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Figure 1. Illustration of our UniLSeg that is able to segment images at any granularity or semantic level with language as instructions. “Seg.
Mask”, “Lang.”, and “Sem. Level” denote the segmentation masks, corresponding language descriptions, and semantic levels, respectively.
The segmentation masks are shown in red or other colors. UniLSeg can take arbitrary text as input, whether it is a detailed long description
of an object or a short category name. With flexible expressions indicating segmentation target, UniLSeg achieves excellent performance
on various semantic level, e.g., object part, single or multiple instances, and the whole scene.

Abstract
This paper aims to achieve universal segmentation of ar-

bitrary semantic level. Despite significant progress in re-
cent years, specialist segmentation approaches are limited
to specific tasks and data distribution. Retraining a new
model for adaptation to new scenarios or settings takes ex-
pensive computation and time cost, which raises the de-
mand for versatile and universal segmentation model that
can cater to various granularity. Although some attempts
have been made for unifying different segmentation tasks or
generalization to various scenarios, limitations in the def-
inition of paradigms and input-output spaces make it diffi-
cult for them to achieve accurate understanding of content
at arbitrary granularity. To this end, we present UniLSeg,
a universal segmentation model that can perform segmen-
tation at any semantic level with the guidance of language
instructions. For training UniLSeg, we reorganize a group
of tasks from original diverse distributions into a unified
data format, where images with texts describing segmenta-
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tion targets as input and corresponding masks are output.
Combined with a automatic annotation engine for utiliz-
ing numerous unlabeled data, UniLSeg achieves excellent
performance on various tasks and settings, surpassing both
specialist and unified segmentation models. Code is avail-
able here.

1. Introduction
Segmentation is one of the most important problem in com-
puter vision, which aims to group meaningful regions and
perform pixel-level understanding. Recent years have wit-
nessed great progress in the development of various seg-
mentation tasks such as semantic segmentation [7, 16, 46,
48], interactive segmentation [30, 44, 45, 74], salient object
segmentation [26, 85], and referring segmentation [51, 78].

Although many excellent works have emerged, they tend
to be specialist approaches for specific segmentation tasks,
making it difficult for them to address complex and diverse
segmentation scenarios. When adapting to novel settings
or semantics, new models need to be designed and trained
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on data of corresponding distribution, which leads to sig-
nificant data and computation cost. Therefore, it is greatly
promising to achieve versatile and universal segmentation
that can cater to various semantic levels and settings. Never-
theless, due to the diverse distribution of data and the com-
plexities of input-output space, designing and training such
a model presents a significant challenge.

Recently, some works [30, 67, 75, 86] have attempted
to propose unified paradigm for multiple segmentation
tasks or generalization to various scenarios. Among them,
SAM [30] and SEEM [86] propose to take point as the ba-
sis for indicating segmentation targets and have achieved
impressive performance and generalization ability. How-
ever, such point-based interaction paradigm tends to pro-
duce over-dispersed and unexpected segmentation results
due to the lack of semantic concept awareness. Besides, the
information contained within the “point” is insufficient to
guide the model in executing generic segmentation across
multiple semantic levels. Unlike SAM, UNINEXT [75]
focuses on object-centric segmentation and adopt prompt
generation to standardize the input space. Despite achiev-
ing excellent results, the emphasis on instance makes it
difficult to achieve understanding of any granularity, such
as fine-grained part segmentation and coarse-grained scene
understanding. With visual in-context learning, Painter [66]
and SegGPT [67] realize flexible target-aware segmenta-
tion. But the unification of input-output example form of
different tasks has brought up new challenges and greatly
limits the application scenarios.

Therefore, it leads to a natural question: is there a uni-
fied paradigm that can conveniently interact with the model
for universal segmentation at any granularity and has good
scalability? The answer we proffer is language. As the
most important tool for humanity, language can flexibly ex-
press the objects of reality and the laws of thought. Like
communication between human beings, language has be-
come one of the most important means of communica-
tion between humans and machines. It has the capabil-
ity to provide information at various levels of detail, ef-
fectively guiding the model in accomplishing the desired
tasks. Such versatile and informative prompt is in line with
the above requirements for unified segmentation instruc-
tion. With this insight, we study a series of tasks to val-
idate our ideas. The explored tasks contain referring im-
age segmentation (RIS) [68, 78], semantic segmentation
(SS) [7, 48], salient object detection (SOD) [56, 57], part
segmentation (PS) [17, 32], referring video object segmen-
tation (RVOS) [51, 60], and open-vocabulary segmentation
(OVS) [16, 73]. We reorganize these tasks from original
diverse distributions into a unified data format, where im-
ages with texts describing segmentation targets as input and
corresponding masks are output. Benefiting from such flex-
ible and unified design, segmentation model can be jointly

trained on different tasks to learn the connections between
language instructions and visual concepts.

