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Abstract

Data-free knowledge distillation is able to utilize the
knowledge learned by a large teacher network to augment
the training of a smaller student network without access-
ing the original training data, avoiding privacy, security,
and proprietary risks in real applications. In this line of re-
search, existing methods typically follow an inversion-and-
distillation paradigm in which a generative adversarial net-
work on-the-fly trained with the guidance of the pre-trained
teacher network is used to synthesize a large-scale sample
set for knowledge distillation. In this paper, we reexam-
ine this common data-free knowledge distillation paradigm,
showing that there is considerable room to improve the
overall training efficiency through a lens of “small-scale
inverted data for knowledge distillation”. In light of three
empirical observations indicating the importance of how to
balance class distributions in terms of synthetic sample di-
versity and difficulty during both data inversion and distil-
lation processes, we propose Small Scale Data-free Knowl-
edge Distillation (SSD-KD). In formulation, SSD-KD intro-
duces a modulating function to balance synthetic samples
and a priority sampling function to select proper samples,
facilitated by a dynamic replay buffer and a reinforcement
learning strategy. As a result, SSD-KD can perform dis-
tillation training conditioned on an extremely small scale
of synthetic samples (e.g., 10× less than the original train-
ing data scale), making the overall training efficiency one
or two orders of magnitude faster than many mainstream
methods while retaining superior or competitive model per-
formance, as demonstrated on popular image classification
and semantic segmentation benchmarks. The code is avail-
able at https://github.com/OSVAI/SSD-KD.

∗ Equal contribution. † Corresponding author.
This work was done when He Liu was an intern at Intel Labs China, super-
vised by Anbang Yao who conceived the project.

1. Introduction

For computer vision applications on resource-constrained
devices, how to learn portable neural networks yet with sat-
isfied prediction accuracy is the key problem. Knowledge
distillation (KD) [2, 12, 17, 22, 25, 33], which leverages
the information of a pre-trained large teacher network to
promote the training of a smaller target student network on
the same training data, has become a mainstream solution.
Conventional KD methods assume that the original train-
ing data is always available. However, accessing the source
dataset on which the teacher network was trained is usu-
ally not feasible in practice, due to its potential privacy or
security or proprietary or huge-size concerns. To relax the
constraint on training data, knowledge distillation under a
data-free regime has recently attracted increasing attention.

The basic idea of Data-free Knowledge Distillation (D-
KD) [3, 18, 21] is to construct synthetic samples for knowl-
edge distillation conditioned on the pre-trained teacher net-
work, which would match the underlying distribution of
the original training data. Existing top-performing D-KD
methods [4, 7, 8, 10, 24, 30, 31] generally adopt an ad-
versarial inversion-and-distillation paradigm. Under this
paradigm, (1) during the inversion process, a generator is
trained by taking the pre-trained teacher network as the dis-
criminator; (2) during the subsequent knowledge distilla-
tion process, the on-the-fly learned generator will synthe-
size pseudo samples for training the student network. How-
ever, adversarial D-KD methods usually require generating
a large number of synthetic samples (compared to the orig-
inal training dataset size) in order to guarantee trustworthy
knowledge distillation. This poses a heavy burden on train-
ing resource consumption, suppressing their use in real ap-
plications. In the recent work of [11], the authors present an
effective meta-learning strategy that seeks common features
and reuses them as initial priors to reduce the number of it-
eration steps required to reach the convergence of the gen-
erator. Although faster data synthesis can be attained, [11]
still needs to generate a sufficiently large number of syn-
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Figure 1. Comparison of knowledge distillation (KD) using original samples vs. synthetic samples, under the same training data scale:
5000 samples (10% of the CIFAR-10 training dataset size). In such small-scale KD regime, the student models (DeepInv [30] and SSD-
KD) trained on synthetic samples always show much better accuracy than the counterparts (Vanilla KD [12]) trained on original samples.

Easier Easier

(a) Difficulty distribution. (b) Diversity distribution.

Figure 2. Comparison of synthetic sample distributions collected from two top-performing adversarial D-KD methods (DeepInv [30] and
Fast10 [11]) and our SSD-KD on CIFAR-100 dataset. Comparatively, Fig. 2a shows that our method can better balance the difficulty
distribution of synthetic samples while encouraging the generator to invert more hard samples, and Fig. 2b further shows that our method
can better balance the diversity distribution of synthetic samples across different categories.

thetic samples to ensure effective knowledge distillation,
neglecting the efficiency of the following knowledge dis-
tillation process which will become the major bottleneck to
the overall training efficiency. In a nutshell, there is no re-
search effort made to improve the overall training efficiency
of D-KD via jointly considering data inversion and knowl-
edge distillation processes, to the best of our knowledge.

