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Abstract

Single-source domain generalization (SDG) for object
detection is a challenging yet essential task as the distribu-
tion bias of the unseen domain degrades the algorithm per-
formance significantly. However, existing methods attempt
to extract domain-invariant features, neglecting that the bi-
ased data leads the network to learn biased features that are
non-causal and poorly generalizable. To this end, we pro-
pose an Unbiased Faster R-CNN (UFR) for generalizable
feature learning. Specifically, we formulate SDG in object
detection from a causal perspective and construct a Struc-
tural Causal Model (SCM) to analyze the data bias and fea-
ture bias in the task, which are caused by scene confounders
and object attribute confounders. Based on the SCM, we de-
sign a Global-Local Transformation module for data aug-
mentation, which effectively simulates domain diversity and
mitigates the data bias. Additionally, we introduce a Causal
Attention Learning module that incorporates a designed at-
tention invariance loss to learn image-level features that
are robust to scene confounders. Moreover, we develop a
Causal Prototype Learning module with an explicit instance
constraint and an implicit prototype constraint, which fur-
ther alleviates the negative impact of object attribute con-
founders. Experimental results on five scenes demonstrate
the prominent generalization ability of our method, with an
improvement of 3.9% mAP on the Night-Clear scene.

1. Introduction
The problem of distribution shift in unseen domains often
arises during the deployment of perception systems, lead-
ing to a notable decline in the model’s performance [3, 34].
Consequently, domain generalization [6, 19, 37, 50] has
emerged as a branch of transfer learning, which aims at
generalizing the knowledge from multiple source domains
to the unseen target domain. Single-source domain gener-
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Figure 1. Comparison between vanilla Faster R-CNN (FR) [33]
(top) and our proposed Unbiased Faster R-CNN (bottom). For
vanilla FR [33], the biased distribution of the input data leads the
network to learn biased features that favor the seen environment
and are poorly generalizable to unseen test environments. The
feature bias can be attributed to the image-level attention bias and
object-level prototype bias. Our method mitigates the data bias
in the input space and further learns unbiased attention and proto-
types in the representation space.

alization (SDG) is a special case of domain generalization
where there is only one source domain [31, 43, 51] and it
focuses on exploring the robustness of the model under dif-
ferent image corruptions.

The existing two methods for SDG in object detection
adopt different generalization strategies on Faster R-CNN
[33]. The domain-invariant feature learning-based method
[44] explicitly decomposes domain-invariant features and
domain-specific features by imposing constraints on the
network, without relying on data augmentation techniques.
And the data augmentation-based method [38] perturbs the
data distribution and increases the diversity of input data to
enhance model generalization ability.

However, both of these strategies have certain limita-
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Figure 2. Illustration of highly changeable data distribution, di-
verse context and object attributes in unseen target domains.

tions. Firstly, it has been proven in [45] that domain-
invariant features are inherently domain-dependent and bi-
ased, as features that are invariant to current domains may
be variant to other domains. This problem can be attributed
to the fact that domain-invariant features learned from a
biased data distribution are not causal features and cannot
adapt well to the unseen target environments. Secondly,
the domain generalization methods that use only data aug-
mentation without constraining network features fail to cap-
ture causal features from a rich augmented data distribu-
tion. This results in the network performing well in the
augmented domains but remaining ineffective in the unseen
domains, as confirmed in our Ablation Study in Section 5.3.
We summarize the reasons for the above two limitations as
the existence of data bias in the input space and feature bias
in the representation space. The feature bias is further de-
composed into image-level attention bias and object-level
prototype bias, as illustrated in Fig. 1 and Fig. 2:
(1) Data bias. The data distribution of unseen target do-
mains is highly changeable, as shown in Fig. 2. Therefore,
learning invariant features solely from single-domain data
will exacerbate the statistical dependence [28] between the
input data and labels, leading to biased learned results that
favor the seen environments.
(2) Attention bias. When testing in unseen domains with
complex context, as depicted in Fig. 2, the context features
may confuse the object features and the network may ex-
hibit attention bias, directing its focus towards the context
of the object rather than the object itself. We refer to the
scene context as scene confounders.
(3) Prototype bias. Each category possesses distinctive
causal attributes, such as structural information, that are
highly informative, as opposed to non-discriminative ones
like view and color, which we refer to as object attribute
confounders, as shown in Fig. 2. Therefore, if the learned
category features are not constrained, the network may in-
correctly take confounding attribute features that occur fre-
quently in the source domain as category prototypes, which
are biased and poorly generalizable.

