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Figure 1. Overview of TexVocab. Given multi-view RGB videos of one character, we construct a texture vocabulary, and create realistic

animatable human avatars.

Abstract

To adequately utilize the available image evidence
in multi-view video-based avatar modeling, we propose
TexVocab, a novel avatar representation that constructs a
texture vocabulary and associates body poses with texture
maps for animation. Given multi-view RGB videos, our
method initially back-projects all the available images in
the training videos to the posed SMPL surface, produc-
ing texture maps in the SMPL UV domain. Then we con-
struct pairs of human poses and texture maps to estab-
lish a texture vocabulary for encoding dynamic human ap-
pearances under various poses. Unlike the commonly used
Jjoint-wise manner, we further design a body-part-wise en-
coding strategy to learn the structural effects of the kine-
matic chain. Given a driving pose, we query the pose fea-
ture hierarchically by decomposing the pose vector into
several body parts and interpolating the texture features
for synthesizing fine-grained human dynamics. Overall,
our method is able to create animatable avatars with de-
tailed and dynamic appearances from RGB videos, and
the experiments show that our method outperforms state-
of-the-art approaches. The project page can be found at
https://texvocab.github.io/.

1. Introduction

Animatable human avatar modeling attracts a lot of at-
tention due to its enormous potential in AR/VR applications

including games, movies and holoportation. Animatable
human avatars usually take the skeletal body pose as the in-
put signal and output the pose-conditioned dynamic human
appearances. However, how to effectively learn the map-
ping between the driving signals and dynamic appearances
is still full of challenges.

Previous works [24, 71] usually directly map the pose in-
put, e.g., the pose vectors, to the human appearances using
a conditional neural radiance field (NeRF) [37] represented
by an MLP. However, the pose input does not involve any
information about dynamic human appearances, so it re-
mains difficult for NeRF MLPs to regress high-fidelity dy-
namic details solely from the pose input. Although some
works [26, 44, 64] propose to auto-decode [40] latent em-
beddings to encode the dynamic appearances at the input
end of NeRF, they still suffer from the limited representa-
tion ability of global codes [44] or feature lines [26], result-
ing in blurry synthesized avatars.

On the other hand, image-based reconstruction methods
like pixelNeRF [69] and SparseFusion [73] have already
proved that taking pixel-aligned features as the input of
NeRF can significantly improve the quality and details for
static scene rendering. Inspired by these image-conditioned
representations, we propose Tex Vocab, a texture vocabulary
that adequately utilizes explicit image evidence to guide
the implicit conditional NeRF to learn the dynamics from
expressive texture conditions. To associate the multi-view
images with the dynamic human body, we back-project all
the available images of corresponding training poses to the
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posed SMPL surface and transform them to the SMPL UV
domain like NeuralActor [29], obtaining a set of texture
maps. Compared with other 3D representations like feature
lines [26] and feature planes [4, 5], the 2D texture maps can
compactly cover the whole 2D manifold of the human body
while avoiding excessive memory cost. Besides, the texture
maps provide pixel-aligned features that already involve de-
tailed human appearances so that they can serve as effective
conditions to decode fine-grained details.

Our objective is to not only reconstruct all the frames
in the training dataset, but also synthesize high-quality
dynamic human appearances under novel poses. There-
fore, it is necessary to bridge the human poses and tex-
ture maps for animation. Drawing inspiration from Po-
seVocab [26], we sample key human poses and associate
them with corresponding texture maps. Unlike PoseVocab
which constructs a separate vocabulary for each joint of the
SMPL model [31], we observe that the dynamic wrinkles of
clothed humans are not individually influenced by the rel-
ative rotations of a single joint. Instead, they are typically
influenced by the kinematic chain of a body part, such as
the entire right arm. To this end, we propose to decompose
all the SMPL skeletons into several body parts, then sam-
ple key body parts and assign corresponding texture maps
to them. Such a body-part-wise decomposition explicitly
models the structural motion of each body part, enabling
better generalization to novel poses.

In summary, our technical contributions are below:

» TexVocab, a new avatar representation that constructs

a texture vocabulary to leverage expressive texture
conditions for high-quality avatar modeling.

