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Prompt:
RAW Photograph, Henry Cavill as The Witcher, dark fantasy, piercing hazel eyes, dark 
forest at night, slayed monsters, detailed skin with visible pores, insane intricate 
detail, award winning art, raytracing, sharp focus, 8k, hdr, masterpiece, photography, 
dslr, kodachrome, 35mm photograph, analog film, professional, highly detailed

Negative Prompt:
Compression artifacts, bad art, worst quality, low quality, plastic, fake, bad limbs, 
conjoined, featureless, bad features, incorrect objects, watermark, logo

[anxiety] [grief][dismay] [contentment] [excitement][enjoyment]

Prompt:
woman,age 20 years 
old,ponytail,smile,hoodie,portrait,(masterpiece, best quality, 
highres),

Negative Prompt:
(worst quality:2),(low quality:1.8),(normal quality:1.6),bad-hands-
5,

Input

Output

IdentityIdentity

Figure 1. Our framework takes three inputs: a prompt describing the background, a selfie photo uploaded by the user, and a text related to
the fine-grained expression labels. The generated faces well match the inputted triples and exhibit fine-grained expression synthesis.

Abstract

In human-centric content generation, the pre-trained
text-to-image models struggle to produce user-wanted por-
trait images, which retain the identity of individuals while
exhibiting diverse expressions. This paper introduces our
efforts towards personalized face generation. To this end,
we propose a novel multi-modal face generation frame-
work, capable of simultaneous identity-expression control
and more fine-grained expression synthesis. Our expression
control is so sophisticated that it can be specialized by the
fine-grained emotional vocabulary. We devise a novel dif-
fusion model that can undertake the task of simultaneously
face swapping and reenactment. Due to the entanglement
of identity and expression, separately and precisely control-
ling them within one framework is a nontrivial task, thus has
not been explored yet. To overcome this, we propose sev-
eral innovative designs in the conditional diffusion model,
including balancing identity and expression encoder, im-
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proved midpoint sampling, and explicitly background con-
ditioning. Extensive experiments have demonstrated the
controllability and scalability of the proposed framework, in
comparison with state-of-the-art text-to-image, face swap-
ping, and face reenactment methods.

1. Introduction

The research community has been striving to improve con-
trollability in the generation of face images tailored to user
preferences. A common practice in controllable generation
and manipulation is to use different modalities as condition-
ing in a face generator model, such as texts [23, 26, 29, 43,
46], reference images [5, 22, 27, 45], segmentation masks
[12, 21, 34] and audios [32, 54, 55].

Although these methods have realized the ability to con-
trol the local features and global attributes in a face, the si-
multaneous control of identity and expression in a specific
background has not been fully explored, which involves
three important high-level attributes (i.e. identity, expres-
sion, and background) to determine a face image. Since
identity and expression are highly entangled, it’s challeng-
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ing to separately and precisely control them in a unified
framework. Additionally, in existing generation or manip-
ulation methods, the granularity of expression control re-
mains at a coarse level, often limited to the commonly used
seven or eight labels, e.g. “surprise”, “happiness”, “anger”
etc. These labels struggle to cover the entire emotional
space sufficiently in the open world.

To tackle these issues, this paper proposes a novel frame-
work that can simultaneously control identity, expression,
and background from multi-modal inputs. As shown in Fig.
1 and 2, the inputs contain three items: 1) a text that de-
scribes the scene, 2) a selfie photo uploaded by the user to
provide identity, 3) a text related to the expression labels.
Human language can conceptually describe expressions and
accurately describe scenes but can’t describe identity pre-
cisely, while images can be naturally used in identity recog-
nition. On the output side, the generated face will have the
same identity as the input selfie photo, show the expres-
sion specified by the text, and be placed in the background
described in the text [1, 9], as shown in Fig. 1. To sup-
port fine-grained expression description, we employ an ex-
pression dictionary of 135 English words [4], e.g. “amaze-
ment”, “exhilaration”, “hysteria” etc., which can more com-
prehensively describe the emotion domain.