To this end, we propose an Unbiased Faster R-CNN

(UFR) model, as illustrated in Fig. 1, with a comparison
to vanilla Faster R-CNN [33]. The UFR model simulates
diverse data distributions through data augmentation to mit-
igate the data bias and applies constraints on the features
to learn scene-level causal attention and object-level causal
prototype, thus eliminating the attention bias and prototype
bias. Specifically, we define causality in the SDG task as the
cause-and-effect relationship among scene, objects, causal
features and non-causal features and construct a Structural
Causal Model (SCM) to analyze the data bias and feature
bias caused by scene confounders and object attribute con-
founders. Additionally, we propose a Global-Local Trans-
formation (GLT) module, which augments the data as a
whole in the frequency domain and leverages the segmenta-
tion capability of SAM [15] to augment local objects in the
spatial domain. To address scene confounders, we propose
a Causal Attention Learning module with an attention in-
variance loss, which transforms the learning of scene-level
causal features into the learning of causal attention. To fur-
ther learn causal features at the object level, we introduce a
Causal Prototype Learning module, which encompasses an
explicit constraint on the distribution of instance features
and an implicit constraint on the relationship between pro-
totypes. The effectiveness of our method is demonstrated
through experiments conducted across five weather condi-
tions. The contributions are summarized as follows:

(1) We are the first to investigate single-domain general-
ized object detection from a causal perspective and analyze
three biases that limit the generalization ability of the detec-
tor, including data bias, attention bias and prototype bias.

(2) We construct a Structural Causal Model to analyze
the biases caused by two types of confounders and further
propose an Unbiased Faster R-CNN with a Global-Local
Transformation module, a Causal Attention Learning mod-
ule and a Causal Prototype Learning module to mitigate the
data bias, attention bias and prototype bias respectively.

(3) We evaluate our method on five different weather
conditions to demonstrate its effectiveness and superiority
and our method achieves a remarkable 3.9% mAP improve-
ment on the Night-Clear scene.

2. Related Works

2.1. Domain Generalization

Common strategies for addressing domain generalization
problem include domain alignment [19, 37, 42, 45], meta
learning [2, 6, 40, 50], data augmentation [14, 16, 38],
ensemble learning [24, 29, 36], self-supervised learning
[8, 10] and disentanglement learning [20, 39, 49]. As a spe-
cial case of domain generalization, the solution for single-
source domain generalization (SDG) can also be catego-
rized into several of the aforementioned strategies. Many
prior studies used data augmentation [17, 31, 38, 43] to gen-
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erate out-of-distribution samples to extend the distribution
of the source domain. For example, Wang et al. [43] pro-
posed a style-complement module to generate diverse styl-
ized images. Vidit et al. [38] proposed a semantic augmen-
tation method for SDG in object detection with the help
of a pre-trained CLIP [32]. In addition, some works em-
ployed the feature normalization strategy [4, 12, 26, 27] to
learn domain-invariant features. For example, Fan et al. [7]
proposed an ASR-Norm layer to learn standardization and
rescaling statistics.

