
TexOct: Generating Textures of 3D Models with Octree-based Diffusion

Jialun Liu, Chenming Wu1*, Xinqi Liu, Xing Liu, Jinbo Wu, Haotian Peng,
Chen Zhao, Haocheng Feng, Jingtuo Liu, Errui Ding

Department of Computer Vision Technology(VIS), Baidu Inc.
liujialun@baidu.com

Abstract

This paper focuses on synthesizing high-quality and
complete textures directly on the surface of 3D models
within 3D space. 2D diffusion-based methods face chal-
lenges in generating 2D texture maps due to the infinite
possibilities of UV mapping for a given 3D mesh. Utiliz-
ing point clouds helps circumvent variations arising from
diverse mesh topologies and UV mappings. Nevertheless,
achieving dense point clouds to accurately represent tex-
ture details poses a challenge due to limited computational
resources. To address these challenges, we propose an ef-
ficient octree-based diffusion pipeline called TexOct. Our
method starts by sampling a point cloud from the surface of
a given 3D model, with each point containing texture noise
values. We utilize an octree structure to efficiently represent
this point cloud. Additionally, we introduce an innovative
octree-based diffusion model that leverages the denoising
capabilities of the Denoising Diffusion Probabilistic Model
(DDPM). This model gradually reduces the texture noise on
the octree nodes, resulting in the restoration of fine texture.
Experimental results on ShapeNet demonstrate that TexOct
effectively generates high-quality 3D textures in both un-
conditional and text / image-conditional scenarios.

1. Introduction
3D models, represented by polygon meshes, are widely
used in visual applications like videos, games, and VR /
AR scenarios. The quality of texture maps is vital for the
appearance of 3D models across various applications. In
previous decades, creating high-quality textures typically
required experienced designers to invest substantial effort,
resulting in considerable consumption of both time and
cost. However, recent advancements in creating content
with neural networks have brought new energy and perspec-
tive to this area of computer vision and graphics.

A common method for handling texture maps is UV rep-
resentation, which converts 3D textures to a set of 2D im-

*Corresponding author.

Text2Tex Ours Point-UV (Stage-1)

Occlusion

VS

(b)

VS

(a)

Figure 1. Comparisons with different methods: (a) In
Text2Tex [8], self-occlusion (the blue box) results in texture er-
rors (the red box). In contrast, our method of directly generat-
ing textures in 3D space avoids issues caused by self-occlusion.
(the green box). (b) Point-UV [43] (Stage-1) utilizes limited point
cloud data to capture 3D information, resulting in rough textures
(the purple box). In comparison, our method generates high-
quality details (the orange box) with denser point cloud.

ages using UV coordinate transformation. This method ef-
fectively links 3D texture generation with 2D image genera-
tion techniques, such as GAN [13, 18, 31, 35, 46] and Diffu-
sion models [10, 27, 29, 30]. However, constructing a uni-
fied UV mapping for all shapes of 3D objects presents chal-
lenges, making it difficult to generate 3D textures from 2D
UV space directly. To bypass the challenges, recent stud-
ies [4, 5, 8, 32] investigated the application of 2D generation
techniques for producing multi-view textures for 3D ob-
jects. These methods focus on ensuring consistency across
different views, which is crucial for realistic and coherent
texturing. However, due to self-occlusion, these methods
face limitations in finding an optimal set of views that can
adequately cover the entire surface of a 3D object. This be-
comes an instance of the notorious NP-hard set cover prob-
lem [11], and maintaining pixel-perfect multi-view consis-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4284

tency is arduous. For example, in Figure 1-(a), the surface
texture generated by Text2Tex [8] for the chair is incorrect.
This error occurs because the optimization view is obscured
by self-occlusion.

To create a comprehensive and consistent texture for a
given 3D mesh, one straightforward method is to gener-
ate the texture directly on the object’s surface in 3D space.
Among various techniques, point clouds are widely recog-
nized as an effective method for representing 3D informa-
tion. The level of detail in textures represented by point
clouds is influenced by the density of points sampled on
the surface. In essence, the greater the number of points
sampled, the more detailed the texture representation on the
3D object becomes. However, owing to constraints of the
GPU memory capacity, previous texture generation meth-
ods [7, 9, 12, 42, 43] have been limited to synthesizing
relatively low-resolution textures with low density of point
clouds. As illustrated in Figure 1-(b), Point-UV [43](Stage-
1) utilizes only a few points, leading to the generation of
rough 3D textures.

In this paper, we introduce a novel octree-based diffusion
approach called TexOct that directly optimizes texture gen-
eration in 3D space. TexOct effectively alleviates the above
issues, i.e., 1) texture errors caused by self-occlusion, and
2) texture degradation caused by sparse sampling.