To remedy this critical gap, this paper presents the first
fully efficient D-KD approach termed Small Scale Data-free
Knowledge Distillation (SSD-KD). Our SSD-KD improves
the overall training efficiency of the adversarial inversion-
and-distillation paradigm from a novel “small data scale”
perspective. In this work, “data scale” refers to the total
number of inverted samples used in knowledge distillation
during a training epoch. The formulation of SSD-KD is in-
spired by three empirical observations. On different pairs
of teacher-student networks, we first observe that the stu-
dent networks trained on synthetic samples tend to show
much better performance than their corresponding counter-
parts trained on original samples when significantly reduc-
ing data scales of synthetic samples and original samples to
the same (e.g., 10% of the source training dataset size), as
illustrated in Fig. 1. Note that synthetic samples are gen-
erated with the guidance of the teacher network pre-trained
on the whole source dataset, which naturally reflect differ-
ent views of the original data distribution. Under a small
enough data scale, this makes synthetic samples have supe-
rior capability to original samples in fitting the underlying

distribution of the whole source dataset. This inspiring ob-
servation indicates that if we can construct a small-scale set
of high-quality synthetic samples, a promising way toward
fully efficient D-KD would be created. In principle, we
believe a high-quality small-scale synthetic dataset should
have well-balanced class distributions in terms of both syn-
thetic sample diversity and difficulty. However, our other
two observations indicate that existing D-KD methods in-
cluding both conventional and the most efficient designs do
not have good capabilities to balance the aforementioned
two class distributions of synthetic samples under a small
data scale, as illustrated in Fig. 2. Note that there already
exist a few D-KD methods to enhance the diversity of syn-
thetic samples [7, 10, 15, 30], but the diversity of synthetic
samples in terms of sample difficulty is not explored yet.

Driven by the above observations and analysis, we come
up with our SSD-KD which introduces two interdepen-
dent modules to significantly accelerate the overall train-
ing efficiency of the predominant adversarial inversion-and-
distillation paradigm. The first module of SSD-KD relies on
a novel modulating function that defines a diversity-aware
term and a difficulty-aware term to jointly balance the class
distributions of synthetic samples during both data synthe-
sis and knowledge distillation processes in an explicit man-
ner. The second module defines a novel priority sampling
function facilitated by a reinforcement learning strategy that
selects a small portion of proper synthetic samples from
candidates stored in a dynamic replay buffer for knowledge
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distillation, further improving the end-to-end training effi-
ciency. Benefiting from these two modules, SSD-KD has
two appealing merits. On one side, SSD-KD can perform
distillation training conditioned on an extremely small scale
of synthetic samples (10× less than original training data
scale), making the overall training efficiency one or two
orders of magnitude faster than many mainstream D-KD
methods while retaining competitive model performance.
On the other side, SSD-KD attains largely improved per-
formance in student model accuracy and maintains overall
training efficiency when relaxing the data scale of synthetic
samples to a relatively large number (which is still smaller
than those for existing D-KD methods). We validate these
merits of our method by lots of experiments on popular im-
age classification and semantic segmentation benchmarks.

2. Related Work
Data-free knowledge distillation. D-KD is originally ex-
plored by [18] which assumes that layer-wise activation
records of a well-trained teacher network pre-computed on
training samples is available. The prevailing inversion-and-
distillation paradigm for D-KD without reliance on the orig-
inal training data or the recorded metadata is introduced
in [21]. In the inversion process, synthetic training samples
are generated by leveraging the information learned by the
teacher network, whose distribution is expected to fit the un-
derlying distribution of the original training dataset. In the
distillation process, the student network is trained on syn-
thetic samples by forcing it to match the predictions of the
teacher network. Based on this paradigm, [4, 31] use gener-
ative adversarial networks for data inversion. Subsequent
D-KD methods mostly follow this adversarial inversion-
and-distillation paradigm. They try to improve the data
inversion process from different aspects, such as enhanc-
ing synthetic sample discrimination with contrastive learn-
ing [10] or an ensemble of generators [19], combating dis-
tribution shift with momentum adversarial learning [8] or
meta learning [24], and promoting adversarial learning with
data augmentation [15, 32]. Our method intends to improve
the overall training efficiency of the adversarial D-KD, and
differs from these methods both in focus and formulation.
Efficient synthetic data sampling. How to select proper
synthetic samples for knowledge distillation is essential in
D-KD research. Existing methods [8, 10, 11, 24] com-
monly rely on a memory bank to store synthetic samples,
and directly update synthetic samples without considering
the efficiency of the following knowledge distillation pro-
cess. In sharp contrast, our method introduces a rein-
forcement learning strategy that adaptively selects appropri-
ate synthetic samples to update a portion of existing sam-
ples in a dynamic replay buffer by explicitly measuring
their priorities in terms of jointly balancing sample diver-
sity and difficulty, significantly improving knowledge dis-