2.2. Causality in Computer Vision

Causal mechanism considers the fact that statistical de-
pendence cannot reliably predict the labels of counterfac-
tual inputs [28]. Thus, exploring causality [1] enables
the acquisition of robust knowledge beyond what is sup-
ported by the observed data [35]. Recently, causal mecha-
nism has gathered significant attention in computer vision
[11, 25, 46, 48]. Many works use causal mechanism to
tackle domain generalization [18, 22, 30, 41, 45] and do-
main adaptation [13, 21, 23, 47] problems. For example,
Yue et al. [47] applied the causal mechanism to domain
adaptation and used the domain-invariant disentanglement
to identify confounders. Lv et al. [22] proposed a repre-
sentation learning framework for causality-inspired domain
generalization. Besides, Liu et al. [21] proposed a De-
coupled Unbiased Teacher to solve the source-free domain
adaptation problem. Moreover, Xu et al. [45] introduced
a causality-inspired data-augmentation strategy and elimi-
nated non-causal factors by a Multi-view Adversarial Dis-
criminator. In this paper, we first apply the causal mecha-
nism to the single-source domain generalized object detec-
tion task and propose an Unbiased Faster R-CNN to mine
causal features at the image level and object level.

3. Structural Causal Model
Consider the data (e.g. images) from the observed environ-
ment (source domain) as X and its target (e.g. detection
labels) as Y , the objective of single-domain generalized ob-
ject detection is to generalize the model trained with (X,Y )
in the observed environment to unseen environments (target
domains). We represent images from a causal perspective
and construct a Structural Causal Model (SCM) in Fig. 3 to
describe the cause-and-effect relationship in object detec-
tion task and attempt to eliminate the data bias and feature
bias caused by the scene confounders and object attribute
confounders. The rationale behind the SCM is as follows:
(1) O → X ← D denotes that an image is composed of
scene D and a set of objects O. D is scene confounder, and
the non-discriminative attributes of O are object attribute
confounders. The GLT module is achieved by perturbing
the scene confounders and object attribute confounders.
(2) O → ZV ← D denotes that the non-causal features

Figure 3. The constructed Structural Causal Model (SCM) for the
object detection task. The nodes denote variables, the solid arrows
denote the direct causal effect and the dashed arrow indicates that
there exists data dependence.

ZV are derived from two components, including the scene
confounders and non-causal object attribute confounders.
(3) O → ZC → Y represents that the causal features ZC

are determined by the discriminative attributes of objects,
such as shape. And the prediction labels Y are derived from
the causal features ZC . The complete feature space Z con-
sists of non-causal features ZV and causal features ZC .
(4) X → fϕ(X) → Y models the data stream of the ob-
ject detection network parameterized by ϕ.

Based on the constructed SCM, the ideal feature map-
ping of the network is fϕ(X) = ZC , which is also formu-
lated as:

fϕ(X
(al,dl)) = fϕ(X

(ak,dk)), (1)

where al ̸= ak, dl ̸= dk and the superscript (al, dl) denotes
assigning scene and object attributes the distribution dl and
al, respectively. Eq. (1) indicates that the ideal represen-
tation of an image learned by the model is invariant under
different data augmentations.

To achieve the above goal, we decompose the objective
into image-level attention invariance learning and object-
level prototype invariance learning and further propose an
Unbiased Faster R-CNN model, as depicted in Fig. 4, and
the details of which are illustrated in Section 4.

4. Unbiased Faster R-CNN
4.1. Global-Local Transformation

The complete process of Global-Local Transformation is
depicted in Fig. 5, which consists of Global Transforma-
tion (GT) in the frequency domain and Local Transforma-
tion (LT) in the spatial domain.

Inspired by the frequency-domain augmentation in [45],
the global transformation is formulated as:

GT(x) = F ′(G(H(r) · F(x)) + (1−H(r)) · F(x)), (2)

where F denotes the Fourier Transformation and F ′ is the
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Figure 4. The overall structure of the proposed Unbiased Faster R-CNN. The input source images are augmented through the Global-Local
Transformation (GLT) module. Both the original images and augmented images are fed into the network for training. During training, the
role of the Causal Attention Learning module is to constrain the network to learn scene-level causal attention and select causal features to
feed into the RPN. The purpose of the Causal Prototype Learning module is to constrain the network to learn object-level causal features
with the help of an explicit instance constraint (solid arrows) and an implicit prototype constraint (dashed arrows).

inverse one. H(r) is the band-pass filter with a filter ra-
dius of r. G(·) is a randomization function according to a
Gaussian distribution and G(X) = X · (1 +N (0, 1)).