TexOct consists of two key components, i.e., octree con-
struction and octree-based diffusion model learning. Firstly,
we utilize the octree structure to represent the dense point
cloud sampled from the surface of 3D model. Octree is a
highly efficient data structure that organizes the point cloud
in a tree-like format. Octree begins with the initial point
cloud as the root node and recursively divides it into 8 chil-
dren nodes, merging points with similar coordinates. The
subdivision will continue until we reach a predetermined
depth of the octree. Secondly, The constructed octree is
fed into TexOct, which aims to synthesize a realistic tex-
ture from the noisy texture values assigned to each octree
node. Specifically, TexOct is implemented as a U-Net ar-
chitecture with ResNet blocks. It incorporates octree-based
operators developed in OCNN [37] to perform DDPM pro-
cess on octree structure. Additionally, TexOct also supports
conditional texture generation. We develop an octree-based
cross-attention module after each ResNet block (except for
the first one), allowing for effective text / image information
integration into the generation process, thereby enabling
texture generation to be guided by text / image conditions.

The main contributions of this paper can be summarized
as follows:
• We introduce an end-to-end 3D texture generation ap-

proach in 3D space, avoiding texture map errors caused
by self-occlusion in multi-view generation approaches.

• We propose an innovative octree-based 3D diffusion
method that effectively utilizes the densely sampled point

cloud on the 3D model’s surface for high-quality texture
generation.

• The qualitative and quantitative evaluations demonstrate
that our method performs well in unconditional and con-
ditional generation contexts. Additionally, the user study
indicates that the texture generated by our method is more
favored by users.

2. Related work
Texture Generation. In recent years, several methods [2,
15, 25, 41] have been proposed for modeling and generating
textures on 3D shapes. Chen et al. [10] introduced AUV-
Net for modeling texture representation on 3D shapes. It
embeds 3D surfaces into a 2D-aligned UV space for easy
texture synthesis and transfer. The alignment is learned
by a network in an unsupervised manner. Siddiqui et al.
[32] proposed an end-to-end trainable GAN equipped with
novel convolutional and pooling layers, that directly oper-
ate on 3D surfaces. Their model learns to synthesize re-
alistic textures for 3D shapes from the 2D image domain,
addressing the problem of insufficient data. Cao et al. [5]
proposed a 3D texture generation approach utilizing a 2D
diffusion model. Given a 3D shape, the method aggregates
multi-view latent texture maps at each denoising step using
a consistent UV map. Their approach fuses multiple de-
noising processes to generate geometrically consistent 3D
textures without any fine-tuning. Bokhovkin et al. [4] pro-
posed a GAN-based approach for realistic texture genera-
tion given 3D shapes. The method learns a texture manifold
on mesh faces utilizing densely sampled points and 2D ad-
versarial training loss. The approach generalizes to image-
guided 3D texture synthesis. Chen et al. [8] proposed a
multi-view projection-based approach for 3D texture syn-
thesis utilizing a 2D diffusion model with text conditioning.
The method allows for dynamic mask generation to prevent
3D inconsistencies and artifacts. They also employ a view
sequence generation scheme to optimally update the par-
tial texture. Yu et al. [43] propose a two-stage framework
involving point diffusion and UV diffusion. In the coarse
stage, The method samples a number of points on the mesh
surface and generates a coarse texture using the point diffu-
sion model. In the fine stage, a UV diffusion model is used
to refine the coarse texture, resulting in a smooth texture im-
age. Richardson et al. [28] proposed a method to texture a
3D shape by iteratively projecting 2D images back onto its
surface. They utilized a depth-guided diffusion model for
generating these 2D images and introduced an aggregation
strategy to minimize artifacts.

3D Model Generation with Textures. Gupta et al. [14]
proposed a method for simultaneously generating the mesh
and texture of 3D content. This method utilizes a tri-plane
Variational Autoencoder (VAE) to learn representations of
textured meshes. To enable text-controlled generation, a

4285

2D diffusion model is employed within the latent space of
the tri-plane VAE. Wu et al. [39] proposed Sin3DM which
learns geometry and texture from a single 3D textured mesh.
The method employs a latent diffusion model within the tri-
plane latent space. Various applications such as retargeting,
outpainting, and local editing are demonstrated. Zheng et
al. [45] proposed a two-stage diffusion approach for gen-
erating novel shapes controlled by user-defined 2D sketch
images. In the first stage, the method learns to predict the
occupancy field of the generated shape using the sketch im-
age as guidance. In the second stage, an additional diffusion
model is incorporated to super-resolve the occupancy vox-
els, thereby generating high-resolution 3D shapes.