The technical core inside the proposed framework is a
novel diffusion model that can conduct Simultaneous Face
Swapping and Reenactment (SFSR). Swapping and reen-
actment, which transfer the identity or expression of the
source face to the target face, are two classical face manipu-
lation tasks and have been studied extensively. Meanwhile,
SFSR is a relatively new and unexplored task, which aims
at separately transferring the identity from the source face,
and the expression from another source to one target face,
while keeping the background attributes (e.g. face pose,
hair, glasses, and surroundings) in the target unchanged.
To prepare the two sources and one target for SFSR, the
text that describes the scene will be input to a pre-trained
text-to-image model (Stable Diffusion) [35] to get the back-
ground image, while the text that describes the expression
will be used as the search key in the 135-class emotion
dataset [4, 17] to retrieve the expression image. Together
with the input identity image, the three images will be used
as conditioning in a latent diffusion model [35] to generate
the result, which has already exhibited high customizability
of various conditions on image generation [51].

Based on the foundations of the diffusion model [10, 35],
we also propose several elaborate designs in SFSR diffu-
sion model. 1) Balancing identity and expression encoder.
We develop the identity and expression encoder, which are
competitive with each other, to reduce the transfer of resid-
ual identity attribute in the expression encoder to the final
result. 2) Improved midpoint sampling. To achieve both ef-
ficiency and accuracy in imposing the identity and expres-

Sure, here u are.

Here is one of my photo.

[      ]
135 classes

emotion database

A man, looking at the viewer, with 
[Brighton Pier] in the background.

Pretrained 
Stable Diffusion Model

[love]

DiffSFSR

I want a photo taken in 
[Brighton Pier], looks [love].

ID EXPBackground

Figure 2. Overview of the proposed face generation framework.

sion constraints during training, we propose the improved
midpoint sampling, which can generate the face of higher
quality with only two times of prediction than the original
midpoint sampling [53]. 3) Explicitly background condi-
tioning. We provide background condition in the training
phase so that the diffusion model can focus on the genera-
tion of face but not background, and get more hints from in-
puts to recover face pose and lighting. This design is differ-
ent from previous methods [2, 53] that use background im-
age only in inference, and proves to be more effective. We
name the newly designed diffusion model for SFSR task as
DiffSFSR. Finally, the contributions of this paper are sum-
marized as:
• A novel face generation framework that achieves simulta-

neous control of identity and expression, and more fine-
grained expression synthesis than state-of-the-art text-to-
image methods.

• A novel face manipulation task, simultaneously face
swapping and reenactment, which has never been ex-
plored by previous methods. This task is also compatible
with the traditional separate swapping and reenactment
tasks by re-combination of inputs.

• Three innovative designs in the conditional diffusion
model, including balancing identity and expression en-
coder, improved midpoint sampling, and explicitly back-
ground conditioning, which increase the controllability
and image quality.

2. Related Works

Conditional Face Generation. Early methods usually use
a single modality as conditioning. For example, there has
been a surge of text-to-face researches that utilize the pre-
trained StyleGAN [14–16] and the text encoder, such as Te-
diGAN [46], StyleCLIP [29] and StyleT2I [23]. Using im-
ages as conditioning [5, 22, 27, 45] is also popular in the
research community. This kind of methods usually gener-
ate the face that shares the same identity or expression with
the input face image. The most recent methods begin to use
multiple modalities, due to the fact that different modalities
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are complementary to each other. For example, the tuple of
texts and segmentation masks [8, 11] is very popular to con-
trol face generation. Our proposed face generation frame-
work also takes as input multiple modalities, namely text
and image.

Our work is closely related to face swapping and face
reenactment. The mainstream way to improve visual qual-
ity is using GANs [3, 5, 6, 18, 19, 22, 33, 39, 40, 45, 48, 56],
which injects the identity or expression features extracted
from the source into the generation network, and uses mul-
tiple losses to ensure semantic consistency and image fi-
delity. The most recent method [53] employs a diffusion
model, and reformulates the face swapping as a conditional
inpainting task. There exist methods [27, 28, 30, 47] that
combine the two tasks, namely swapping and reenactment,
in a single framework. In their pipeline, a switch opera-
tor is usually placed in the facial features transfer stage to
switch between swapping and reenactment tasks. The main
difference in functionality between these methods and our
DiffSFSR is that either identity or expression, but not both
of them, is transferred to the result.