In addition, to promote the the model’s understanding of
high-level language instructions, we present a fully aligned
framework called UniLSeg. The core design philosophy of
UniLSeg lies in conducting extensive visual-linguistic in-
teraction to identify and segment the targets within multi-
modal joint space. As shown in Figure 1, with generic rep-
resentations learned from numerous data of various tasks,
our UniLSeg is able to comprehend diverse language ex-
pressions that indicate segmentation targets at varying se-
mantic levels. Furthermore, to exploit the large-scale un-
labelled and weakly supervised data, we propose an auto-
matic annotation engine to generate pseudo caption-mask
pairs for assisted training. Extensive experiments on a
group of benchmarks demonstrate the powerful segmenta-
tion ability of our UniLSeg, e.g., it overpasses specialist
models and unified competitors by about 12% and 7% on
G-Ref [54] validation set.

Our contributions can be summarized as follows:
• We present UniLSeg, a generic segmentation model that

fully integrates visual concept with textual guidance.
With language instructions as universal prompt, UniLSeg
can be jointly trained on multiple tasks to learn the con-
nections between diverse textual descriptions and visual
content, achieving universal segmentation at arbitrary se-
mantic granularity.

• Our UniLSeg achieves superior performance on a group
of challenging benchmarks from various tasks, which
benefits from the language-based paradigm definition and
additional automatic annotation engine for large-scale un-
labeled and weakly-labeled data.

2. Related Work
Unified Large Segmentation Model Some recent works
have been devoted to exploring unified and robust large
segmentation models. Among them, SAM [30] has re-
ceived great attention for its powerful and generalizable seg-
mentation ability. SAM proposes to leverage point-based
prompts for indicating target regions. A series of follow-up
works [21, 32, 76, 81] have built on SAM, applying it to
a variety of tasks and achieving outstanding performance.
However, random point sampling and point-based interac-
tion may lead to over-dispersed segmentation masks and un-
awareness of high-level semantics. In addition, Painter [66]
and SegGPT [67] leverage visual in-context learning and re-
organize the output space of different tasks for unified pre-
diction. UNINEXT [75] and SEEM [86] design unified seg-
mentation decoder for adapting different task prompts. Al-
though these works have achieved excellent performance,
limitations in the definition of paradigms and input-output
space make it difficult for them to perform segmentation at
any semantic granularity.
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Figure 2. Pipeline of our UniLSeg. It takes both images and corresponding language prompt as input. With versatile language descriptions
indicating segmentation targets and full visual-linguistic interactions, UniLSeg can perform segmentation at any semantic granularity
and tackle various tasks such as semantic segmentation (SS), part segmentation (PS), salient object detection (SOD), open-vocabulary
segmentation (OVS), referring image (RIS) and video object segmentation (RVOS).

Language-Guided Segmentation As the most represen-
tative language-guided segmentation task, referring image
segmentation aims to perform pixel-level visual-linguistic
alignment for input images and given descriptions. The pi-
oneer works [18, 39] extracts image and language features
respectively and concatenates them to form the multi-modal
features. The subsequent approaches generally can be di-
vided into two categories. The first idea [20, 77, 80] is uti-
lizing the internal structure of the text to help identify tar-
get objects. However, this approach does not model well-
aligned cross-modal joint space, and the pipeline tends to be
complex. The other idea [4, 9, 13, 19, 24, 27, 63, 68, 78, 79]
is to model the cross-modal relations between image and
language by various attention operations. Following the
attention alignment idea, there are many follow-up works
such as LAVT [78], GRES [40], and PolyFormer [41]. In
addition to referring segmentation, semantic segmentation
can also be taken as language-guided task and the cate-
gory names can be viewed as short and rough text descrip-
tions [15, 16, 31, 73]. Different from the detailed descrip-
tions in referring segmentation, prior guidance provided by
class name is coarse-grained, which poses challenges in
multi-modal interaction. Even with the help of additional
vision-language models such as CLIP [58], the model per-
formance is still unsatisfactory.