* A body-part-wise encoding method that not only dis-
entangles the effects of different joints on the dynamic
appearance, but also retains the structural effects of the
kinematic chain, enabling better pose generalization.

» Experiments demonstrate that our method can create
higher-fidelity avatars with dynamic pose-dependent
details compared to other SOTA approaches.

2. Related Works

Implicit Neural Representations. In the last few years,
implicit scene representation is becoming increasingly pop-
ular as it can produce impressive results both in geome-
try [7, 36, 40] and appearance [30, 37, 54, 59] modeling.
Recent works show that implicit representations like occu-
pancy networks [36], signed distance fields (SDF) [40] and
neural radiance fields (NeRF) [37] lead to higher-resolution
and topology-free 3D scene modeling compared with ex-
plicit ones, e.g., voxels [35, 46, 55], points [47, 48] and
meshes [2, 14, 62]. In particular, NeRF [37] shows im-
pressive rendering quality and good differentiable prop-
erties, attracting much attention in static scene render-
ing [5, 12, 18, 28, 38, 68]. Many other works add the

time dimension to extend NeRF to dynamic scene model-
ing [10, 11, 20, 41, 53, 60]. However, the motivation of
these works is to reconstruct the dynamic scene, object or
character in each frame of the given video without consid-
ering generating dynamic appearances under novel condi-
tions, e.g., body poses. While our goal is to not only recon-
struct the 3D human under the training poses, but also to
synthesize dynamic details under unseen poses.

Geometric Avatar Modeling. Geometric based meth-
ods aim at training a pose-conditioned human model based
on observations from geometric data like scans [6, 25, 33,
50] or depth images [3, 9, 63]. Scan-based methods like
SCANimate [50], SCALE [32], POP [33] and SNARF [6]
adopt the SMPL [31] poses or position maps as the pose
conditions to learn the pose-dependent geometric surface.
FITE [27] and GeoTexAvatar [25] render positional maps
of posed SMPL models for the spatial continuity of the
learned pose-dependent warping field. MetaAvatar [63],
PINA [9] and DSFN [3] learn the pose-dependent dynam-
ics from depth sequences. However, these methods require
3D data for training the avatar, limiting their applications to
more accessible RGB videos.

RGB Video-based Avatar Modeling. On the other end
of the spectrum, lots of works focus on creating animat-
able textured avatars from RGB videos [21, 22, 24, 26, 29,
44, 64,71, 72]. Many approaches directly map the SMPL-
derived inputs like pose vectors to the human appearances
using a conditional NeRF [37] to decode the dynamic char-
acter. Specifically, TAVA [24] learns the non-rigid warp-
ing fields and shading effects directly conditioned on SMPL
pose vectors. SelfRecon [21] learns the canonical template
mesh and pose-dependent deformation from a self-rotating
video. SLRF [71] and AvatarRex [72] sample nodes at-
tached to SMPL, define a set of local radiance fields and
learn the mapping from SMPL pose vectors to node trans-
lations and dynamic appearances. However, the pose input
does not contain any information about dynamic human ap-
pearances, so it remains difficult for MLPs to predict dy-
namics among various poses, thus limiting the quality of
avatars. AniNeRF [44], ARAH [64], NeuralBody [45] To-
talSelfScan [8] and PoseVocab [26] auto-decode [40] latent
embeddings to encode the dynamic appearances with per-
frame latent code or joint-structured feature lines. Although
adding extra embeddings variables like global codes [44]
and feature lines [26] offloads the network, the low capabil-
ity and poor representation ability of these embeddings still
limits the avatar quality. NeuralActor [29] predicts pose-
dependent texture maps from SMPL normal maps through
the vid2vid model [65] using ground-truth texture maps as
the monitoring signals, extracts and feeds textural feature
to an MLP for decoding the dynamic human appearances.
TexDVA [49] and LookingGood [34] take 2 or 3 RGB im-
ages as the driving signals for synthesizing dynamic human
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Figure 2. Framework of TexVocab. We first construct TexVocab by decomposing SMPL poses into body parts, sampling key body
parts and gathering corresponding texture maps. Then given a query pose and a 3D coordinate, we decompose the pose into body parts,
interpolate key body parts and sample texture maps as the pose conditioned feature. We finally utilize NeRF represented as an MLP to
decode the dynamic character and render human appearance with detailed pose-dependent dynamics.

appearances. Stylepeople [13] uses simple neural rendering
instead of NeRF which allows to render photo-realistic 2D
images of individuals in baggy clothes in different poses.