Preliminary on Diffusion Models. The diffusion model
(DDPM) [10] has been well documented. It contains dif-
fusion and denoising processes. Given a data distribution
x0 ∼ q(x0), the diffusion process produces a series of
intermediate noisy samples {xt} by continuously adding
Gaussian noise N with variance βt ∈ (0, 1) at timestep
t: q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) where q(xt|xt−1) =

N (xt;
√
1− βtxt−1, βtI). xt can be sampled directly from

x0, without generating intermediate steps:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. When a long
increasing sequence β1:T is set such that ᾱ ≈ 0, the distri-
bution of xT will converge to a standard Gaussian.

The denoising process starts from a Gaussian noise sam-
ple xT ∼ N (0, I), and denoises xT to x0 by sequentially
sampling the posteriors q(xt−1|xt). Based on Bayesian
rules, q(xt−1|xt,x0) can be derived to:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI),

xt−1 = µ̃t(xt,x0) +

√
β̃tϵ,

where µ̃t(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

and β̃t =
1− ᾱt−1

1− ᾱt
βt.

(2)

Since q(xt−1|xt,x0) has no closed-form, a deep neutral
network pθ is trained to approximate it.
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Figure 3. Pipeline of DiffSFSR, including training and inference
phases. Although the diffusion model is practically trained and
tested in the latent space [35], we illustrate all the processes in
the original image space for visualization. The transformations
between x and z are not illustrated for brevity.

3. The Proposed Framework

As shown in Fig. 2, the proposed face generation frame-
work contains two main modules: firstly converting the
multi-modal inputs into three images, and then generating
the face image by SFSR diffusion model from the inputted
three images. In the converting module, the inputs con-
tain an identity image Iid, a text prompt Pbkg describing
the scene and a text prompt Pexp related to the expression
label. Pbkg is injected to a pre-trained text-to-image diffu-
sion model [35] to obtain the background image Ibkg . Pexp

is used as the search key in the emotion dataset [4], which
contains 728,946 face images of 135 emotion categories.
According to Pexp, an expression image Iexp is randomly
retrieved from the corresponding category. In the DiffS-
FSR, Ibkg , Iid and Iexp are used as conditioning to generate
the final result Iout.

The pipeline of the DiffSFSR is shown in Fig. 3, includ-
ing the training and inference phases. The latent diffusion
model [35] is chosen as the backbone due to its high cus-
tomizability for various conditions. Similar to DDPM [10],
the training of the latent diffusion model also consists of the
diffusion process and the denoising process. One sample in
the training data is the triplet [Ibkg, Iid, Iexp], excluding the
ground truth counterpart of Iout. The input Ibkg is firstly
embedded to a latent z0, and then be added with the Gaus-
sian noise in the diffusion process. The denoising process
denoises the latent zt at random t-th timestep to z∗0, by ap-
plying the UNet conditioned on the masked Ibkg and the
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Figure 4. The network architecture of the denoising UNet. QKV
denotes the cross-attention layer.

extracted features from Iid, Iexp. The denoised latent z∗0
further needs to be transformed back to the image space to
generate x∗

0. To better compute the identity loss between x∗
0

and Iid, and the expression loss between x∗
0 and Iexp, we

adopt the improved midpoint sampling, considering both
accuracy and efficiency. In the inference phase, the trained
denoising UNet is used multiple times to gradually gener-
ate z′0 from a Gaussian noise zT , which is finally decoded
to image x′

0.

3.1. Conditions

The key in the DiffSFSR is how to learn the disentangled
representations respectively for Ibkg, Iid, Iexp and then con-
dition the diffusion model on the learned embeddings si-
multaneously, thus enabling disentangled and precise con-
trol of the targeted face. The network architecture of the
denoising UNet, together with the three conditioning em-
beddings, is shown in Fig. 4.

Background. Except for identity and expression, the in-
put Ibkg provides all other attributes for the output, e.g. face
pose, hair, glasses, lighting and surroundings. We mask the
facial region in Ibkg with a face parsing method, turning the
task from face editing to face inpainting. Then, the masked
Ibkg is concatenated with the latent zi as conditioning for
the diffusion model, in both training and inference phases,
so that most parts of the background in Iout are exactly the
same with Ibkg .