For local transformation, as shown in Fig. 5, we first
obtain the object masks with the help of Segment Anything
Model (SAM) [15]:

SAM(x,B) = mO, (3)

where x is the input image, B is the bounding box set of
the objects and mO is the set of the obtained masks, where
O = {o1, o2, ...onO

} and nO is the number of objects in the
input image. Then we extract object images by :

xok = x⊙mok . (4)

Then the local transformation is formulated as:

LT(x) = T0(xbg) +

nO∑
k=1

Tk(xok), (5)

where xbg is the background image and T0(·) and Tk(·) de-
note the randomly selected augmentation strategies for the
background xbg and the object xok .

The augmented image output by the GLT module is de-
noted as:

GLT(x) = α · GT(x) + (1− α) · LT(x), (6)

where α is the fusion weight to balance the GT image and
the LT image and the fusion strategy also increases the di-
versity of the augmented images.

4.2. Causal Attention Learning

We transform the learning of scene-level causal features
into the learning of causal attention, which eliminates the

Figure 5. Overview of the Global-Local Transformation (GLT)
module. The Global Transformation (GT) performs overall aug-
mentation of an image in the frequency domain. And The Local-
Transformation (LT) performs augmentation of local objects ob-
tained by SAM [15] in the spatial domain. The final augmented
image is obtained by fusing the GT image with the LT image.

need for explicit decoupling of causal features from non-
causal features, instead focusing on selecting causal fea-
tures based on attention.

Specifically, it is desirable for the network to capture ob-
ject features precisely in different scene context. Thus, we
enforce the feature attention maps of different data distri-
bution images output by the backbone to converge and the
attention invariance loss is defined as:

Latt = Dice(g(F (a0,d0)
att ), g(F

(ak,dk)
att )), (7)

F
(a,d)
att = σ(E(x(a,d))), (8)

where g(·) is a pixel-level binarization function, F (a,d)
att is

the calculated attention map, σ(·) is the Sigmoid function,
E denotes the backbone, x(a0,d0) is the original input im-
age and x(ak,dk) denotes the randomly augmented image
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obtained from GLT. Besides, Dice(·, ·) denotes the dice loss
which is commonly used for measuring the regional simi-
larity between two samples, which is defined as:

Dice(X1, X2) = 1− 2|X1 ∩X2|+1

|X1|+|X2|+1
, (9)

where X1 and X2 are two binary maps. The regions with a
value of 1 for the maps are salient attention regions, while
the regions with a value of 0 are non-salient attention re-
gions.

Then we select causal features according to the attention
map for the subsequent Region Proposal Network (RPN) to
generate object proposals P :

P = RPN(E(x(a,d))⊙ F
(a,d)
att ). (10)

4.3. Causal Prototype Learning

To facilitate the learning of object-level causal features, we
introduce the Causal Prototype Learning module which en-
compasses an explicit constraint and an implicit constraint.

The explicit constraint is imposed on ROI features ex-
tracted from different data distributions. Specifically, given
the proposal set P generated from the source image, we se-
lect a group of proposals with a confidence higher than the
threshold t, denoted as P (t). We represent the ROI features
generated from P (t) as f(x, P (t)) for simplicity. Then the
explicit constraint is defined as:

Lexp = KL(pdo(a0,d0), pdo(ak,dk)), (11)

where KL denotes the Kullback-Leibler divergence,
pdo(a0,d0) is the short for p(y|f(x(a0,d0), P (t))), pdo(ak,dk)

is the short for p(y|f(x(ak,dk), P (t)))and pdo(a,d) =
MLP(f(x(a,d), P (t))).

The explicit constraint Lexp encourages the within-class
distance of the learned class representations from different
data distributions to be concentrated and also gives super-
visory information to the data-augmented image at the ob-
ject feature level, which enhances the saliency of the ob-
ject region, thereby improving the object localization per-
formance of the data-augmented images.