Avatar Modeling with Simulation. Unlike the data-
driven methods mentioned above, another line of methods
use physical simulation for dynamic garment reconstruc-
tion to model the clothed human avatars. Pioneer learning-
based garment simulation methods [39, 42, 51, 61] use pre-
defined simulators and pre-generated data, while the deep
learning framework does not contain any physical models.
PBNS [1] and SNUG [52] incorporate physical constraints
into dynamic cloth simulation and generate realistic simu-
lation results using unsupervised training. Caphy [56] pro-
poses to optimize the parameters of the garment physics pri-
ors to obtain better physical properties from the 3D scans
instead of using the given fixed physical parameters of the

fabric. Compared with these works, our method is data-
driven without the requirement of complicated simulation.

3. Preliminary

Given a set of multi-view RGB videos of a performer
with 7' frames captured by N synchronized cameras, we
aim at training a model that can output high-fidelity dy-
namic appearances animated by skeletal poses. We denote
the RGB sequences as {I}*|]1 < n < N,1 <t < T} We
assume the access to the body poses of all the frames, de-
noted as ©; € RV*3 1 < ¢ < T, where J denotes the num-
ber of joints of the human body. We assume that the former
Ty poses are used for training, while the rest poses are for
testing. Similar to other avatar representations [44, 58], we
utilize linear blend skinning (LBS) to transform sampled
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points from the observation space of pose O, to the canon-
ical space. The sampled point and the canonical point can
be denoted as x; and x. respectively. Then we represent the
canonical 3D character as a pose-conditioned neural radi-
ance field (NeRF) [37] that takes a canonical 3D coordinate
Z., a viewing direction d, and the positional conditioned
pose feature f(Oy, ) as the input:

9(ve(xe),vald), f(Or, xc)) =

where v, and 74 is the positional encoding [57] for spatial
location and viewing direction. o; and c; denote the output
density and color conditioned on the pose ©;. Following
NeRF [37], we render the images using output density val-
ues and color values.

(Ut($6), Ct(mC)) (D

4. Method
4.1. Overview

f(©¢, z.) in Eq. (1) plays an important role as it provides
pose conditions for the MLP to decode the dynamic 3D
character. Pioneer works like AniNeRF [44], ARAH [64]
and PoseVocab [26] assign global latent codes or joint-
structured feature lines as the pose conditions. However,
these representations produce limited animation results be-
cause of the low representation ability of global codes and
feature lines. To provide the pose-conditioned features with
higher quality, we propose TexVocab, a novel method that
adequately exploits explicit image evidence to guide the
neural networks to learn the pose-dependent dynamic de-
tails. The framework of our approach is shown in Fig. 2.
First, we prepare texture maps, decompose all the training
poses and sample key body parts to construct TexVocab.
Then given a SMPL pose and a 3D position, we query key
body parts using K nearest neighbors (KNN), interpolate,
and sample texture maps as the pose-conditioned feature
according to the UV coordinate of the 3D position. Finally,
we decode the dynamic 3D character using NeRF which is
represented as an MLP.

4.2, Texture Map Preparation

To utilize all the image evidence more efficiently, we
propose to gather all the available training views to a partic-
ular UV domain and acquire texture maps.

For each training pose ©;, 1 < ¢t < T3, as shown in
Fig. 3, we gather the available views and back-project every
pixel z,, to a posed SMPL mesh (V;, F),:

find(u™,v*, f*) s.t. ||zp

—P(BuoVirp))lz =0 (2)

where V, € RNV >3 and V, € RVF*3 denotes the vertices
and faces, Ny and N are the number of vertices and faces
of the SMPL mesh respectively. 1 < f < Np is the trian-
gle index, V; (F] is the three vertices of the triangle F(f),

Image

Back-Projection

Converting Points to UV Domain

Gathering Texture Feature

Figure 3. Overview of texture map preparation. First, we back-
project all the available pixels to the posed SMPL mesh. Then we
convert the projected points on the SMPL mesh to a particular UV
domain. Finally, we gather and average all the available pixels,
and obtain texture maps based on multi-view images.