tillation efficiency. As far as we know, our method made
the first attempt to extend reinforcement learning methodol-
ogy [1, 13, 26] to address data-free knowledge distillation.

3. Method
3.1. Preliminaries: D-KD

Let ft(·; θt) be a teacher model pre-trained on the original
task dataset that is no longer accessible, the goal of D-KD
is to first construct a set of synthetic training samples x via
inverting the data distribution information learned by the
teacher model, on which a target student model fs(·; θs)
then can be trained by forcing it to mimic the teacher’s
function. Existing D-KD methods mostly use a generative
adversarial network g(; θg) for producing synthetic training
samples x = g(z; θg) from the latent noise input z, which
is trained by taking the teacher model as the discriminator.

The optimization of D-KD contains a common distilla-
tion regularization to minimize the teacher-student function
discrepancy LKD(x) = DKD(ft(x; θt)∥fs(x; θs))1 based
on the KL-divergence, and a task-oriented regularization
LTask(x), e.g., the cross-entropy loss using the teacher’s
predication as the ground truth. Besides, since D-KD is
primarily based on the assumption that the teacher model
has been optimized to be capable of capturing the source
training data distribution after pre-training, recent D-KD
methods [7, 29, 30] introduce an extra loss to regularize
the statistics ( Batch-Normalization (BN) parameters) of the
training data distribution during the data inversion process,

LBN(x) =
∑
l

∥∥µl(x)−E(µl)
∥∥
2
+
∥∥σ2

l (x)−E(σ2
l )
∥∥
2
, (1)

where µl(·) and σl(·) denote the batch-wise mean and vari-
ance estimates of feature maps at the l-th layer, respectively;
E(·) over the BN statistics can be approximately substituted
by running mean or variance.

The effectiveness of D-KD heavily depends on the qual-
ity of synthetic samples which are inverted from leverag-
ing the knowledge of the pre-trained teacher model. The
prevailing adversarial D-KD paradigm consists of two pro-
cesses, namely data inversion and knowledge distillation.
From both perspectives of efficiency and efficacy, on the
one hand, the data inversion process largely affects the
optimization performance of the student model; on the
other hand, the training time cost of knowledge distillation
emerges as a significant constraint to the overall training ef-
ficiency of D-KD.

3.2. Our Design: SSD-KD

Regarding our SSD-KD, we focuses on improving the ad-
versarial D-KD paradigm through a lens of “small-scale

1Concretely, ft(x; θt) and fs(x; θs) are the outputted logits (before
softmax) of the teacher model and the student model, respectively.
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Figure 3. Comparison of optimization pipelines for existing adversarial D-KD methods including both conventional family [4, 7, 20, 30]
(left) and more efficient family [10, 11] (middle), and our SSD-KD (right). Our SSD-KD formulates a reinforcement learning strategy that
can flexibly seek appropriate synthetic samples to update a portion of existing samples in a dynamic replay buffer by explicitly measuring
their priorities in terms of jointly balancing sample diversity and difficulty distributions. See the method section for notation definitions.

inverted data for knowledge distillation”. SSD-KD lays
emphasis on instructing the data inversion process with the
feedback of both the pre-trained teacher and the knowl-
edge distillation process, significantly accelerating the over-
all training efficiency. Following the notations in the previ-
sion subsection, the optimization goal of our SSD-KD is
defined as

min
fs

max
g

Ex=δ◦g(z)
(
LBN(x) + LKD(x) + ϕ(x)LTask(x)

)
, (2)

where,
• We adopt a diversity-aware modulating function ϕ(x) that

allocates each synthetic sample with a different priority
regarding its predicted category by the teacher model, as
presented in Sec. 3.3.

• Under the constraint of BN estimates, with ϕ(x), we en-
courage the generator to explore as tough synthetic sam-
ples (w.r.t. the teacher model) as possible, as introduced
in Sec. 3.3.