3D Diffusion. Zeng et al. [44] proposed a latent dif-
fusion model that operates on point clouds. The model
includes a VAE and two latent diffusion networks, which
construct hierarchical representations of point clouds using
the two diffusion networks. Yu et al. [43] focused on 3D
texture generation, they proposed to apply diffusion models
on a given point cloud to generate texture in a progressive
manner. Nakayama et al. [21] studied controllable 3D point
cloud generation. They proposed an approach that models
the independent parts of objects. Wu et al. [40] focused on
controlling the point cloud generation using sketch images
and texts. They proposed an approach that first extracts fea-
tures from an image and a prompt and then generates a point
cloud based on the features using a joint diffusion pipeline.
Nichol et al. [22] proposed a transformer-based approach
for point cloud generation. Their approach employs two dif-
fusion models sequentially for text-to-image and image-to-
point cloud conversions. Wu et al. [38] addressed the need
for fast point cloud generation. They proposed an approach
that optimizes the curvy learning trajectory of point diffu-
sion into a straight path and develops a strategy to shorten
the path.

3. Method
In this section, we describe how the proposed approach ef-
fectively models accurate textures represented by a dense
point cloud. Given a 3D object, we aim to learn a diffusion
model for directly generating a realistic and high-quality 3D
texture for it in 3D space. To accomplish this, we intro-
duce a novel and efficient diffusion model called TexOct,
which performs the denoising process of DDPM on the oc-
tree structure. The framework of our method is illustrated
in Figure 2. Firstly, we sample a large number of points on
the surface of a 3D mesh to capture the detailed structure
of the object. To efficiently process the point cloud data,
we represent the point cloud using an octree. Secondly, we
propose an octree-based diffusion model, which is a U-Net
architecture. This model takes the octree as input and grad-
ually denoises the texture noise value of the octree. Next,
through a process called “Reverse Octree,” we obtain a col-

ored point cloud. Finally, we map the colored points back
onto the mesh to generate a textured mesh.

3.1. Preliminary

Before introducing our method, we provide a brief overview
of some fundamental concepts necessary for understand-
ing diffusion models (DDPMs) [17, 23]. Gaussian dif-
fusion models assume a forward noising process which
gradually applies noise to real data x0. The forward pro-
cess is the variance-preserving Markov process [33] speci-
fied as q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where con-

stants ᾱt are hyperparameters. With the reparameterization
trick, we can express xt as

√
ᾱtx0 +

√
1− ᾱtϵt, where

ϵt ∼ N (0, I). For the reverse process, diffusion mod-
els are trained to learn a denoising network for inverting
the forward process. The reverse process is represented as
pθ(xt−1|xt) = N (µθ(xt),Σθ(xt)), where neural networks
are used to predict the statistics of pθ. The denoising model
is trained with the variational lower bound [19] of the log-
likelihood of x0, which simplifies to:

L = −pθ(x0|x1)+
∑
t

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

(1)
where DKL(·||·) represents the KL divergence that measure
the discrepancy the mean and covariance of two distribu-
tions. Since both q(xt−1|xt, x0) and pθ(xt−1|xt) are Gaus-
sians, we can predict the noise ϵθ by reparameterizing µθ.
Consequently, the model can be trained using mean-squared
error loss between the predicted noise ϵθ(xt) and the ground
truth sampled Gaussian noise ϵt. The training objective can
be formulated as

Lsimple = ||ϵθ(xt)− ϵt||22 (2)

Once pθ is trained, new sample can be sampled by ini-
tializing xtmax ∼ N (0, I) and sampling xt−1 ∼ pθ(xt−1|xt)
via the reparameterization trick.

3.2. Octree Construction

Octree is a hierarchical data structure used for spatial sub-
division in 3D. It provides an efficient approach to orga-
nizing a point cloud. In our method, we utilize the mesh-
sampling [20] to sample a set of points P = {pi}Mi=1 from
the surface of 3D mesh. A point is defined by x, y, z, r, g, b.
Specifically, x, y, z is the coordinates. r, g, b is its ground-
truth texture. Given The point cloud P , we translate the
point cloud by an offset = (min(Px), min(Py), min(Pz)),
and quantize it by quantization step qs

PQ = round(
P − offset

qs
) (3)

qs ≥ max(P)−min(P)

2L − 1
(4)

4286

Mapping to mesh
ResBlock

+
Downsampling Re

sB
lo

ck

Re
sB

lo
ck ResBlock

+
Upsampling

Input feature

Oct-norm1

Oct-conv1

Time emb

Oct-norm2

Oct-conv2

Multi-Oct-Head
Cross-Attention Text condition

MLP

Ti
m

es
te

p
t

Construct
Octree

Embed

U-Net
Structure

Reverse
Octree

C

Points

Noise

(a) Octree-based Diffusion model (b) ResBlock

Textured mesh

Colored points

denotes concatenationC

Figure 2. The overview of TexOct. (a) The architecture of the Octree-based diffusion model. We start by sampling a set of points from
the surface of a 3D object mesh. The points combined with the noised texture are used to construct the octree. The octree and the
timestep t serve as the input for the octree-based diffusion model. The diffusion model reduces the texture noise of the octree to obtain
a colored one. The octree can be transformed back into the original points along with the generated color, utilizing the “reverse octree”
option. Finally, we map the colored points into a textured mesh. (b) The architecture of ResBlock. Each ResBlock comprises two octree
convolutions(Oct-conv), two octree normalizations(Oct-norm), and a MLP. In case of a text-conditional diffusion model, we include a
multi-oct-head cross-attention module after each ResBlock.