Our way of preserving background attributes is totally
different from the recently proposed diffusion model based
face-swapping method, DiffSwap [53]. In DiffSwap, the
background pixels (masked Ibkg) are not explicitly provided
during training, but only during the inference phase, which
requires the diffusion model to reconstruct the background
pixels in the training phase. To ensure global consistency,
the reconstruction loss is computed on the whole image.
Since the facial region usually occupies less than 50% of
the total image, a significant portion of the network opti-
mization is initially dedicated to the reconstruction of back-
ground pixels before the network starts to perform fine-
grained generation in the facial region. Hence, the faces

generated by DiffSwap may suffer from image blur and low
quality, compared with our results.

Another advantage of explicitly providing background
pixels in the training is that the diffusion model is forced to
learn to estimate the face pose and lighting from the back-
ground pixels, as there exists a strong correlation between
face pose, lighting, and the background. To summarize, we
provide the masked Ibkg as conditioning in the hope that,
it can make the diffusion model focus on the generation of
face but not the generation of background, and provide more
hints for recovering important attributes. We are the first to
disentangle background attributes from identity and expres-
sion and explicitly make them as conditioning, in the task
of face manipulation.

Expression. Previous methods prefer to use 2D facial
landmarks as the expression representation. Human expres-
sion contains complicated and subtle facial movements and
is closely related to facial texture, such as facial wrinkles
and facial action unit activation, thus the 2D facial land-
marks are not enough to represent the accurate expression
attribute. In order to get a powerful expression represen-
tation, we adopt the identity-disentangled and fine-grained
expression representation network named DLN [52] as the
encoder. A two-layer MLP is then used for domain transfor-
mation and feature shape alignment. After that, the expres-
sion embedding is injected into the diffusion model through
the cross-attention module.

Identity. The identity encoder should be competitive
with the expression encoder [52] for balanced conditioning,
otherwise, the residual identity attribute in the expression
encoder will be accidentally transferred to the result. As
the expression is closely entangled with identity, designing
a completely identity-ignored expression encoder is still an
open problem in the field of face analysis. In the aspect of
identity encoder, we apply an identity compound embed-
ding, since a single identity embedding is usually biased
[50] and insufficient to balance the expression embedding.
Three state-of-the-art face recognition models [7, 20, 38]
are selected to construct the identity compound embedding.
A single embedding can’t compensate for the impact of the
residual identity in the expression encoder, while the com-
pound embedding can meet the requirement. Similar to the
expression encoder, we use a two-layer MLP to map the
identity embedding of different shapes to a uniform dimen-
sion and condition them through cross-attention.

3.2. Training Objective

The training objective of the diffusion model can be formu-
lated as the Mean Squared Error (MSE) loss:

LDM = Ezt,C,ϵ,t[||ϵ− ϵθ(zt,C, t)||22], (3)

where zt denotes the noisy latent obtained by adding noise ϵ
to z0 at t-th timestep, ϵθ denotes the denoising UNet learned
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to predict ϵ, and C denotes the conditions. The conditions
are defined as:

C = [M ⊙ Ibkg, Eid(Iid), Eexp(Iexp)], (4)

where M denotes the binary mask of the facial region,
Eid(·) denotes the identity encoder, and Eexp(·) denotes the
expression encoder.

We also use identity loss and expression loss, following
the common practice. The losses are defined as:

Lid = 1− CosSim(Eid(Iid), Eid(DDM (z∗0))), (5)

Lexp = MSE(Eexp(Iexp), Eexp(DDM (z∗0))), (6)

where CosSim(·, ·) denotes the cosine similarity function
and MSE(·, ·) denotes the MSE function. The final loss
function can be formulated as:

L = LDM + λ1Lid + λ2Lexp, (7)

where λ1, λ2 denote the hyper-parameters.