• Instead of applying a random sampling strategy to se-
lect samples for knowledge distillation, we adopt a re-
weighting strategy to control the sampling process. We
abuse notation slightly with ◦ to represent applying the
strategy based on priority sampling function δ, with more
details in Sec. 3.4.

• Each synthetic sample is not only prioritized by its modu-
lating function ϕ(x) but also is reweighted at the sampling
stage that reuses the same intermediate values as ϕ(x).
Although the D-KD pipeline allows training samples to

be synthesized and served for training the student model
on the same task. However, there is a large extent of data
redundancy that hinders the training efficiency of D-KD
methods. In the following sections, we detail our SSD-KD,
a fully efficient D-KD method that is capable of using an
extremely small scale of synthetic data yet achieving com-
petitive performance compared to existing D-KD methods.

The pipeline of SSD-KD is summarized in Alg. 1 and
the comparison of optimization pipelines for existing ad-
versarial D-KD methods including both conventional fam-
ily [4, 7, 20, 30] and more efficient family [10, 11], and our

SSD-KD is shown in Fig. 3.

3.3. Data Inversion with Distribution Balancing

We provide Fig. 2 to demonstrate the data redundancy of
D-KD that results from a large imbalance of the synthetic
data. The left two sub-figures of Fig. 2 depict the distribu-
tion of categories predicted by the teacher model, indicating
a significant imbalance in data categories. The right two
sub-figures of Fig. 2 show sample accounts of different bars
that correspond to different prediction difficulties (the diffi-
culty is measured by the predicted probability by the teacher
model). For D-KD, it indicates that generating samples with
only the instruction of teacher-student discrepancy results
in a sharp distribution over the sample difficulty and tends
to obtain easily predicted data samples. We argue that for
the D-KD task where data samples are all synthesized, the
data-generating process needs to consider both the teacher-
student discrepancy and the pre-trained knowledge of the
teacher itself, by which our SSD-KD proposes diversity-
aware and difficulty-aware data synthesis, as detailed below.

Diversity-aware balancing. We first propose to address
the issue of imbalanced sample difficulty in the data inver-
sion process. Specifically, we maintain a replay buffer B
that stores a constant amount (denoted as |B|) of synthetic
data samples. For each data sample x in B, we penalize its
total amount of samples that share the same predicted cat-
egory (by the teacher model) with x. To realize this, we
adopt a diversity-aware balancing term that encourages the
generator to synthesize samples with infrequent categories,
which will be shown in Eq. (3).

Difficulty-aware balancing. Drawing inspiration from
the field of object detection that utilizes focal loss for largely
imbalanced samples [16, 27], for each sample x, we fur-
ther introduce a difficulty-aware balancing term on the pre-
dicted probability pT (x). Here, difficult synthetic samples
are considered as those with low-confidence predictions by
the teacher model, which are encouraged by the difficulty-
aware balancing term as will be given in Eq. (3).

In summary, we introduce a modulating function ϕ(x) to
adjust the optimization of the generator based on the pre-
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diction feedback from the pre-trained teacher model. ϕ(x)
is expected to balance the category distribution and dynam-
ically distinguish between easy and hard synthetic samples,
by which easy samples no longer overwhelm the distilla-
tion process. Formally, for a synthetic data sample x ∈ B,
its modulating function ϕ(x) is computed by

ϕ(x) =
(
1− 1

|B|
∑
x′∈B

IcT (x′)=cT (x)

)
︸ ︷︷ ︸

diversity-aware balancing

(
1− pT (x)

)γ

︸ ︷︷ ︸
difficulty-aware balancing

, (3)

where cT (x) and pT (x) refer to the predicted category
index and probability (or confidence) by the pre-trained
teacher model, respectively; IcT (x′)=cT (x) denotes an indi-
cator function that equals to 1 if the predicted category of x′

is the same with that of x, while otherwise 0; γ is a hyper-
parameter.

We highlight two properties of the modulating function
ϕ(x). Firstly, for the data sample x with a high predic-
tion certainty w.r.t. the teacher model (i.e., considered as
an easy sample), ϕ(x) approaches to a low value and thus
results in low impact on the task-oriented loss LTask(x) in
Eq. (2). Secondly, when the category distribution of syn-
thetic data samples in B is largely imbalanced as predicted
by the teacher network, the sample x of which the category
shares with more samples in B is penalized and thus the
corresponding LTask(x) is weakened by ϕ(x).