76543210

4746454443424140

(a) The volumetric model (b) The tree representation

Depth=4 Depth=8 Depth=12

Occupancy code:
10000100

0

12

6

7

5
46

47

(c) Reconstruction of octree with different depth

44
45

40
4142

Root

Figure 3. A toy example for constructing the octree. The volumet-
ric model is shown in (a) and the corresponding tree representation
on (b). In (c), the point cloud of the same object is quantized by
octree with the max depth of 4, 8, 12.

In Figure 3, we present a toy example to demonstrate the
construction procedure of an octree. Figure 3-(a) shows
the initial volumetric model, while Figure 3-(b) illustrates
the corresponding tree representation of the octree after two
subdivision processes.

Initially, the octree divides the cube space based on the
maximum side length of the bounding box of PQ into 8
equal octants recursively. The occupancy status of 8 chil-
dren cubes is encoded using an 8-bit binary occupancy

node. The occupancy code of the root node is 00010000,
indicating that only child node-4 is occupied and will un-
dergo further subdivision, while the other children nodes
remain unoccupied. In the second subdivision, node-4 is
further divided into 8 children nodes. The occupancy code
of node-4 becomes 10000100, indicating that child node-
40 and node-45 are occupied and will undergo further sub-
division, while the other children nodes remain unoccu-
pied. This subdivision process continues until the maximum
depth L is reached, resulting in the complete construction of
the octree. At the leaf nodes of the octree, each 8-bit occu-
pancy code represents 8 cubes with a side length equal to
the quantization step qs. The points in P are aligned and
merged with the nearest corresponding cube.

The depth L determines the resolution of the octree. A
higher value of L corresponds to a higher resolution oc-
tree. Figure 3-(c) illustrates the reconstruction of the octree
for the same 3D object, exhibiting different depths ranging
from 4 to 12. As the depth of the octree increases, the reso-
lution of the octree improves. This can be observed through
the higher level of detail captured in the reconstruction. Ad-
ditionally, in accordance with Eq. 3 to Eq. 5, the increase in
depth leads to a reduction in the reconstruction error.

To reconstruct the point cloud, we perform inverse quan-
tization to get the reconstructed point cloud P̃ . The recon-
struction error is controlled in:

error = max
i

∥∥∥P̃i − Pi

∥∥∥
∞

≤ qs

2
(5)

3.3. Octree-based Diffusion Model Learning

Overview. The proposed octree-based diffusion model op-
erates on the nodes of the constructed octrees. It restores
the noisy texture values assigned to each node to a version

4287

that is likely sampled from a manifold representing natural
textural surfaces. We implement our diffusion model using
a U-Net architecture with ResNet blocks. This model con-
sists of octree-based operators as developed in [37]. Our
U-Net design comprises four stages, where each stage pro-
cesses the features at a different tree depth. Specifically,
the tree depths for these stages are 12, 11, 10, and 9, re-
spectively in our experiment. This enables the model to
learn information from different receptive fields along with
an octree, thereby allowing the model to generate fine de-
tails with global consistency. The overall structure of the
proposed network is depicted in Fig. 2-(a). In Fig. 2-(b), we
show the architecture of an individual ResNet block. We
cascade an octree-based attention module when we employ
the block for conditional generation. It is noteworthy that
the attention module is omitted from the block in the first
stage of the U-Net to enhance memory efficiency. We pro-
vide the detailed settings of the proposed model in the sup-
plementary material.

Training. Given a training sample that is a point cloud
with texture values, we first convert it to an octree using
the method described in 3.2. Then, we randomly sample a
noise pad and amplify it with a randomly chosen time step
t. We compute the noisy texture for a tree node by applying
the amplified noise pad to the texture values assigned to the
node as described in 3.1. We repeat this process for all the
octree nodes to complete the diffusion process for a train-
ing iteration. Next, we feed the noisy textures to the U-Net
model which predicts the clean version of the input. Finally,
the octree is reversed to the point cloud with the predicted
textures to compute loss with the ground truth.