On the other hand, the implicit invariance constraint con-
strains the relationship between category prototypes across
different data distributions. We hypothesize that the dis-
tance between causal prototypes of the same category for
different data distributions is smaller compared to the dis-
tance between prototypes of different categories:

dist(v(a0,d0)
ci , v(ak,dk)

cj ) > dist(v(a0,d0)
ci , v(ak,dk)

ci ) ≈ 0,
(12)

where i ̸= j, dist(·) is a distance metric function, v(a0,d0)
ci

is the prototype of category ci of the source data distribu-
tion and v

(ak,dk)
cj is the prototype of category cj of the aug-

mented data distribution. The prototype vc is computed by

dynamically averaging the ROI features belonging to the
category c.

We transform the implicit constraint that satisfy the
above hypothesis into a prototype contrastive loss:

Limp = −log
exp(s(i, i))

exp(s(i, i)) +
∑

j exp(s(i, j))
, (13)

s(i, j) = sim(v(a0,d0)
ci , v(ak,dk)

cj )/τ , (14)

where i ̸= j, sim(·, ·) is the cosine similarity and τ is a
temperature parameter.

The loss function of CPL module is presented as:

Lprot = Lexp + Limp. (15)

The constraints of this module will further refine the image-
level attention, thereby allowing the features fed into the
RPN module to contain more discriminative information
about the objects.

4.4. Model Optimization

The data streams of the original images and the augmented
images share the network parameters and the total training
loss is:

L = Lsup + λ1Latt + λ2Lprot, (16)

where Lsup is the supervised object detection loss for the
original images and the augmented images and λ1/2 are hy-
perparameters.

During inference, our UFR model maintains the same
parameter size as vanilla Faster R-CNN [33], ensuring that
it does not introduce additional space complexity. However,
a key difference lies in the calculation of features that are
fed into the RPN network, which is determined by Eq. (10).

5. Experiments
5.1. Experimental Setup

Datasets. We conduct experiments on the dataset built in
[44]. The dataset consists of five different weather con-
ditions, including Daytime-Clear, Daytime-Foggy, Dusk-
Rainy, Night-Clear and Night-Rainy. The Daytime-Clear
scene is used as the source domain, comprising 19,395 im-
ages for training and 8,313 images for testing. The other
four scenes are used as unseen target domains, consisting of
3,775 images in Daytime-Foggy condition, 3,501 images in
Dusk-Rainy condition, 26,158 images in Night-Clear con-
dition and 2,494 images in Night-Rainy condition. The
dataset contains annotations for seven categories of objects,
including person, car, bike, rider, motor, bus and truck.
Implementation Details. We adopt Faster R-CNN [33]
with ResNet-101 [9] as the object detector. The backbone
is initialized with weights pre-trained on ImageNet [5]. We
train the model with Stochastic Gradient Descent (SGD) op-
timizer with a momentum of 0.9 for 80k iterations. During
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Figure 6. Qualitative evaluation results of the model’s generalization ability on the Night-Clear scene. The top-row images are the results
of vanilla Faster R-CNN [33]. The bottom-row images are the results of our method.

Methods Bus Bike Car Motor Person Rider Truck mAP
FR [33] 66.9 45.9 69.8 46.5 50.6 49.4 64.0 56.2
SW [27] 62.3 42.9 53.3 49.9 39.2 46.2 60.6 50.6

IBN-Net [26] 63.6 40.7 53.2 45.9 38.6 45.3 60.7 49.7
IterNorm [12] 58.4 34.2 42.4 44.1 31.6 40.8 55.5 43.9

ISW [4] 62.9 44.6 53.5 49.2 39.9 48.3 60.9 51.3
SDGOD [44] 68.8 50.9 53.9 56.2 41.8 52.4 68.7 56.1

CLIP-Gap [38] 55.0 47.8 67.5 46.7 49.4 46.7 54.7 52.5
UFR (Ours) 66.8 51.0 70.6 55.8 49.8 48.5 67.4 58.6

Table 1. Quantitative results (%) on the Daytime-Clear scene.

training, the learning rate is set to 0.001, the batch size is
set to 4. Besides, the threshold t is set to 0.7, the λ1 and λ2

are both set to 0.1.
Data Augmentation Setting. For local transformation in
spatial domain, we randomly apply the augmentation strate-
gies consisting of gaussian blurring, color jittering, random
erasing and grayscale. The fusion weight α in Eq. (6) is a
random scalar in [0, 1].