Although Eq. (3) implies that the value of the modulating
function ϕ(x) is partially determined by the current replay
buffer B, note that B changes dynamically and is also af-
fected by ϕ(x). This is due to that the term ϕ(x)LTask(x)
in Eq. (2) directly optimizes the generator that synthesizes
data samples to compose B. In this sense, the balancing in
category diversity is maintained during training given the
mutual effects of B and ϕ(x). We find it particularly impor-
tant in the data inversion process for balancing categories of
data samples.

With both balancing terms, as shown in Fig. 2, our
method (SSD-KD) generates mild sample distributions in
terms of both sample category and difficulty.

3.4. Distillation with Priority Sampling

The original prioritized experience replay method [26]
reuses important transitions more frequently and learns
more efficiently. Differently, rather than obtaining the
reward from the environment, our prioritized sampling
method is designed to fit in data-free knowledge distillation
and get feedback from the framework itself. In other words,
the prioritized sampling method performs the opposite role
of the previous data-free knowledge distillation methods: it
focuses on training a sparse set of highly prioritized samples
instead of uniform sampling to speed up training.

By Eq. (3), we sample the synthetic data x from the cur-
rent replay buffer B. Instead of uniformly sampling x, we

Algorithm 1: SSD-KD
Input: Number of training epochs E; number of

iterations for data inversion Tg; number of
iterations for distillation Tkd; pre-trained
teacher model ft(·; θt); student network
fs(·; θs)

Output: The optimized student model fs(·; θs)
1 Initialize replay buffer B ← ∅ and fs(·; θs)
2 for e = 1 to E do
3 (1) Data Inversion with Distribution Balancing:
4 Initialize a generative network g(·; θg)
5 z ← N (0, 1)
6 for i = 1 to Tg do
7 x← g(z; θg)
8 Compute the overall loss by Eq. (2)
9 Update z and θg

10 end
11 (2) Distillation with Priority Sampling:
12 Compute the importance-sampling weight

wi−1(x)
13 Compute the sample priority δi(x)
14 B ← B ∪ {x, δi(x)}
15 Remove old samples to keep |B| a constant
16 for j = 1 to Tkd do
17 Sample a small-scale mini-batch M from B
18 Compute the distillation loss LKD(x) in

Eq. (2), where x ∈M
19 Compute the importance-sampling weight

wi(x)
20 Compute the sample priority δi+1(x)
21 Update old samples {x, δi(x)} to

{x, δi+1(x)} in B
22 Update θs
23 end
24 end
25 Return fs(·; θs)

propose to modulate the sampling probability by a sampling
strategy termed Priority Sampling (PS). The basic function
of PS is to measure the importance of each sample x in B,
by which we introduce a priority sampling function δi(x),

δi(x) = wi−1(x)KL(ft(x; θt)||fs(x; θs)), (4)

where as mentioned in Sec. 3.1, KL denotes the KL-
divergence between the softmax outputs of logits ft(x; θt)
and fs(x; θs); θt, θs depend on the training step i; wi(x)
is the calibration term [26] for normalizing samples in B,
as will be formalized in Eq. (5), especially, when i = 0,
w−1(x) = 1.

The training of knowledge distillation with random up-
dates relies on those updates corresponding to the same dis-
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Table 1. Performance comparison of Fast2 [11] (the current most efficient D-KD method) and our SSD-KD, in terms of top-1 classification
accuracy (%) and overall training time cost (hours). Our SSD-KD performs with a very small training data scale: 5000 synthetic samples,
i.e., 10% of the original training dataset size. All image classification results in this and the other tables are averaged over three independent
runs, and the methods “Teacher” and “Student” are performed on the whole original training dataset.

Dataset Method ResNet-34 VGG-11 WRN40-2 WRN40-2 WRN40-2
ResNet-18 ResNet-18 WRN16-1 WRN40-1 WRN16-2

CIFAR-10

Teacher 95.70 92.25 94.87 94.87 94.87
Student 95.20 92.20 91.12 93.94 93.95

Fast2 [11] 92.62(3.92h) 84.67(3.02h) 88.36(1.46h) 89.56(2.37h) 89.68(1.70h)
SSD-KD 92.92(1.11h) 89.56(0.77h) 88.07(0.77h) 90.12(0.96h) 91.84(0.78h)