Inference. As illustrated in Fig. 2, we assign pure noise
sampled from N (0, 1) to each point of a known point cloud.
Then, we amplify the noises using t = 1000 and construct
an octree based on the point cloud. This tree, along with
its noisy textures, is then passed to the U-Net. We denoise
the noisy input in a finite number of steps, using the DDPM
sampling method developed in [17]. In the end, we reverse
the octree to point cloud, then obtain the generated realistic
textural surface using the tools provided with [34].

Conditional generalization. To enable conditional
generation, we develop an octree-based multi-head cross-
attention mechanism based on [36]. The module takes
X ∈ RN×C as input and partitions it into Y ∈ RN

T ×T×C

patches where N , T , and C mean the number of tree nodes
within a batch, the patch size, and the channel number.
Then, it computes the query vector Q ∈ RN

T ×T×H×H
C for

H heads utilizing a linear layer. To compute the key vec-
tor K and the value vector V from a text / image feature
extracted by a CLIP-model [26], we employed a set of two
linear layers for each. K and V are then reshaped to match
Q’s shape for the attentive computation [36].

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on ShapeNet dataset [6]
for our experiments, focusing on object categories such as
chair, table, car, and bench. The training split follows the
approach described in a previous work [43]. To prepare the
data for training, we preprocess the dataset to obtain the
point cloud and the corresponding ground-truth texture, re-
sulting in point-texture pairs. Specifically, we utilize mesh-
sampling [20] to sample 100K points along with their cor-
responding texture from the provided mesh.

Implementation Details. To train the diffusion models,
we organize the point cloud and ground-truth texture into an
octree structure with a tree depth of 12. The models are then
trained for 2, 000 epochs, employing the AdamW optimizer
with a fixed learning rate of 1e− 4 and a batch size of 128.
In our training process, we follow the approach suggested
by [1, 43] by predicting the clean signals instead of the
noise components, which leads to more stable training.

Baselines. We conducted comparisons between our
method and several state-of-the-art methods in the context
of unconditional generation, namely Texturify [32], Texture
Fields [24], Point-UV [43] and Text2Tex [8]. When evaluat-
ing Text2Tex [8] in the context of unconditional generation,
we employ a general prompt in the form of a “category” for
all samples within a specific category. Furthermore, we also
compared our method with Point-UV [43] and Text2Tex [8]
in the context of text-conditional generation.

Evaluation metrics. We utilize commonly used met-
rics for evaluating the performance of generative models,
specifically, the Fréchet Inception Distance (FID) [16] and
Kernel Inception Distance (KID) [3], which measure image
quality and diversity.

4.2. Unconditional Generation

We showcase our unconditional texture generation results
on ShapeNet [6]. Figure 4 illustrates the remarkable perfor-
mance of our method. The textures are realistic and main-
tain the local 3D consistency.

Quantitative evaluations. We quantitatively evaluate
our method with comparisons against the state-of-the-art
methods. For a fair comparison, all experiments follow
the standard evaluation protocol, i.e., FID [16]and KID [3].
Specifically, we render images of the textured shapes pro-
duced by each method at a resolution of 512 × 512 from
4 random viewpoints. It is important to note that the gen-
eration time for a single object in Text2Tex [8] is approx-
imately 15 minutes. Due to this time constraint, we ran-
domly selected 150 samples from each category in the test
set for evaluation. To ensure a fair comparison, our method
utilized the same settings as Text2Tex [8], i.e., randomly
rendering 20 views for evaluation. We use a “*” as the

4288

Figure 4. The unconditional texture generation of TexOct. The results demonstrate that TexOct can generate realistic and diverse textures.

Methods Average Chair Car Table Bench
FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

Texture Fields [24] 70.07 5.47 24.24 1.07 156.38 13.64 68.96 4.2 62.71 2.96
Texturify [32] - - 28.80 1.32 73.16 4.71 - - - -
Point-UV (1-Stage) [43] 57.69 4.20 17.88 0.77 171.44 15.31 15.94 0.52 25.30 0.21
Point-UV (2-Stage) [43] 17.31 0.30 9.88 0.22 26.89 0.68 9.63 0.15 23.09 0.15
Ours 14.75 0.13 9.46 0.18 21.53 0.10 7.92 0.09 20.08 0.13

Text2Tex* [8] 53.22 0.79 56.89 0.86 46.91† 0.44† 55.86 0.98 53.82 0.88
Ours* 38.11 0.14 46.14 0.27 28.13 0.07 43.86 0.16 34.31 0.07

Table 1. Comparison against state-of-the-art methods on ShapeNet [6]. We report the FID and KID (×102) metrics. “*” denotes that we
randomly select 20 samples from each category and render 20 views for evaluation. “†” denoets the results provided in their paper.

identification. The comparable results are summarized in
Table 1, from which we draw the following observation.