3.3. Improved Midpoint Sampling

To compute the identity and expression losses at t-th
timestep during training, the denoised latent z∗0 firstly needs
to be generated from the noisy latent zt. In the origi-
nal diffusion model, e.g. DDPM [10], the generation of
z∗0 requires multiple times sampling on different timesteps,
which is unacceptable in the training phase of high-fidelity
image generation task. To tackle this issue, DiffSwap [53]
proposes a midpoint sampling method, which can get a
coarse z∗0 with only two steps of sampling. Specifically,
in timestep t it firstly estimates zt1 , t1 = ⌊ t

2⌋ by using the
formula:

zt1 =
zt −

√
1− ᾱt/ᾱt1ϵθ(zt, t,C)√

ᾱt/ᾱt1

. (8)

Then, starting from the estimated zt1 , it predicts the final z∗0
by using the formula:

z∗0 =
zt1 −

√
1− ᾱt1ϵθ(zt1 , t1,C)

√
ᾱt1

(9)

It seems to be an appealing solution to compute the identity
and expression losses with only two steps of sampling. We
refer readers to the literature [53] for the detailed derivation
of the two formulas in Eq. 8 and Eq. 9.

However, we find that there is an issue in Eq. 8. The
estimated noise here should be the noise that can convert zt1
into zt, but the noise estimated by ϵθ(zt, t,C) is actually the
noise that convert z0 to get zt. For a noisy latent zt, we can
get zt−1 using the following process: firstly predicts noise
ϵ using the Denoising UNet ϵθ(zt, t,C), then calculates z0
with the inverse process of Eq. 1, finally gets zt−1 using Eq.

2. In other words, strictly following the formulas in DDPM,
we are only allowed to move to z0 and then zt−1, starting
from zt. The direct moving from zt to zt1 in DiffSwap is
suboptimal, which will degrade the overall performance.

To be more in line with the formulas in DDPM, we pro-
pose an improved midpoint sampling method, which also
samples within two steps but can reduce the information
loss, compared to the original midpoint sampling [53]. Spe-
cially, starting from zt, we can obtain z0 and zt−1 using the
process introduced above. Then, we can obtain zt−2 us-
ing Eq. 2 again, which is an efficient linear transformation
without using the Denoising UNet. Through repeating t−t1
times linear transformation, we can get zt1 in a more accu-
rate and graceful way than DiffSwap. Finally, z∗0 is obtained
by using Eq. 9 on zt1 .

4. Experiments
Dataset. We split the CelebA-HQ dataset [13] into a train-
ing set of 29,000 images and a test set of 1,000 images,
by random selection. Our diffusion model is trained on the
training set of CelebA-HQ and FFHQ [14], and evaluated in
the test set of CelebA-HQ and FF++ [36]. The competitors
are evaluated by using their public pre-trained networks or
other open-source projects.

Metrics. The quantitative evaluations are performed in
terms of four metrics: identity retrieval accuracy (ID.), ex-
pression error (Exp.), pose error (Pose.), and mean squared
error (MSE.). For ID., we employ CosFace [42] to perform
identity retrieval. For Exp., we adopt the expression em-
bedding model [52] to compute the Euclidean distance be-
tween Iout and Iexp. For Pose., we use a pose estimator [37]
to estimate head pose and compute the Euclidean distance
between Iout and Ibkg . MSE. is used to measure the pixel
difference between the predicted image and ground truth. It
is noteworthy that in the calculation of the metrics in dif-
ferent tasks, the reference images are accordingly changed
with the source images.

Implementation Details. The network architecture of
our DiffSFSR follows the latent diffusion model [35], which
has a 4 × 64 × 64 latent space. DiffSFSR is trained from
SD-1.4 in 512× 512 resolution with an AdamW optimizer.
The hyper-parameters are set as λ1 = 0.003, λ2 = 0.01. In
the first 100k steps, the learning rate is set to 1e − 5 which
decays linearly in the following 100k steps. 8 NVIDIA
Tesla A100 GPUs are used to train our diffusion model with
a global batch size of 64. In inference time, we apply a
PNDM [24] sampler with 50 steps, which takes roughly 1
second to generate an image.

