Specifically,
we use encoder E; to extract intensity-relevant information.
Intuitively, by observing background shadows and its sur-
rounding unshadowed areas, we can estimate the intensity
of foreground shadows. Thus, the input of intensity encoder
FE; should include the composite image I, and background
shadow mask Mj,. When there is no background shadow,
the mask is all black. We concatenate I, with background
shadow mask M as the input of intensity encoder.

The intensity encoder outputs scales and biases to adjust
the intensity of noise map within the foreground shadow re-
gion. The modulated noise map results in the modulated la-
tent image, and further results in the modulated foreground

shadow. Therefore, the intensity adjustment of noise map
is finally embodied in the intensity variation of generated
foreground shadow. Specifically, when the noise map has
c channels, F; outputs the c-dim scale vector s and c-dim
bias vector b, containing channel-wise scales and biases. s
and b are used to modulate the predicted noise map within
the foreground shadow region.

One problem is that the foreground shadow region is un-
known in the testing stage, so we need to predict the fore-
ground shadow mask. To avoid much extra computational
cost, we take advantage of the feature maps in the denois-
ing U-Net to predict the foreground shadow mask. Previ-
ous works usually combine different layers of feature maps
in denoising U-Net for mask prediction [24, 43]. We try
different layers of feature maps and find that decoder fea-
ture maps are more effective in shadow mask prediction.
We also use foreground object mask, which could provide
useful hints for the location of foreground shadow. We re-
size all decoder feature maps and foreground object mask
to the same size, and concatenate them channel-wisely. The
concatenation passes through several convolutional layers
to predict the foreground shadow mask M,. Mj, is su-
pervised with ground-truth foreground shadow mask M,
by Binary Cross-Entropy (BCE) loss and Dice loss [26]:

Emask :Ebce(MfsaMfs) +£dice(Mfsnys)- (4)

When ¢ is large, z; is close to random noise and thus the
decoder feature maps are not informative to predict shadow
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mask. Hence, we only employ the loss L,,4sx When the
time step ¢ is small. We set the threshold of ¢ as ¢7', in
which 7' is the total number of steps. Accordingly, shadow
intensity modulation is only applied when ¢ is smaller than
the threshold o'T'.

Provided with the predicted foreground shadow mask
M ts» we can modulate the noise map within the fore-
ground shadow region. Given the predicted noise map € =
€g(21,t, csq), we multiply € by channel-wise scales s and
add channel-wise biases b to get €. Then, based on M Fe
we combine the modulated noise map and original noise
map to get the final noise map: € = é’oMfs+€o(1—Mfs).

We replace the predicted noise map in Eqn. (3) with the
final noise map € and get

[-:mwsg = ]Et,eNJ\/(OJ) HWfS © (6 - é) ||§ . (5)

We summarize the mask prediction loss in Eqn. (4) and
weighted noise loss in Eqn. (5) as

ACall = £mask: + )\ﬁmwsga (6)
where ) is a trade-off parameter.

5.3. Post-processing

We observe that the generated images could have color shift
and background variation issues. Color shift means that the
overall color tone deviates from the input composite image.
Background variation means that some background details
are changed. To solve these issues, we create a multi-task
post-processing network which yields the rectified image
together with the foreground shadow mask. Then, we com-
bine input composite image and rectified image based on
the predicted foreground shadow mask to produce the final
image. The technical details are left to supplementary.

6. Experiments
6.1. Datasets and Evaluation Metrics

We conduct experiments on both DESOBA [12] and our
contributed DESOBAv?2 dataset. We split DESOBAvV?2 into
21,088 training images with 27,718 tuples and 487 test im-
ages with 855 tuples. Following [12], the test set contains
BOS images (with background object-shadow pairs) and
BOS-free images. Most of our experiments are based on
DESOBAV2 dataset due to the following two concerns: 1)
DESOBAV2 has larger test set which supports more com-
prehensive evaluation. 2) DESOBA has the artifacts caused
by manual shadow removal and the existing methods (e.g.,
SGRNet) tend to overfit such artifacts.

For the generated results, we evaluate both image qual-
ity and mask quality. For image evaluation, following [12],
we adopt RMSE and SSIM, which are calculated based
on the ground-truth target image and the generated image.

Global RMSE (GR) and Global SSIM (GS) are calculated
over the whole image, while Local RMSE (LR) and Local
SSIM (LS) are calculated over the ground-truth foreground
shadow region. For the mask evaluation, following [12], we
adopt Balanced Error Rate (BER), which is calculated based
on the ground-truth binary foreground shadow mask and the
predicted foreground shadow mask obtained by threshold
0.5. Global BER (GB) is calculated over the whole image,
while Local BER (LB) is calculated over the ground-truth
foreground shadow region. Note that diffusion model has
stochastic property and shadow generation is a multi-modal
task, that is, one input has multiple plausible outputs. Simi-
lar to multi-modal inpainting evaluation [54, 55], we gener-
ate 5 results for one test image with different random seeds
and select the one closest to the ground-truth (the highest
Local SSIM) to calculate evaluation metrics.

6.2. Implementation Details

We develop our method with PyTorch 1.12.1 [30]. Our
model is trained using the Adam optimizer [17] with a con-
stant learning rate of 1e~5 over 50 epochs, on four NVIDIA
RTX A6000 GPUs. Our method is built upon ControlNet
[52]. We employ ResNet18 [10] as the intensity encoder.
The mask predictor passes the concatenation of decoder fea-
ture maps and foreground object mask through four con-
volutional layers, with ReLU activation following the first
three layers and Sigmoid activation following the last layer.
We set the hyper-parameters w, o, and A as 10, 0.7, and 1,
respectively.