Across all categories, our method obtains competitive
performance in terms of FID [16] and KID [3]. Notably,
it outperforms the leading competitor, Point-UV (stage-
2) [43], by an average of 2.56 in FID and 0.17 in KID.
Similarly, our method surpasses Text2Tex [8] by an aver-
age improvement of 15.11 in FID and 0.65 in KID. These
improvements indicate that our method excels at generat-
ing highly realistic textures. Furthermore, we compare our
method and Point-UV (1-Stage) [43], which utilize 4096
points resulting in rough textures. Our method exhibits sig-
nificant advantages in both two indicators. This can be at-
tributed to its effective utilization of a dense point cloud to
generate finer textures within a single stage.

Method Average Chair Car Table Bench

Point-UV [43] 19.3% 12.2% 33.4% 17.8% 13.8%
Ours 80.7% 87.8% 66.6% 82.2% 86.2%

Table 2. Percentage of preference for two methods in a user study.
Users more favor our method.

User study. We conducted a user study to assess the
quality of the synthesized textures. We randomly present
users with 25 pairs of renders for each category, compar-
ing textures generated by Point-UV [43] and our method.
In total, there are 100 pairs. Participants are requested to
choose the one that is more realistic and finer. We collect
a total of 2000 responses from 20 users. The preferences

4289

gathered from the study are summarized in Table 2. Com-
paring our method to Point-UV [43], we observe that our
method is preferred by users, with an average preference
rate of 80.7%. This result highlights the effectiveness of
our approach in generating high-quality textures.

Figure 5. Qualitative comparison with the state-of-the-art method.
Our method generates realistic and diverse textures.

Qualitative evaluations. We compare our qualitative re-
sults on ShapeNet [6] against the state-of-the-art method in
Figure 5. Our method not only generates detailed and real-
istic textures but also exhibits a rich diversity. For example,
in the case of bench, our method generates textures with a
rich variety of colors, resulting in a distinct boundary be-
tween the bench surface and its legs.

4.3. Text-conditional Generation

We showcase our method’s ability to generate conditioned
textures using text prompts. We conduct experiments
specifically on the chair and table categories. The text-
shape pairs provided in [9] serve as our dataset. To incor-
porate condition-specific information into the network, we
leverage the pre-trained vision-language model CLIP [26]
to extract the corresponding embedding from the text
prompt. This ensures that the specific textual context during
texture generation informs our network.

Figure 6 demonstrates the impressive performance of our
method in generating textures that closely align with the
given text descriptions. The generated textures accurately
capture the desired visual attributes specified in the text.
This showcases the effectiveness and capability of our ap-
proach in synthesizing textures that represent the intended
visual characteristics.

Figure 6. The text-conditional texture generation of TexOct. The
generated texture effectively captures the semantic information of
the text prompt.

Figure 7. Comparison with the state-of-the-art method for text-
conditional generation. Our method generates high-quality and
high-frequency textures.

In Figure 7, we compare our qualitative results against
text-driven baselines. In comparison with Point-UV [43]
and Text2Tex [8], our method generates finer and more con-
sistent textures. The textures generated by the compared
methods exhibit local texture inconsistency, blurriness, and
a lack of high-frequency patterns. Our method excels in
synthesizing more 3D consistent textures with cleaner and
more local details.

Depth Training time Rec-error FID↓ KID↓

10 5 0.020 26.06 0.30
11 7 0.011 23.21 0.21
12 19 0.006 23.67 0.13
13 57 0.002 28.19 0.48

Table 3. Evaluation on bench under different octree depth. We
evaluate the training time (second/epoch), Reconstruction error
(Rec-error), FID and KID.

4290

4.4. Image-conditional Generation

In this section, we additionally showcase our method’s abil-
ity to generate textures conditioned on a single-view im-
age. We conduct our experiments on the chair and table
categories. For the image condition, we randomly render
a view from the ground-truth mesh [43]. To infuse the
network with image-specific information, we use the pre-
trained vision-language model CLIP [26] to extract the cor-
responding embedding form the given image. Please refer
to the supplementary material for details.

4.5. Analysis of Hyper-parameters

Representing point clouds as octrees is a key component
of TexOct. As outlined in Section 3.2, the resolution of the
octree is determined by the depth parameter L. On the other
hand, the representation of 3D objects is influenced by the
number of sampled points. In this section, we explore the
effects of octree depth and the number of sampled points
on the texture generation process. Specifically, we conduct
experiments on bench category from ShapeNet [6]

Octree depth. In Table 3, we keep the number of sam-
pled points fixed at 100K and vary the octree depth from 10
to 13. We make three observations.

Firstly, we observe that as the depth of the octree in-
creases, the training time for one epoch also increases sig-
nificantly. This is because the number of layers in the octree
grows exponentially, resulting in longer training times.

Secondly, the reconstruction error decreases as the oc-
tree depth increases. This indicates that a higher depth al-
lows for a more detailed representation of the point cloud,
leading to a more accurate reconstruction.