4.1. Fine-grained Expression Controlling Results

Fig. 5 shows 5 samples of the fine-grained expression syn-
thesis. More synthesis results from the 135 expression la-
bels [4] are available in supplemental material. To the best
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Methods CelebA-HQ FF++
ID.↑ Exp.↓ Pose.↓ ID.↑ Exp.↓ Pose.↓

Swap
EXP

Face2Face 87.9 3.25 - 96.8 2.83 -
StyleHEAT 98.2 2.43 - 97.7 2.16 -
DiffSFSR (ours) 99.9 0.58 - 98.9 0.68 -

Swap
ID

FaceShifter 94.5 0.65 2.13 95.4 1.10 1.62
SimSwap 98.8 0.93 2.89 98.0 1.46 2.87
HifiFace 85.1 1.11 3.38 92.4 1.80 3.32
E4S 81.6 2.77 6.99 91.5 2.34 3.96
DiffSFSR (ours) 90.8 0.32 2.59 91.0 0.49 3.89

Swap
All

Hybrid Method 76.9 2.24 7.07 83.5 2.14 5.67
DiffSFSR (ours) 90.2 0.55 6.00 90.7 0.73 5.19

Table 1. The quantitative results in the three tasks: “Swap All”
denotes SFSR task, “Swap ID” denotes face swapping task, and
“Swap EXP” denotes face reenactment task. The scores in ID. and
Exp. are scaled up by a factor of 100 for simplicity.

of our knowledge, there is currently no face generation
or manipulation method in academic or industry, that can
reach this level of fine-grained expression control. As men-
tioned above, the dataset [4] provides 728,946 facial expres-
sion images labeled with 135 categories. In our work, a ref-
erence expression image is randomly selected from the cor-
responding category according to the input expression text.
As observed in Fig. 5 and supplemental material, the ex-
pression of the synthesized facial image is similar to that of
the reference image. Readers can zoom in for more details.

User Study. We conduct a user study with Fuxi Youling
Crowdsourcing1 to evaluate the quality of the fine-grained
expression synthesis, in terms of expression consistency and
identity consistency. For each sample, 27 participants were
recruited to answer two questions: whether the synthesized
face has a consistent identity and a consistent expression
with the reference images? The results of user study are
that, the identity consistency is 95.6% (with a variance of
2.6%) and the expression consistency is 90.4% (with a vari-
ance of 3.4%). The statistics clearly demonstrate that our
method has the ability of simultaneous identity and expres-
sion preserving.

We conduct another user study to further evaluate the
expression consistency of the proposed method. For each
sample, 30 participants were recruited to score the expres-
sion consistency between the synthesized face and the ref-
erence expression image (with a min score of 1 and a max
score of 5; 1 refers to very inconsistent and 5 refers to very
consistent). Finally, our method achieves a score of 4.08
(with a variance of 0.81), indicating its ability to generate
very consistent expressions.

In summary, our method can achieve fine-grained ex-
pression control while maintaining identity consistency.

4.2. Comparisons

Comparison with Text-to-Image Method. We com-
pare our method with the SOTA open-source text-to-image
model Stable Diffusion XL (SDXL) [31]. As shown in Fig.

1https://fuxi.163.com/solution/data

P: [ID] looks [amusement] in [Ollantaytambo]

amusement

ID

P: [ID] looks [astonishment] in [Grand Bazaar]

astonishment

ID

P: [ID] looks [compassion] in [Mount Everest]

compassion

ID

P: [ID] looks [disgust] in [Potala Palace]

disgust

ID

P: [ID] looks [dislike] in [Kremlin]

dislike

ID

P: [ID] looks [displeasure] in [Little Mermaid]

displeasure

ID

P: [ID] looks [gladness] in [Van Gogh Museum]

gladness

ID

P: [ID] looks [glumness] in [Teotihuacan]

glumness

ID

P: [ID] looks [insecurity] in [Little Mermaid]

insecurity

ID

P: [ID] looks [loneliness] in [Terracotta Warriors]

loneliness

ID

P: [ID] looks [outrage] in [Sydney Harbor Bridge]

outrage

ID

P: [ID] looks [panic] in [Trafalgar Square]

panic

ID

P: [ID] looks [surprise] in [Empire State Building]

surprise

ID

P: [ID] looks [tenderness] in [Pienza]

tenderness

ID

P: [ID] looks [zest] in [Lago Di Garda]

zest

ID

Figure 5. A subset of 135 classes expression synthesis samples.
Please zoom in for more details.