(u,v) : u,v,u+ v € [0, 1] represent the barycentric coor-
dinates on the face, B, ,(-) is the barycentric interpolation
function, and P(-) stands for perspective projection.

Then we transfer the projected point (u*,v*, f*) to a
particular UV domain based on the SMPL-defined UV pa-
rameterization A € RV#>*3%2 which maps 3D mesh sur-
face points to a 2D UV plane. Once all the image pixels
have been mapped, we average it across all the available
views to gather the texture image U;. Finally, we extract
the feature map F; of the texture image U, using a convolu-
tional neural network (CNN) similar to PixelNeRF [69].

4.3. Body-Part-Wise Embedding

We observe that the dynamic wrinkles of clothed hu-
mans are not influenced by the rotation of a single joint
individually, but governed by a kinematic chain of a body
part. To this end, we propose to divide poses into several
body parts, which can not only disentangle the effects of
different joints on the dynamic appearances but also retain
topology information among the kinematic chains. Specifi-
cally, as shown in Table 1 and Fig. 4, we divide the SMPL
pose with J = 24 joints into P = 5 body parts, and each
body part contains a particular set of joints. We denote the
p-th body part of the ¢-th frame as

oy =100 07)" o))" 3)
here 6/ € s0(3) denotes the j-th joint rotation of pose O,
1 < p < P is the rank of the body part, and J,, denote the
number of joints contained in the p-th body part.

After the division, we sample key body parts and assign
embeddings to them. Given the p-th body parts {p}|1 <
t < T3} of the training poses, we first sample M key body
parts via farthest point sampling. The distance metric be-
tween two body parts p, pb is calculated as the sum of the
distance [19] of each joint rotation in the p-th body part:

Jp

pl? Z ejk

k=1

q(03")]) )
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body part rank  Joints contained in the body part

1(main body) 0,1,2,3,6,9,12,15
2(left leg) 4,7,10
3(right leg) 5,8,11
4(left arm) 13,16,18,20,22
5(right arm) 14,17,19,21,23

Table 1. The division of the body parts. To maintain the informa-
tion of the kinematic chains, we decompose SMPL skeletons into
body parts instead of joints.

Figure 4. We decompose the SMPL skeletons into several body
parts. Joints with the same color belong to the same body part.

where ¢(+) is a function that maps an axis-angle vector to a
unit quaternion. We denote the sampled M key body parts
as {pP,|1 < m < M}. For each sampled key body part pf,
we assign the corresponding texture image feature F} to it.
Notice that we assign the same texture map to different key
body parts which belong to the same pose.

So far, we have constructed M pairs of keys and values
for each body part based on the training poses. For each key
body part, we can find the corresponding textural feature.
These body-part-wise pose embeddings construct TexVocab
and serve as discrete samples in the continuous pose feature
space in the following query.

4.4. Query Pose Features for Avatar Modeling

Given a pose vector ©; = [(01)T, ()T, ... ()T)|T
and a 3D position z; sampled in the observation space of
pose O, we query the pose feature based on the constructed
TexVocab in Sec. 4.2 and Sec. 4.3.

Query Body Parts. Given a pose Oy, we first decom-
pose it to several body parts denoted as {pf|1 < p < P}
For the p-th query body part p!, we search for K nearest
body parts {p} |1 < k < K} according to Eq. (4). Then we
interpolate the corresponding texture maps {Fk|1 <k<
K} according to the distance between body parts and make
normalization:

K r w(p%)aléllé)
Fpe = Fo == (5)
(PR SN

where w(p}, p}) is the weight that varies inversely to the
distance between body parts.