3. Method

3.1. Pipeline

Overview: Figure 2 shows the pipeline of our UniLSeg.
The core design philosophy of UniLSeg lies in performing
extensive visual-linguistic interaction, which is compatible
with the language-based unified paradigm. Specifically, it

takes both images and corresponding language prompt as
input. By perceiving segmentation target in cross-modal
joint space and activating corresponding response, UniLSeg
achieves universal segmentation of arbitrary semantic gran-
ularity, represented by a group of tasks. We will elaborate it
in the following sections.

Encoding Process: For the input image I ∈ RH×W×3, we
utilize a pyramidal vision encoder [47] to extract the hierar-
chical vision feature f i

v ∈ RHi×W i×Ci
v , i ∈ [1,2,3,4]. Here

Hi and W i denote the height and width of i-th scale fea-
ture map, respectively. Cv denotes the channel dimension
of visual features.

For the input language prompt L ∈ Rl, we take the
transformer-based language encoder [58] to encode it to a
word embedding fw ∈ Rl×Ct and an overall sentence em-
bedding fs ∈ R1×Ct , where l is the length of the input lan-
guage expression. The word embedding fw contains fine-
grained guidance information. The sentence embedding fs,
on the other hand, expresses the general characteristics of
segmentation targets. Joint utilization of fw and fs con-
tributes to different tasks.

Pre-Fusion: Pre-Fusion aims to incorporate language guid-
ance into visual features and roughly highlight target areas,
which helps to mitigate the impact of background noise to
visual-linguistic joint space. During our exploration, we
have discovered that this module does not require a com-
plex design. Implemented with simple multi-head cross-
attention, this part can achieve desired activation effect.
Specifically, Pre-Fusion takes the word feature fw and hi-
erarchical vision feature f i

v , i ∈ [2,3,4] as input. Here take
i-th scale as an example for illustration. Since the purpose
of this structure is to elicit potential response within visual
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content, we take the visual feature f i
v as the Query and the

word embedding fw as the Key and Value. The process can
be formulated as:

f i
c = softmax(

Gq(f
i
v)

TGk(fw)√
Ci

)Gv(fw)
T , (1)

where Gq , Gk, Gv are projection functions that transfer the
input features to the corresponding space. C denotes chan-
nel dimension of joint embedding space. fc is activated vi-
sual feature used for subsequent visual-linguistic decoding.

Visual-Linguistic Decoding: We design a two-stream de-
coding structure to fully utilize the guidance from language
instructions and align cross-modal joint space. Specifically,
in the vision path, the visual features are sent to a Multi-
Modal Transformer for learning intra- and inter-modality
connections. In the language path, we incorporate the ac-
tivated visual context into linguistic prompt embedding to
generate content-aware prompts. This approach enhances
the alignment between visual and linguistic spaces and ef-
fectively reduces cross-modal domain gaps. Below we
present the details of these two paths.

Vision Path: This path consists of a Multi-Modal Trans-
former and a FPN [38]. Due to the limited alignment ca-
pacity of Pre-Fusion, the multi-modal transformer is used
to perform sufficient intra- and inter-modality interactions.
It is mainly composed of multi-modal self-attention and
multi-modal cross-attention operation. Taking the i-th level
visual feature f i

c as an example, we first flatten it along the
spatial dimension and add fixed positional embeddings [3]
to it. After that, the flattened visual tokens are concatenated
together with word embeddings fw to form multi-modal to-
kens fm. Then multi-head self-attention is applied to extract
relevant information between them. Self-attention allows
the model to excavate information within respective modal-
ities while modeling the visual-linguistic joint space. Note
that only the output vision tokens are used for subsequent
process, and the word tokens are discarded. This process
can be formulated as:

f i
m = flatten(f i

c) + Pos., (2)

f i
m = Concat(f i

m, fw), (3)

f i
b = MHSA(f i

m)[: HiW i], (4)

f i
b = LN(f i

b) + f i
c, (5)

where MHSA and LN denote multi-head self-attention
and layer normalization [1] operation, respectively. Pos is
the fixed sinusoidal positional embeddings. After that, we
further leverage the output vision tokens f i

b as Query and
the word embedding fw as Key and Value for multi-head
cross-attention, benefiting the location of target regions. Fi-
nally, a FPN-like [38] structure is utilized to integrate the
aligned visual features of all scales.