CIFAR-100

Teacher 78.05 71.32 75.83 75.83 75.83
Student 77.10 77.10 65.31 72.19 73.56

Fast2 [11] 69.76(4.02h) 62.83(2.99h) 41.77(1.44h) 53.15(2.26h) 57.08(1.72h)
SSD-KD 73.05(1.12h) 66.66(0.78h) 51.96(0.77h) 59.60(0.97h) 61.44(0.78h)

tribution as its expectation. Prioritized sampling data intro-
duces bias since it might change the data distribution, and
affect the solution that the estimates will converge to. Thus
we correct the bias by introducing an importance-sampling
(IS) weight wi(x) for the data sample x:

wi(x) = (N · Pi(x))
−β , (5)

where β is a hyper-parameter; Pi(x) is the probability of
sampling transition defined by

Pi(x) =

(
|δi(x)|+ ϵ

)α∑
x′∈B

(
|δi(x′)|+ ϵ

)α , (6)

where ϵ is a small positive constant which prevents the
edge-case of transitions not being selected once their pri-
ority is zero.

The priority sampling function δ(x) has two noteworthy
properties. Firstly, as the delta value increases, δ(x) reflects
a greater information discrepancy between the teacher and
student models for the synthetic samples in the current B.
The student model should therefore be optimized from sam-
ples with greater information discrepancy, as this facilitates
the faster acquisition of the teacher model. Secondly, δ(x)
dynamically changes with each update iteration of the stu-
dent and generative models. Consequently, when the stu-
dent model acquires the teacher model’s capabilities on cer-
tain samples, it continues to learn from samples with larger
differences relative to the teacher model based on the new
sample distribution. This further enhances the performance
of the student model.

4. Experiment
4.1. Experimental Details

We conduct comprehensive experiments on image classifi-
cation and semantic segmentation tasks to evaluate the ef-
fectiveness and study the design of our SSD-KD.

Datasets. For image classification experiments, we use
CIFAR-10 and CIFAR-100 [14], two most popular datasets

for D-KD research. For semantic segmentation experi-
ments, we use the NYUv2 dataset [28]. On each dataset,
the baseline models are trained with its standard data split.

Training Setups. We follow the settings of [11] for ba-
sic experiments and comparisons. Regarding experiments
on the CIFAR-10 and CIFAR-100 datasets, we use 5 dif-
ferent teacher-student model pairs having either the same
type or different type network architectures (see Table 1,
2). Regarding experiments on the NYUv2 dataset, we use
two Deeplabv3 models [6] as a teacher-student model pair
(see Table 3). Unless otherwise stated, we always adopt the
same basic settings as in [11] for experiments, including the
number of training epochs, the optimizer, the weight decay,
etc. Detailed settings are put in the supplementary material.

Evaluation Metrics. Besides comparing the student
model accuracy (top-1 accuracy for image classification and
mean Intersection over Union (IoU) for semantic segmen-
tation), we also compare the overall training time cost of
existing mainstream D-KD methods [4, 7, 10, 11, 20, 30]
and our SSD-KD. For each teacher-student model pair, we
meticulously record the total time cost (hours) for each run
of the end-to-end training by all methods. In order to guar-
antee a fair comparison, all training speed assessments are
performed on 1 NVIDIA V100 GPU using 12 cores of Intel
Xeon Gold 6240R CPU. Our experiments are implemented
with the PyTorch [23] library. For each teacher-student
model pair, the experiment is conducted with three inde-
pendent runs for all methods, and in comparison we report
the averaged results, unless otherwise stated.

4.2. Experimental Results

Results on image classification task. As the main focus
of our work is to improve the overall training efficiency of
the adversarial data-free knowledge distillation paradigm,
we first compare the proposed SSD-KD with the current
most efficient D-KD method Fast2 [11] on the CIFAR-10
and CIFAR-100 datasets. From the results shown in Table
1, we can observe: (1) on the CIFAR-10 dataset, our SSD-
KD (using a very small data scale: 5000 synthetic samples,
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Table 2. Performance comparison of existing top-performing D-KD methods and our SSD-KD, in terms of top-1 classification accuracy
(%) and overall training time cost (hours). For our SSD-KD, we relax the data scale of synthetic samples to be similar to that for Fast5.