6, the two methods take as input the same prompt and the
same fine-grained expression labels. The additional input
to our framework is a portrait of “Melinda May”. Com-
pared with our results, SDXL can’t synthesize the accu-
rate expressions corresponding to “enjoyment”, “anxiety”
or “grief”. The dilemma faced by most text-to-image meth-
ods is that they can only recognize a few limited expression
labels. Models like ControlNet [51] need a large amount
of training data and couple the background to the face at-
tributes. Our framework also supports expression travel
by interpolating between embeddings, so that more fine-
grained expressions can be generated.

Comparison with Hybrid Methods. As there is cur-
rently no SFSR method, we construct a hybrid method
as the potential competitor by directly combining the best
face-swapping method in terms of ID. score, SimSwap [5],
and the best face reenactment method in terms of Exp.
score, StyleHEAT [49], based on the statistics reported in
the parts about Swap ID and Swap EXP in Tab. 1.

As shown in the part about Swap All in Tab. 1, our
method outperforms the hybrid method with a significant
margin in all metrics. From the visual results shown in Fig.
7, our method can produce more accurate expressions and
poses than the hybrid method, due to the powerful ability of
expression embedding [52] and latent diffusion model [35].

Comparison with Face Reenactment Methods. Our
DiffSFSR can also conduct the face reenactment task by
setting the inputs Ibkg and Iid as the same image. We make

2119



Melinda May, cashier in a fastfood restaurant holding a hamburger, 
red long tie, looks [expression label]

SDXL

DiffSFSR
(ours)

Exp 
Travel

[anxiety] [grief][enjoyment]

[enjoyment] [anxiety] [grief]

[anxiety] [grief][enjoyment]

interpolation interpolation

Identity

Figure 6. Comparison with text-to-image method SDXL, and il-
lustration of expression travel.

Target
(Bkg)

Source A
(Exp)

Source B
(ID)

Hybrid Method DiffSFSR
(ours)

Figure 7. Qualitative comparison in SFSR task.

a comparison with two SOTA face reenactment methods in-
cluding Face2Face[41] and StyleHEAT[49], and use their
pre-trained networks.

From the statistics in the part about Swap EXP in Tab. 1,
our method outperforms the two competitors in all metrics.
The advantage is more obvious in the qualitative compar-
ison shown in Fig. 8, where the expression in our results
is more similar to the source, and the identity and pose are
more similar to the target.

Comparison with Face Swapping Methods. Similar
to face reenactment, our DiffSFSR can also conduct the
face swapping task by setting the inputs Ibkg and Iexp as
the same. We make comparisons with five SOTA face

Target
(Bkg/ID)

Source
(Exp)

Face2Face StyleHEAT DiffSFSR
(ours)

Figure 8. Qualitative comparison in face reenactment task.

Methods Identity. Expression. Realism. Image Quality.
SimSwap 2.84 (p=0.124) 3.44 (p<0.001) 2.71 (p<0.001) 2.69 (p<0.001)
DiffSwap 2.58 (p<0.001) 3.59 (p<0.05) 3.19 (p<0.005) 3.04 (p<0.001)
E4S 2.87 (p=0.232) 2.72 (p<0.001) 3.04 (p<0.001) 3.03 (p<0.001)
DiffSFSR (ours) 3.01 3.79 3.72 3.60

Table 2. Uers study in face swapping methods. The best values are
highlighted in bold. The ANOVA tests are conducted, in which a
p-value less than 0.05 is considered to indicate a statistically sig-
nificant difference from the performance of our method.

swapping methods including FaceShifter[22], SimSwap[5],
HifiFace[44], E4S[25] and DiffSwap[53]. For SimSwap,
E4S and DiffSwap, we directly use their public pre-trained
networks. As FaceShifter and HifiFace do not make their
codes publicly available, we use the implementations from
the open-source community23.

From the statistics in the part about Swap ID in Tab.
1, since we focus on preserving both ID and expression,
our method outperforms all the competitors in Exp. and
achieves promising performance in ID. and Pose. As ob-
served in Fig. 9, except for SimSwap, our results are more
similar to the source faces in terms of inner facial features,
e.g., beard. There are obvious artifacts in the results of Hifi-
Face. And the faces generated by E4S do not blend well into
the background, leading to less natural results. In addition
to expression preserving, our advantage over SimSwap is
that our method can generate faces with better image qual-
ity, with less blur and artifacts, due to the powerful image
generation capability of the latent diffusion model [35].