5.2. Comparison with State-of-the-arts

Following the setting in [44], we use the Mean Average Pre-
cision (mAP) as our metric and report the mAP@0.5 results.
We compare our method with feature normalization-based
SDG methods, including SW [27], IBN-Net [26], IterNorm
[12], and ISW [4], and the existing two single domain gen-
eralized object detection methods, including SDGOD [44]
and CLIP-Gap [38]. Besides, we also compare the perfor-
mance of our model with vanilla Faster R-CNN (FR) [33].
Results on Daytime-Clear Scene. We evaluate the model
performance on the source domain. As shown in Table 1,
our method achieves an optimal result of 58.6% mAP and
has a 2.4% mAP gain against vanilla FR [33]. It shows that
our method is able to maintain or even improve the perfor-
mance of the FR [33] model in the source domain while
improving its generalization ability in unseen domains.
Results on Night-Clear Scene. The qualitative and quanti-
tative evaluation results of the model’s generalization per-

Methods Bus Bike Car Motor Person Rider Truck mAP
FR [33] 43.5 31.2 49.8 17.5 36.3 29.2 43.1 35.8
SW [27] 38.7 29.2 49.8 16.6 31.5 28 40.2 33.4

IBN-Net [26] 37.8 27.3 49.6 15.1 29.2 27.1 38.9 32.1
IterNorm [12] 38.5 23.5 38.9 15.8 26.6 25.9 38.1 29.6

ISW [4] 38.5 28.5 49.6 15.4 31.9 27.5 41.3 33.2
SDGOD [44] 40.6 35.1 50.7 19.7 34.7 32.1 43.4 36.6

CLIP-Gap [38] 37.7 34.3 58.0 19.2 37.6 28.5 42.9 36.9
Ours 43.6 38.1 66.1 14.7 49.1 26.4 47.5 40.8

Table 2. Quantitative results (%) on the Night-Clear scene.

formance in the Night-Clear scene are shown in Table 2
and Fig. 6, respectively. As shown in Table 2, our method
achieves the best result of 40.8% mAP, outperforming Clip-
Gap [38] by 3.9% mAP. Besides, compared with vanilla FR
[33], our method achieves a 5.0% mAP gain, which indi-
cates that the learned features is beneficial for improving
model generalization ability. Besides, compared with SD-
GOD [44] that learns domain-invariant features, our method
has an improvement of 4.2% mAP, which suggests that
causal features are more discriminative features and can
generalize better. For qualitative results demonstrated in
Fig. 6, it is obviously observed that our method detects
objects more accurately and has fewer false positives com-
pared with vanilla FR [33].
Results on Dusk-Rainy and Night-Rainy Scenes. Table
3 and Table 4 demonstrate the model’s ability to general-
ize to Dusk-Rainy and Night-Rainy scenes. Our method
achieves the best mAP in both scenes, with gains of 0.9%
mAP and 0.5% mAP respectively compared with CLIP-Gap
[38]. Besides, compared with vanilla FR [33], our method
achieves improvements of 5.2% mAP and 5.0% mAP re-
spectively. Furthermore, the feature normalization-based
methods [4, 12, 26, 27] have a poor performance in both
scenes, especially in motor category in Night-Rainy scene,
with mAP of less than 1.0%, which reinforces the challenge
of these two scenes and the superiority of our method.
Results on Daytime-Foggy Scene. Table 5 shows the gen-

28843



Figure 7. Qualitative evaluation results of the model’s generalization ability on the Daytime-Foggy scene. The top-row and bottom-row
images demonstrate the results of vanilla Faster R-CNN [33] and our method, respectively. Besides, the first two columns are the results
of real foggy images and the last two columns are the results of synthetic foggy images.