6.3. Comparison with Baselines

Following [12], we compare with ShadowGAN [53], Mask-
ShadowGAN [13], ARShadowGAN [22], and SGRNet
[12]. We train and test all methods on DESOBAv?2 dataset.
The quantitative results are summarized in Table 1. We ob-
serve that our SGDiffusion achieves the lowest GRMSE,
LRMSE and the highest GSSIM, LSSIM, which demon-
strates that our method could generate shadow images that
are closer to the ground-truth shadow images. The best GB
and LB results demonstrate that the shapes and locations of
our generated shadows are more accurate.

For qualitative comparison, we show several example re-
sults in Figure 4. Compared with the baseline methods,
the shadows produced by our model have more reasonable
shapes and intensities. Moreover, as shown in row 1, our
method can take into account the self-occlusion of objects
to generate discontinuous shadows. As shown in row 4, our
method can also consider the material of the objects, pro-
ducing shadows with translucency effects. We provide more
examples in the supplementary.
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Figure 4. Visual comparison of different methods on DESOBAv2 dataset. From left to right are input composite image (a), foreground
object mask (b), results of ShadowGAN [53] (c), MaskshadowGAN [13] (d), ARShadowGAN [22] (e), SGRNet [12] (f), our SGDiffusion

(g), ground-truth (h).

Method BOS Test Images BOS-free Test Images
GR|] LR|J GSt LSt GB] LIB) | GR) LR|] GStT LSt GB| LB}
ShadowGAN [53] 7.511 67.464 0.961 0.197 0.446 0.890 | 17.325 76.508 0.901 0.060 0.425 0.842
MaskshadowGAN [13] | 8.997 79.418 0.951 0.180 0.500 1.000 | 19.338 94.327 0.906 0.044 0.500 1.000
ARShadowGAN [22] | 7.335 58.037 0.961 0.241 0.383 0.761 | 16.067 63.713 0.908 0.104 0.349 0.682
SGRNet [12] 7.184 68.255 0964 0.206 0.301 0.596 | 15596 60.350 0.909 0.100 0.271 0.534
SGDiffusion 6.098 53.611 0.971 0.370 0.245 0.487 | 15.110 55.874 0913 0.117 0.233 0.452

Table 1. The results of different methods on DESOBAv2 dataset. The best results are highlighted in boldface.

6.4. Ablation Studies

We study the impact of weighted noise loss (WL), intensity
modulation (IM), and post-processing (PP) of our SGDiffu-
sion on BOS test images from DESOBAv2. The quantita-
tive results are summarized in Table 2.

In row 1, we report the results of basic ControlNet with-
out weighted noise loss. For WL, the comparison between
row 3 and row 1 emphasizes the importance of paying more
attention to the foreground shadow region. We also report a
special case 1 in row 2, where the foreground shadow mask
is not expanded when constructing the weight map. The re-
sults in row 2 are comparable or even worse than those in

row 1, as the model tends to generate larger shadow size
while ignoring shape and edge details. For IM, the compar-
ison between row 1 and row 5 shows that the intensity mod-
ulation can significantly improve the shadow quality by ad-
justing the shadow intensity. We also report a special case o
in row 4, where the intensity encoder input does not contain
background shadow mask. The comparison between row
4 and row 5 shows that background shadow mask is help-
ful, because the background shadow regions and their sur-
rounding regions could provide useful clues to infer shadow
intensity. For PP, the comparison between row 6 and row 7
demonstrates that post-processing effectively corrects color
shift and background variations, substantially reducing the
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Figure 5. Visual comparison of different methods on real composite images. From left to right are input composite image (a), foreground
object mask (b), results of ShadowGAN [53] (c), MaskshadowGAN [13] (d), ARShadowGAN [22] (e), SGRNet [12] (f), SGDiffusion (g).

Row | WL IM PP| GR, LR, GBJ LB|
1 -+ | 8285 59.753 0271 0534
2 |+ -+ | 8319 59491 0282 0.563
3 | + -+ | 7041 53.829 0249 0.492
4 | - o 4| 7410 56121 0269 0.536
5 | -+ + | 7357 54159 0262 0.526
6 | + + - |13.447 55231 0245 0487
7 |+ + + | 6098 53611 0245 0.487

Table 2. Ablation studies of our method on BOS test images from
DESOBAV2 dataset. WL is short for weighted loss and T means
without expanding shadow mask. IM is short for intensity modu-
lation and o means without using background shadow mask. PP is
short for post-processing.

global RMSE. We also provide the visual results of ablated
versions in the supplementary.

6.5. Real Composite Images

We compare different methods on real composite images
provided by [12], where background images and foreground
objects are from the DESOBA [12] test set. We train all
methods on DESOBAvV2 and finetune them on DESOBA.
The visual results of different methods are showcased in
Figure 5. These results confirm that SGDiffusion adeptly
synthesizes lifelike shadows with precise contours, loca-

tions, and directions, which are compatible with the back-
ground object-shadow pairs and foreground object informa-
tion. In contrast, previous methods often produce vague
and misdirected shadows. We provide more examples in
the supplementary.

Given the absence of ground-truth images for real com-
posite images, following [12], we opt for subjective eval-
uation, engaging 50 human raters in the user study. Each
participant is presented with image pairs from the results
generated by 5 methods, and asked to choose the image with
more realistic foreground shadow. Using the Bradley-Terry
model [2], we report the B-T scores in the supplementary,
which again proves the advantage of our method.

7. Conclusion

In this paper, we have contributed a large-scale shadow gen-
eration dataset DESOBAv2. We have also designed a novel
diffusion-based shadow generation method. Extensive ex-
perimental results show that our method is able to generate
plausible shadows for composite foregrounds, significantly
surpassing previous methods.
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