Texture Map Sampling. Given a 3D position z; in the
observation space of O;, we project it to SMPL surface:

(u*, 0", f*) = arglanviI} |z, — Bum(Vt[f(f)])H% @)

and then we convert the projected point x,, = (u,v, f)
to the 2D coordinate x,, in UV domain according to the
fixed UV parameterization matrix A defined in Sec. 4.2.
For each weighted feature map Fj, ;, we sample the feature
h(Zyw, Fp ¢) using bilinear interpolation. Moreover, follow-
ing SCANimate [50], we also apply a skinning-weight-wise
attention scheme on the feature of the p-th body part to re-
duce spurious correlations, which can be denoted as

J. .
Ziil w(gjm]i)

7 ;
Ej:l w(xm])

where w(z., j) is the pre-defined influence weight of the j-
th joint on the corresponding canonical point x.. Finally,
we gather the sampled feature as

[CIEREDY

With the sampled pose feature f(O;, z.), we can feed it
along with the pose vector Oy, the viewing direction d and
the 3D coordinate z. into the network described as Eq. (1)
to decode NeRF that represents the dynamic 3D character.

Discussion. For the pixel ,, and the query 3D coordi-
nate x;, we both project them to the posed SMPL mesh and
convert them to a particular UV domain. These guarantee
the alignment of the sampled textural feature. The texture
maps are gathered from available views, which involve de-
tailed human appearances and can provide effective condi-
tions to decode fine-grained details.

Also, notice that the inverse skinning often includes
residuals when sampled points are not on the SMPL mesh.
To further ensure the alignment of the sampled textural fea-
ture, we do not use the canonical coordinate x., but use
in the observation space of pose ©; instead.

Q(zc,p) = ®)

P
Q(xcap) : h(xuva Fp,t) (9)

p=1

4.5. Training

We use pre-trained resnet34 [16] as the backbone of the
CNN that extracts the features of texture image, and the pa-
rameters are fixed during the training stage. Also, we do
not regress the density value o; in Eq. (1) directly. Instead,
we output SDF value s; and convert it to density value fol-
lowing VoISDF [67]. The total loss £ includes the color
loss, the mask loss, the eikonal loss, and the perceptual loss,
which is defined as:

L= )\co or»Cco or T )\mas »Cmas
l l k k (10)

+ Ag}ercept?talﬁperceptual + )\eik,onalﬁeikonal

where )\color’ )\perceptual, )\mask and )\eikonal stand for
the loss weights. L., measures the MSE between the
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Method Training Poses Novel Poses
PSNR1T SSIMT LPIPS*|  FID| | PSNRT SSIM{ LPIPS*| FIDJ
TAVA [24] 25.57 09624 29.58 64.59 | 26.61 0.9597 31.14 79.96
ARAH [64] 2278  0.9335 77.93 126.69 | 22.13  0.9241 93.06 113.88
AniNeRF [44] 2519  0.9592 31.21 81.57 | 23.85 0.9486 32.07 95.41
PoseVocab [26] | 34.06  0.9852 14.43 22.88 30.13  0.9806 16.32 28.10
Ours 36.52  0.9896 10.83 12.31 | 32.09 0.9832 13.40 18.79

Table 2. Quantitative comparisons against TAVA, ARAH, AniNeRF, and PoseVocab on sequence “subject00” of THUman4.0 dataset. We
evaluate the numerical results of each method on both training poses and novel poses. Here LPIPS* = 1000 x LPIPS.

Method PSNRT LPIPS| FIDJ
NeuralActor [29]  23.531 0.066 19.714
Ours 26.325 0.017 17.836

Table 3. Quantitative comparisons against NeuralActor on se-
quence “S2” of “DeepCap” dataset. Results of NeuralActor are
borrowed from [29].

rendered and ground-truth pixel colors, L,,4sx is an MAE
loss which supervises the occupancy values of the ren-
dered pixels, and L¢;konq 18 the Eikonal loss encouraging
the geometry fields to approximate a true signed distance
function [67]. The perceptual 108S Lperceptuar 1S Widely
used in NeRF training, which leads to better recovery of
high-frequency details like the clothed wrinkles and thin
lines [70]. We choose VGGNet as the backbone to calculate
the learned perceptual image patch similarity (LPIPS).