Methods Bus Bike Car Motor Person Rider Truck mAP
FR [33] 34.2 21.8 47.9 16.0 22.9 18.5 34.9 28.0
SW [27] 35.2 16.7 50.1 10.4 20.1 13.0 38.8 26.3

IBN-Net [26] 37.0 14.8 50.3 11.4 17.3 13.3 38.4 26.1
IterNorm [12] 32.9 14.1 38.9 11.0 15.5 11.6 35.7 22.8

ISW [4] 34.7 16.0 50.0 11.1 17.8 12.6 38.8 25.9
SDGOD [44] 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2

CLIP-Gap [38] 37.8 22.8 60.7 16.8 26.8 18.7 42.4 32.3
Ours 37.1 21.8 67.9 16.4 27.4 17.9 43.9 33.2

Table 3. Quantitative results (%) on the Dusk-Rainy scene.

Methods Bus Bike Car Motor Person Rider Truck mAP
FR [33] 21.3 7.7 28.8 6.1 8.9 10.3 16.0 14.2
SW [27] 22.3 7.8 27.6 0.2 10.3 10.0 17.7 13.7

IBN-Net [26] 24.6 10.0 28.4 0.9 8.3 9.8 18.1 14.3
IterNorm [12] 21.4 6.7 22.0 0.9 9.1 10.6 17.6 12.6

ISW [4] 22.5 11.4 26.9 0.4 9.9 9.8 17.5 14.1
SDGOD [44] 24.4 11.6 29.5 9.8 10.5 11.4 19.2 16.6

CLIP-Gap [38] 28.6 12.1 36.1 9.2 12.3 9.6 22.9 18.7
Ours 29.9 11.8 36.1 9.4 13.1 10.5 23.3 19.2

Table 4. Quantitative results (%) on the Night-Rainy scene.

eralization results of our model in Daytime-Foggy scene.
We can see that our method outperforms all the methods in
the table and achieves 39.6% mAP. Specifically, compared
with SDGOD [44] and CLIP-Gap [38], our method achieves
improvements of 6.1% mAP and 1.1% mAP, respectively.
Besides, some visualization results are demonstrated in Fig.
7. Compared with vanilla FR [33], our method achieves
more accurate object localization and classification in both
real and synthetic foggy environments.

5.3. Ablation Study

In this section, we conduct several experiments on Daytime-
Clear, Night-Clear and Daytime-Foggy scenes to analyze
the role of each component of the Unbiased Faster R-CNN
model. Specifically, the experimental results in Table 6 are
obtained by training on the Daytime-Clear scene and testing

Methods Bus Bike Car Motor Person Rider Truck mAP
FR [33] 34.5 29.6 49.3 26.2 33.0 35.1 26.7 33.5
SW [27] 30.6 36.2 44.6 25.1 30.7 34.6 23.6 30.8

IBN-Net [26] 29.9 26.1 44.5 24.4 26.2 33.5 22.4 29.6
IterNorm [12] 29.7 21.8 42.4 24.4 26.0 33.3 21.6 28.4

ISW [4] 29.5 26.4 49.2 27.9 30.7 34.8 24.0 31.8
SDGOD [44] 32.9 28.0 48.8 29.8 32.5 38.2 24.1 33.5

CLIP-Gap [38] 36.2 34.2 57.9 34.0 38.7 43.8 25.1 38.5
Ours 36.9 35.8 61.7 33.7 39.5 42.2 27.5 39.6

Table 5. Quantitative results (%) on the Daytime-Foggy scene.