Dataset Method ResNet-34 VGG-11 WRN40-2 WRN40-2 WRN40-2
ResNet-18 ResNet-18 WRN16-1 WRN40-1 WRN16-2

CIFAR-10

Teacher 95.70 92.25 94.87 94.87 94.87
Student 95.20 92.20 91.12 93.94 93.95

DeepInv [30] 93.26(25.62h) 90.36(13.19h) 83.04(10.62h) 86.85(13.84h) 89.72(11.67h)
CMI [10] 94.84(15.49h) 91.13(10.99h) 90.01(9.87h) 92.78(11.57h) 92.52(10.58h)
DAFL [4] 92.22(303.50h) 81.10(209.78h) 65.71(96.57h) 81.33(157.44h) 81.55(118.52h)
DFQ [7] 94.61(152.16h) 90.84(104.93h) 86.14(48.40h) 91.69(78.81h) 92.01(59.40h)

ZSKT [20] 93.32(304.11h) 89.46(209.65h) 83.74(96.75h) 86.07(157.51h) 89.66(118.82h)
Fast5 [11] 93.63(4.34h) 89.94(3.15h) 88.90(1.61h) 92.04(2.44h) 91.96(1.89h)

Fast10 [11] 94.05(4.72h) 90.53(3.22h) 89.29(1.72h) 92.51(2.48h) 92.45(2.05h)
SSD-KD 94.26(4.20h) 90.67(2.95h) 89.96(1.48h) 93.23(2.30h) 93.11(1.78h)

CIFAR-100

Teacher 78.05 71.32 75.83 75.83 75.83
Student 77.10 77.10 65.31 72.19 73.56

DeepInv [30] 61.32(25.88h) 54.13(13.13h) 53.77(10.62h) 61.33(13.86h) 61.34(11.68h)
CMI [10] 77.04(15.42h) 70.56(11.28h) 57.91(10.01h) 68.88(11.57h) 68.75(10.53h)
DAFL [4] 74.47(303.54h) 54.16(209.82h) 20.88(96.62h) 42.83(157.49h) 43.70(118.67h)
DFQ [7] 77.01(152.18h) 66.21(105.14h) 51.27(48.47h) 54.43(78.83h) 64.79(59.48h)

ZSKT [20] 67.74(304.13h) 54.31(209.63h) 36.66(96.87h) 53.60(157.68h) 54.59(118.84h)
Fast5 [11] 72.82(4.35h) 65.28(3.06h) 52.90(1.56h) 61.80(2.35h) 63.83(1.86h)

Fast10 [11] 74.34(4.50h) 67.44(3.12h) 54.02(1.65h) 63.91(2.42h) 65.12(1.95h)
SSD-KD 75.16(4.22h) 68.77(2.94h) 55.61(1.52h) 64.57(2.27h) 65.28(1.78h)

i.e., 10% of the original training dataset size) shows large
improvements in training efficiency to Fast2 (at least 1.90×
and at most 3.92× training speedup, on 5 teacher-student
model pairs), and gets better student models on 4 out of
5 teacher-student model pairs; (2) on the more challeng-
ing CIFAR-100 dataset, our SSD-KD shows a very simi-
lar training speedup trend against Fast2 as on the CIFAR-
10 dataset, but gets significantly better student models on
all 5 teacher-student model pairs (at least 3.29% and at
most 10.19% absolute top-1 accuracy gain to Fast2). The
superior performance of SSD-KD against Fast2 validates
the efficacy of our small-scale data inversion and sampling
mechanism which can flexibly balance class distributions
in terms of synthetic sample diversity and difficulty during
both data inversion and distillation processes.

Next, we compare the proposed SSD-KD with exist-
ing top-performing D-KD methods including DeepInv [30],
CMI [10], DAFL [4], DFQ [7], ZSKT [20], Fast5 and
Fast10 [11]. In order to get improved student model per-
formance, we relax the data scale of synthetic samples in
our SSD-KD to be similar to that for Fast5. Experimental
results are summarized in Table 2. Compared to these main-
stream D-KD methods, our SSD-KD gets very competitive
performance in student model accuracy, and significantly
better performance in overall training efficiency, on all 5
teacher-student model pairs.

In light of the results in Table 1, 2, it can be seen that our
SSD-KD makes the overall training efficiency one or two
orders of magnitude faster than most D-KD methods while
retaining competitive student model performance.

Table 3. Performance comparison on the NYUv2 dataset. The
teacher model is pre-trained on the ImageNet dataset and fine-
tuned on the NYUv2 dataset, and the student model is trained from
scratch. The results of reference methods are collected from [11].