5. Experiments
5.1. Datasets and Metrics.

Datasets. We use 6 sequences of multi-view videos for
experiments. 3 sequences with 24 views are from THU-
man4.0 dataset [71], 2 sequences with 21 or 23 views
are from ZJU-MoCap dataset [44] and 1 with 11 views
is from DeepCap dataset [15]. All the datasets provide
parameters of cameras. Deepcap and THuman4.0 pro-
vide SMPL-X [43] registrations, and ZJU-MoCap provides
SMPL [31].We split each sequence into 2 consecutive parts
for training and testing, where the training part accounts for
40% ~ 80% of the multi-view sequences, and the novel
poses include the remaining part of the videos and other
poses like poses from AIST++ dataset [23].

Metrics. We report quantitative results using four stan-
dard metrics: Peak Signal-to-Noise Ratio(PSNR), Structure
Similarity Index Measure(SSIM) [66], Learned Perceptual
Image Patch Similarity(LPIPS) [70] and Frechet Inception
Distance(FID) [17].

5.2. Results and Comparisons.

We train the networks for each multi-view video se-
quence individually. The qualitative results shown in Fig. 1
demonstrate that our approach represents fine-grained dy-
namic details under various novel poses. For more novel
pose synthesis results, please refer to the supplementary
materials. Then we compare our method against other ap-
proaches, such as TAVA [24], ARAH [64], AniNeRF [44],
PoseVocab [26] and NeuralActor [29]. We do not compare
our results with TexDVA [49] because TexDVA takes 2 or
3 images to render appearances, which is different from our
approach that reconstructs avatar driven by poses.

TAVA, ARAH, AniNeRF and PoseVocab. Fig. 5
and Tab. 2 show the qualitative and quantitative results
against TAVA, ARAH, AniNeRF and PoseVocab on Deep-
Cap dataset [15] and THUman4.0 dataset [71]. The re-
sults synthesized by TAVA, ARAH and AniNeRF are blurry,
probably because neither pose-dependent shading in TAVA
nor per-frame latent codes in ARAH and AniNeRF pro-
vide effective conditions to decode fine-grained details. Al-
though PoseVocab outperforms the other three approaches,
there are still some fine-grained details it cannot repre-
sent because of the limited capability of feature lines. In
contrast, our method not only reconstructs more details in
terms of the edges and fine-grained garment wrinkles un-
der the training poses, but also renders more realistic dy-
namics when giving novel poses benefiting from the real-
istic human appearance conditions served by pixel-aligned
pose features. Overall, our method outperforms the other
four approaches both qualitatively and quantitatively with
the construction of TexVocab which adequately utilizes the
existing image evidence.

NeuralActor.  NeuralActor utilizes a 2D vid2vid
model [65] and tries to predict the SMPL-defined texture
maps from normal maps, thus extracting features and us-
ing a neural radiance field to decode the 3D human charac-
ters. We compare our method with Neural Actor [29] qual-
itatively and quantitatively on “S2” sequence of DeepCap
dataset in Fig. 6 and Tab. 3. We follow the same train-
ing/testing splits and metric computation as NeuralActor,
and the numerical and visual results are borrowed from [29].
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Method Training Poses Novel Poses
PSNRT SSIMt LPIP| FIDJ| | PSNRT SSIM?T LPIPS| FIDJ|
Global Pose 3375 09824 18.65 2259 | 29.59 09731 2270 34.26
SMPL Joint 3343 09813 1940 21.83 | 2923 09732 2354 3758
Body Part (Ours) | 34.05 09878 14.51 17.30 | 3095 09786 19.06 28.11

Table 4. Quantitative results of ablation study on encoding strategy. We assign the texture maps to global poses, SMPL joints and body
parts respectively, and report the numerical results on 3 sequences of THUman4.0 dataset [71]. Here LPIPS* = 1000 x LPIPS.

TAVA ARAH  AniNeRF PoseVocab Ours Ground Truth TAVA ARAH  AniNeRF PoseVocab  Ours Ground Truth

Training Pose Novel Pose

Figure 5. Qualitative comparisons against TAVA, ARAH, AniNeRF and PoseVocab. We evaluate methods on THUman4.0 dataset and
DeepCap dataset and show the animation results on both training poses and novel poses respectively.