on the three weather conditions.
Analysis of the GLT module. As shown in Table 6, the re-
sults of vanilla FR [33] are improved when combined with
the GLT module, with gains of 4.2% mAP in Daytime-
Clear scene, 2.8% mAP in Night-Clear scene, and 2.6%
mAP in Daytime-Foggy scene. Besides, the 60.4% mAP
in Daytime-Clear scene is optimal, which indicates that the
GLT module is an effective data augmentation method that
increases data diversity and performs exceptionally well in
the source domain with supervised learning.
Analysis of Latt, Lexp and Limp. As depicted in Table 6,
incorporating Latt, Lexp and Limp in addition to the GLT
module decreases the model performance in the Daytime-
Clear scene while improving the performance in the Night-
Clear and Daytime-Foggy scenes, which suggests that these
constraints limit the model’s performance in the seen envi-
ronment with supervised learning, but improve the model’s
performance in unseen environments. The phenomenon is
due to that these constraints encourage the model to extract
causal knowledge, thereby preventing the model from ac-
quiring domain-specific knowledge. The domain-specific
knowledge, although not generalizable, carries some sup-
plementary information for supervised learning. Further-
more, we can observe that the attention invariance loss Latt

improves the model generalization performance more sig-
nificantly, which indicates that the scene confounders have
a greater impact on the model generalization ability. Be-
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Figure 8. Visualization of the detection results and attention maps on the Dusk-Rainy scene. The top-row and bottom-row images are the
results of vanilla Faster R-CNN [33] and our method respectively. The dark red region represents the area where the attention is salient.

Methods Latt Lexp Limp D-Clear N-Clear D-Foggy
FR [33] 56.2 35.8 33.5

+GLT

60.4 38.6 36.1
59.5 39.7 38.1

! ! 59.1 40.4 39.0
! ! 59.3 40.0 38.5
! ! ! 58.6 40.8 39.6

Table 6. Ablation study results (%) of our proposed UFR method.
‘+GLT’ denotes incorporating the GLT to vanilla FR[33]. The loss
check mark denotes the addition of the loss to FR [33] with GLT.

sides, compared to the implicit constraint Limp, the explicit
constraint Lexp is more binding and contributes more to
generalization. Therefore, purely implicit constraint cannot
guarantee the model to learn causal prototypes, and explicit
constraint on the predicted distribution is necessary.

5.4. Further Analysis

Attention visualization. We conduct experiments on
Dusk-Rainy scene and compare the attention maps pro-
duced by vanilla FR [33] and our UFR model, as shown
in Fig. 8. We can observe that the attention maps gener-
ated by FR [33] are unfocused and have more attention on
irrelevant background areas. In contrast, our method pro-
duces more effective category-related attention and has less
attention on background, which suggests that our method
can capture discriminative object features in unseen envi-
ronments with a superior generalization performance.
Hyperparameter analysis. As demonstrated in Fig. 9, we
train our model with different settings of t, λ1 and λ2 and
test the generalization performance on the Night-Clear and
Daytime-Foggy scenes. The model performance with dif-
ferent settings of threshold t in Eq. (11) is reported in Fig.
9(a). The best threshold t is 0.7. Besides, we also report the
results of our model in Fig. 9(b) with different settings of
λ1 and λ2 in Eq. (16). It is obvious that the model achieves
the best performance with λ1 = 0.1 and λ2 = 0.1.

(a) Analysis on t (b) Analysis on λ1 and λ2

Figure 9. Results of hyperparameter analysis.

6. Conclusions

In this paper, we analyze the factors that contribute to the
limited single-domain generalization ability of Faster R-
CNN from a causal perspective and summarize them as data
bias, attention bias and prototype bias. To tackle these chal-
lenges, we propose a novel Unbiased Faster R-CNN. Our
model leverages a Structural Causal Model to analyze the
biases in the task that arise from both scene confounders
and object attribute confounders. We design a Global-Local
Transformation module for data augmentation to mitigate
the data bias. To learn features that are robust to scene con-
founders, we introduce a Causal Attention Learning module
for image-level causal feature selection. To further mitigate
the influence of object attribute confounders, we develop a
Causal Prototype Learning module that learns object-level
causal features. Experimental results and further analysis
demonstrate the effectiveness of our method.
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