Lastly, we observe that as the depth increases, the FID
and KID initially decrease and then increase. This trend in-
dicates that the octree depth has a two-fold impact on the
TexOct. On the one hand, increasing the depth approxi-
mately results in a higher resolution, enabling the model
to learn more realistic and distinct textures. This can be
beneficial in capturing finer details and improving the qual-
ity of the generated textures. On the other hand, an overly
large depth may cause the model to over-fit the training set,
leading to a decrease in generalization performance. This
suggests a trade-off between the depth of the octree and the
model’s ability to generalize to unseen data.

Based on the above observations, we comprehensively
consider training time, reconstruction error, and perfor-
mance of texture generation and ultimately chose to set the
depth to 12. This depth setting is consistently applied to
other categories.

Point number. In Figure 8, we keep the octree depth
fixed at 12 and increase the sampled point number from
10K to 200K. We draw the following observations. When
the number of sampled points is set to 10K, we observe that
the octree size is the smallest compared to other scenarios.

0

5

10

15

20

25

30

10K 50K 100K 150K 200K

Octree size (MB)
FID
KID (×10^3)

Points number

In
di

ca
to

rs

Figure 8. Evaluation on bench. We analyze our method’s average
octree size (MB), FID, and KID(×103) under various numbers of
sampled points.

However, the performance in terms of FID and KID met-
rics is relatively lower compared to other cases. It indicates
that 10K points is insufficient to accurately capture the intri-
cate surface details of 3D models, leading to subpar texture
generation. As the number of sampled points increases, we
observe a gradual decrease in the FID and KID metrics un-
til they converge. However, the octree size also increases
rapidly. This indicates that a larger number of points allows
for a more precise representation of the 3D object’s surface.
Nevertheless, continuously increasing the number of points
can only lead to limited performance improvements, but it
significantly increases the cost of building an octree, specif-
ically by consuming more GPU memory. Finally, we set the
number of sampled points to 100K.

5. Conclusion
This paper presents a novel approach for directly generat-
ing 3D textures within 3D space. Our method begins by
representing the point cloud as an octree structure, which
effectively leverages the abundant surface data of 3D ob-
jects to capture 3D consistency accurately. Then, we pro-
pose an octree-based diffusion model called TexOct, which
performs DDPM process on the constructed octree. TexOct
gradually reduces the texture noise of the octree node and
synthesizes a realistic texture that aligns with the 3D model.
The experimental results demonstrate that our method ex-
cels in both unconditional and text-conditional texture gen-
eration, yielding high-quality 3D textures that are well-
received by users.

Limitation. In TexOct, we utilize dense point clouds
to generate high-quality texture for 3D models. How-
ever, introducing some additional 3D information may fur-
ther enhance the performance, such as normal, curvature,
Laplace–Beltrami operator, etc. We will explore these as-
pects in future work.

4291

References
[1] Titas Anciukevičius, Zexiang Xu, Matthew Fisher, Paul Hen-

derson, Hakan Bilen, Niloy J Mitra, and Paul Guerrero. Ren-
derdiffusion: Image diffusion for 3d reconstruction, inpaint-
ing and generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12608–12618, 2023. 5

[2] Anand Bhattad, Aysegul Dundar, Guilin Liu, Andrew Tao,
and Bryan Catanzaro. View generalization for single image
textured 3D models. In CVPR, 2021. 2

[3] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018. 5, 6

[4] Alexey Bokhovkin, Shubham Tulsiani, and Angela Dai.
Mesh2tex: Generating mesh textures from image queries.
arXiv preprint arXiv:2304.05868, 2023. 1, 2

[5] Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp,
and Kangxue Yin. Texfusion: Synthesizing 3d textures with
text-guided image diffusion models. In ICCV, pages 4169–
4181, 2023. 1, 2

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 5, 6, 7, 8

[7] Bindita Chaudhuri, Nikolaos Sarafianos, Linda Shapiro, and
Tony Tung. Semi-supervised synthesis of high-resolution
editable textures for 3d humans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7991–8000, 2021. 2

[8] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey
Tulyakov, and Matthias Nießner. Text2tex: Text-driven
texture synthesis via diffusion models. arXiv preprint
arXiv:2303.11396, 2023. 1, 2, 5, 6, 7, 3

[9] Kevin Chen, Christopher B Choy, Manolis Savva, An-
gel X Chang, Thomas Funkhouser, and Silvio Savarese.
Text2shape: Generating shapes from natural language by
learning joint embeddings. In Computer Vision–ACCV 2018:
14th Asian Conference on Computer Vision, Perth, Australia,
December 2–6, 2018, Revised Selected Papers, Part III 14,
pages 100–116. Springer, 2019. 2, 7