Although the vid2vid model is powerful enough to predict
) texture maps solely from SMPL-derived attributes, the low
- frequency of normal maps still limits the performance. In
contrast, directly exploiting texture maps gathered from im-
(a) () (©) (a) ®) (©)

age evidence can eliminate such problem.
Figure 6. Qualitative comparisons against NeuralActor on novel 5.3. Ablation Studies

pose synthesis. Results of NeuralActor are borrowed from [29]. In this subsection, we conduct ablation studies to demon-
(a) results of NeuralActor, (b) our results, (c) ground truth. strate the improvement brought by our contributions.

Ablation Study on Body-Part-Wise Embedding. To

prove the effectiveness of the body-part-wise embedding,
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Training Pose

Novel Pose

Figure 7. Qualitative results of ablation study on embedding strat-
egy. We show synthesized images of (a)global pose, (b)joint-
structured, (c)body-part-wise embedding , and (d)ground truth.

we compare it against another two embedding strategy,
i.e., global pose embedding and joint-structured embedding.
Specifically, we sample key global poses, key SMPL joints
and key body parts and assign texture maps to them, re-
spectively. Fig. 7 and Tab. 4 show the qualitative and quan-
titative results on 3 sequences of THUman4.0 dataset [71].
Although all the three methods can reconstruct details un-
der training poses benefiting from the pixel-aligned features
given by texture maps, global pose embedding cannot dis-
entangle the effects of SMPL joints, and ends up with poor
generation. While joint-structured embedding encodes fea-
tures per joint and does not retain any information on kine-
matic chains, which makes it too local to generalize to chal-
lenging poses, so the wrinkles are often messy. In contrast,
the proposed body-part-aware embedding not only encodes
fine-grained details, but also displays realistic results by dis-
entangling the effects of different joints and maintaining in-
formation along the kinematic chains.

Ablation Study on Texture Map. To prove the effec-
tiveness of texture maps obtained from existing views, we
take SMPL normal map as input, which is similar to Neu-
ralActor [29]. Then we use an image generator to gen-
erate texture maps from normal maps, and take ground-
truth texture maps as monitoring signals. Fig. 8 shows
the qualitative results of novel pose synthesis on THU-
man4.0 dataset [71]. Although the 2D convolutional net-
work is powerful enough to generate realistic texture maps

(b) (c)
Figure 8. Qualitative results on novel pose synthesis of ablation
study on texture maps.(a) Texture maps from an image generator,
(b) texture maps from multi-view images, (c)ground truth.

from SMPL-derived normal maps, it still suffers from the
low representation ability of driving signals. While our
method can not only reconstruct fine-grained details but
also achieve pose generalization with the guidance of pixel-
aligned features.

6. Discussions

Conclusion. We present Tex Vocab, a texture vocabulary
that adequately utilizes explicit image evidence to guide the
implicit NeRF to learn the dynamic details from expressive
texture conditions. To further represent the dynamic wrin-
kles of clothed humans, we propose body-part-wise embed-
ding to decompose all the SMPL skeletons into several body
parts and assign texture maps to them, which both disen-
tangles the effects of SMPL joints and maintains informa-
tion of kinematic chains. The proposed approach not only
reconstructs fine-grained details in terms of garment wrin-
kles and edges, but also achieves pose generalization that
displays realistic dynamic appearances under novel poses.
Experiments on different multi-view video datasets indicate
that our approach outperforms other state-of-the-art meth-
ods both qualitatively and quantitatively, showing its enor-
mous potential in different kinds of interactive applications.

Limitation. Since our avatar representation relies on the
inverse skinning by SMPL skeletons, it cannot handle loose
clothes like long dresses which do not follow the topologi-
cal structure of the SMPL model. Also, the gathering of tex-
ture maps relies on dense views. For monocular or sparse
view datasets, we cannot gather complete texture images to
guide avatar construction.

Potential Social Impact. Since our method enables au-
tomatic creation of animatable human avatars, it can be mis-
used to re-target individuals with actions they do not per-
form. To prevent the risks, it is critical to evaluate the cau-
tion before developing such kind of technology.
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