Method Training Data Scale mIoU (%)
Teacher: Deeplabv3-ResNet50 1,449 NYUv2 0.519

Student: Deeplabv3-Mobilenetv2 1,449 NYUv2 0.375
KD [12] 1,449 NYUv2 0.380

DFND [5] 14M (ImageNet) 0.378
DFAD [9] 960K (synthetic) 0.364
DAFL [4] 960K (synthetic) 0.105

Fast10 [11] 17K (synthetic) 0.366
SSD-KD 16K (synthetic) 0.384

Results on semantic segmentation task. To further val-
idate the generalization ability of our method, we compare
the performance of SSD-KD with existing D-KD methods
on the NYUv2 dataset. Table 3 summarizes the results. We
can see that our SSD-KD not only achieves state-of-the-art
performance in terms of model accuracy, but also is signif-
icantly more efficient than other D-KD methods in terms
of the training data scale. The overall training time cost
for our SSD-KD and Fast10 is 8.9 hours and 9.5 hours, re-
spectively. Besides, the student model trained by SSD-KD
even outperforms the baseline model trained on the original
training data, as NYUv2 is a small-scale dataset.

4.3. Ablation Studies

Effect of the synthetic data scale. So far, we have al-
ready demonstrated that SSD-KD has the appealing capa-
bility to attain efficient and effective end-to-end distillation
training using a small amount of synthetic samples. To bet-
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Figure 4. Performance comparison of SSD-KD under different synthetic data scales against the original training dataset size, in terms of
top-1 classification accuracy (%) and overall training time cost (hour).

Table 4. Effect of two core modules in SSD-KD. PS: the priority sampling function, Difficulty|Diversity: the difficulty|diversity-aware
balancing term in the modulating function, see Eq. (3).

Dataset Baseline PS Difficulty Diversity
ResNet-34
ResNet-18

WRN40-2
WRN16-1

CIFAR-10

✓ 87.35(1.19h) 80.47(0.84h)
✓ ✓ 90.28(1.01h) 87.19(0.69h)
✓ ✓ 88.57(1.20h) 83.12(0.86h)
✓ ✓ 89.12(1.21h) 84.31(0.87h)
✓ ✓ ✓ 89.95(1.21h) 85.79(0.88h)
✓ ✓ ✓ ✓ 92.92(1.11h) 88.07(0.77h)

CIFAR-100

✓ 64.05(1.19h) 41.67(0.84h)
✓ ✓ 71.70(1.01h) 49.70(0.69h)
✓ ✓ 66.94(1.20h) 43.96(0.86h)
✓ ✓ 68.52(1.21h) 46.34(0.87h)
✓ ✓ ✓ 70.85(1.21h) 47.82(0.88h)
✓ ✓ ✓ ✓ 73.05(1.12h) 51.96(0.77h)

SSD-KD Fast10

Figure 5. Visualization examples of synthetic image samples gen-
erated by Fast10 and our SSD-KD for the NYUv2 dataset.

ter explore the boundary of this capability, we conduct an
ablation with three teacher-student model pairs, including
ResNet34→ResNet18, VGG11→ResNet18, and WRN40-
2→WRN16-1. In the experiments, we decrease the syn-
thetic data scale used in SSD-KD [11] from 50,000(100%
relative to the original training data size) to {10000(20%),
5000(10%), 2500(%5), 500(1%)} for the CIFAR-10 and
CIFAR-100 datasets. As shown in Fig. 4, the accuracy
of the student model trained by SSD-KD remains stable
across a relatively large synthetic data scale range, for all
teacher-student model pairs. When decreasing the synthetic
data scale, the overall training time cost appears to decrease
nearly linearly, while the student model accuracy drop is
mild (less than 10% even for the synthetic data scale 500).

Effect of the core modules. In Table 4, we provide
an ablation to scrutinize our SSD-KD systematically. We

observe that: (1) the two modulating functions (consisting
of a diversity-aware term and a difficulty-aware term, see
Eq. (3)) and the priority sampling function, are both critical
to our SSD-KD; (2) the combination of them strikes a good
tradeoff between model accuracy and training efficiency.

Visualization of data inversion. Fig. 5 shows examples
of synthetic images inverted by Fast10 and our SSD-KD for
the NYUv2 dataset. Compared to Fast10, our method can
better invert texture information and has less noise.

5. Conclusion
In this paper, we presented SSD-KD, the first fully efficient
method to advance adversarial data-free knowledge distilla-
tion research. Benefiting from a small-scale data inversion
and sampling mechanism based on a modulating function
and a priority sampling function, SSD-KD can flexibly bal-
ance class distributions in terms of synthetic sample diver-
sity and difficulty during both data inversion and distillation
processes, attaining efficient and effective data-free knowl-
edge distillation. Extensive experiments on image classifi-
cation and semantic segmentation benchmarks validate the
efficacy of SSD-KD. We hope our work can inspire future
research on efficient D-KD designs.
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