[10] Zhiqin Chen, Kangxue Yin, and Sanja Fidler. Auv-net:
Learning aligned uv maps for texture transfer and synthesis.
In CVPR, pages 1465–1474, 2022. 1, 2

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest,
and Clifford Stein. Introduction to algorithms. MIT press,
2022. 1

[12] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Learning deformable
tetrahedral meshes for 3d reconstruction. Advances In Neu-
ral Information Processing Systems, 33:9936–9947, 2020. 2

[13] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. Advances in neural information processing
systems, 30, 2017. 1

[14] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Bar-

las Oğuz. 3dgen: Triplane latent diffusion for textured mesh
generation. arXiv preprint arXiv:2303.05371, 2023. 2

[15] Paul Henderson, Vagia Tsiminaki, and Christoph Lampert.
Leveraging 2D data to learn textured 3D mesh generation.
In CVPR, 2020. 2

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 5, 6

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 3, 5, 1

[18] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 1

[19] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 3, 1

[20] Davi Lazzarotto and Touradj Ebrahimi. Sampling color and
geometry point clouds from shapenet dataset. arXiv preprint
arXiv:2201.06935, 2022. 3, 5

[21] George Kiyohiro Nakayama, Mikaela Angelina Uy, Jiahui
Huang, Shi-Min Hu, Ke Li, and Leonidas Guibas. Difffacto:
Controllable part-based 3d point cloud generation with cross
diffusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14257–14267, 2023.
3

[22] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022. 3

[23] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 3, 1

[24] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4531–4540, 2019. 5, 6

[25] Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-
Francine Moens, and Aurelien Lucchi. Convolutional gen-
eration of textured 3D meshes. 2020. 2

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 5, 7, 8, 3

[27] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022. 1

[28] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. In ACM SIGGRAPH 2023 conference proceedings,
2023. 2

4292

[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1

[30] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022. 1

[31] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In ACM SIG-
GRAPH 2022 conference proceedings, pages 1–10, 2022. 1

[32] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan,
Matthias Nießner, and Angela Dai. Texturify: Generat-
ing textures on 3d shape surfaces. In ECCV, pages 72–88.
Springer, 2022. 1, 2, 5, 6

[33] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.
3

[34] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Er-
rui Ding, Jingdong Wang, and Gang Zeng. Delicate textured
mesh recovery from nerf via adaptive surface refinement.
arXiv preprint arXiv:2303.02091, 2022. 5

[35] Hao Wang, Guosheng Lin, Steven CH Hoi, and Chunyan
Miao. Cycle-consistent inverse gan for text-to-image syn-
thesis. In Proceedings of the 29th ACM International Con-
ference on Multimedia, pages 630–638, 2021. 1

[36] Peng-Shuai Wang. Octformer: Octree-based transformers
for 3D point clouds. ACM Transactions on Graphics (SIG-
GRAPH), 42(4), 2023. 5

[37] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-cnn: Octree-based convolutional neu-
ral networks for 3d shape analysis. ACM Transactions On
Graphics (TOG), 36(4):1–11, 2017. 2, 5

[38] Lemeng Wu, Dilin Wang, Chengyue Gong, Xingchao Liu,
Yunyang Xiong, Rakesh Ranjan, Raghuraman Krishnamoor-
thi, Vikas Chandra, and Qiang Liu. Fast point cloud genera-
tion with straight flows. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9445–9454, 2023. 3

[39] Rundi Wu, Ruoshi Liu, Carl Vondrick, and Changxi Zheng.
Sin3dm: Learning a diffusion model from a single 3d tex-
tured shape. arXiv preprint arXiv:2305.15399, 2023. 3

[40] Zijie Wu, Yaonan Wang, Mingtao Feng, He Xie, and Ajmal
Mian. Sketch and text guided diffusion model for colored
point cloud generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8929–
8939, 2023. 3

[41] Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-
Geoffroy, Kalyan Sunkavalli, and Hao Su. Neutex: Neural
texture mapping for volumetric neural rendering. In CVPR,
pages 7119–7128, 2021. 2

[42] Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and
Sanja Fidler. 3dstylenet: Creating 3d shapes with geometric

and texture style variations. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12456–
12465, 2021. 2

[43] Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Zhengzhe Liu, and
Xiaojuan Qi. Texture generation on 3d meshes with point-uv
diffusion. In ICCV, pages 4206–4216, 2023. 1, 2, 3, 5, 6, 7,
8

[44] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. Lion: Latent
point diffusion models for 3d shape generation. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.
3

[45] Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong,
Yang Liu, and Heung-Yeung Shum. Locally attentional sdf
diffusion for controllable 3d shape generation. ACM Trans-
actions on Graphics (SIGGRAPH), 42(4), 2023. 3

[46] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel
Cohen-Or, and Hui Huang. Non-stationary texture synthesis
by adversarial expansion, 2018. 1

4293