User Study with Face Swapping Methods. To compre-
hensively compare our method with other face-swapping
methods, we implemented another human evaluation exper-
iment. For simplicity, we compare our DiffSFSR with two
most recent methods, DiffSwap[53] and E4S[25], as well as

2https://github.com/richarduuz/Research_Project
3https://github.com/xuehy/HiFiFace-pytorch
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Target
(Bkg/Exp)

Source
(ID)

FaceShifter SimSwap HifiFace E4S DiffSwap DiffSFSR
(ours)

Figure 9. Qualitative comparison in face swapping task.

SimSwap[5], which shows superior performance in terms of
ID consistency (see Tab. 1). 50 participants were recruited
to score the results of all methods in terms of ID consis-
tency, expression consistency, realism, and image quality
(with a min score of 1 and a max score of 5; 1 refers to
the worst and 5 refers to the best). As shown in Tab. 2,
our method registers the topmost scores across all measured
metrics. Moreover, in terms of statistical significance, our
method is competitive with other methods in ID consistency
while considerably surpassing its competitors on expression
consistency, realism, and image quality under a p-value of
0.05. In summary, our method is comparable to other meth-
ods in terms of ID consistency but can produce more accu-
rate expressions and more realistic, high-quality images.

4.3. Ablation Study

We conduct ablation study to demonstrate the effectiveness
of background conditioning and compound identity embed-
ding, by removing them individually during training. The
study on improved midpoint sampling is introduced in the
supplemental material. In the method without background
conditioning, we compensate with a segmentation map to
specify face region in training and provide background only
in inference. CelebA-HQ is used as the test set.

Effect of background conditioning. Without back-
ground conditioning, the diffusion model can’t learn the ac-
curate lighting and face pose, can’t generate faces of higher
image quality and can’t be consistent with the background.
These arguments are well supported by the results shown
in Fig. 10. The generated faces without background con-
ditioning suffer from inaccurate lighting, exhibit more face
pose errors, lack seamless blending with the background,
and are comparatively more blurry.

Effect of compound identity embedding. Compound
identity embedding can significantly improve identity sim-
ilarity. As shown in the 1st, 2nd and 3rd rows in Fig. 10,
each time we remove an identity embedding, the generated
faces become more similar to source A in terms of identity,
and less similar to source B which provides the expected
identity. This phenomenon indicates that the residual iden-
tity attribute in the expression embedding will be unexpect-

Methods ID.↑ Exp.↓ Pose.↓ MSE.↓
w./o. Bkg Condi. 81.5 0.66 8.97 51.40
w./o. ID Emb.3 74.9 0.63 7.54 52.09
w./o. ID Emb.2 37.9 0.56 7.90 52.98
Full Model 87.0 0.63 7.36 51.23

Table 3. Quantitative results in ablation study. The score in ID.
and Exp. are scaled up by a factor of 100 for simplicity.

Target
(Bkg)

Source B
(ID)

Source A
(Exp)

w./o. 
Bkg Condi.

w./o. 
ID Emb.3

w./o. 
ID Emb.2

DiffSFSR
(ours)

Figure 10. Qualitative results in ablation study.

edly transferred to the result when the identity embedding
is weaker than the expression embedding. Notably in the
fourth row, the inadequate identity representation even in-
correctly puts glasses on the results. As shown in Tab. 3,
the identity similarity in our results surpasses all the abla-
tion methods.

5. Conclusion
Given a text prompt, an expression label, and a selfie
photo, our personalized face generation framework can pro-
duce high-fidelity and identity-expression-preserving por-
traits. To realize the framework, we propose a new diffu-
sion model that can conduct simultaneous face swapping
and reenactment tasks. Extensive experiments have demon-
strated the controllability and scalability of the proposed
framework. We hope our efforts can inspire future work
in personalized generation frameworks to explore the use of
more modalities as conditioning to achieve higher control-
lability and image quality.
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