Table 1. Task-specific language prompt designs.

Task Prompt Template
Referring Image Segmentation natural caption
Referring Video Object Segmentation natural caption
Salient Object Detection “the most salient object”
Semantic Segmentation “all {}”
Open-Vocabulary Segmentation “all {}”
Part Segmentation “all {}”

Language Path: Inspired by prompt learning [14, 59,
84], we also utilize a language instruction updating strategy
to adjust linguistic space with visual content. For simplic-
ity and elegance of structure, we still take attention opera-
tion to achieve this goal. Actually, the process of language
path is symmetric with the multi-modal transformer in vi-
sion path, i.e., symmetric transformer. It first takes cross-
attention with sentence-level textual embedding fs as Query
and the activated visual features fc as Key and Value. After
that, self-attention is used to fully integrate initial language
prompt with the content-aware one.

Finally, the activated visual features and content-aware
linguistic embedding are combined to generate response
map by similarity calculation, i.e., matrix multiplication.
With bi-linear interpolation and binarization, the model
generates the output mask.

3.2. Task-Specific Prompt Design

As the most flexible prompt, language descriptions can be
reorganized to fit different goals. For tasks discussed in this
paper, we design specific prompt templates for them and the
summary is shown in Table 1.

Referring image segmentation and referring video ob-
ject segmentation aim to segment objects from images and
videos based on a given language description. Since the
related expressions already exist in these task, we directly
leverage them as the language prompt. Semantic segmen-
tation and open-vocabulary segmentation can be reformu-
lated as language-guided paradigm by replacing output lay-
ers with computing the similarity between visual and lin-
guistic embeddings. An intuitive approach is to take the
category names as short textual expression. However, we
find that this may potentially create semantic conflicts with
long texts from referring segmentation and affects the effec-
tiveness of joint training. To better combine data from dif-
ferent distributions, we design the language prompt of such
category-based tasks to “all {}”, where {} denotes the tar-
get category name. For salient object detection, we directly
utilize “the most salient object” as the input template.

3.3. Automatic Annotation for Unlabeled Data

To train our UniLSeg and make it capable of universal
segmentation of arbitrary semantic granularity, we col-
lect and reorganize an amount of supervised training data
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from available benchmarks. Specifically, these “supervised
data” come from RefCOCO [25], GRefCOCO [40], COCO-
Stuff [37], Ref-YouTubeVOS [60], PartImageNet [17],
LIP [35], ECSSD [64], and DUTS [65]. We convert them
to unified format, i.e., the triplet of image, mask, and cor-
responding language caption. Captions for data of different
tasks are defined according to the template described above.

In addition to these supervised data, we also try to lever-
age the numerous unlabeled images and weakly annotated
data. In particular, we classify these weakly supervised
or unlabeled data into three categories: box-labeled, mask-
labeled, and unlabeled. Since we take the language as uni-
fied prompt, we design an automatic annotation engine to
generate desired caption-mask pairs and filter out poten-
tial noise. 1) For box-labeled data that is mainly collected
from Object365 [62] and RefCOCO [25], we crop related
sub-images with annotated bounding boxes and then lever-
age SAM [30] and BLIP [33] to generate pseudo masks
and captions. 2) For mask-based data sampled from SA-
1B dataset [30], a naive method is captioning each anno-
tated mask region with image-caption models. However,
we find that this would lead to category redundancy and se-
vere mismatches between different masks of the same class.
To address this problem, we abandon the approach that la-
beling text based on the existing masks, and instead re-label
both the masks and text from scratch. Specifically, we first
leverage RAM [81] to tag any common categories in im-
ages. With all categories exist in image as input, Grounding
DINO [43] is introduced to detect object regions related to
each class tag. Then, with bounding boxes generated by
Grounding DINO as box prompt, we use the huge version
of SAM [30] to generate fine-grained masks for all poten-
tial categories. 3) For unlabeled data, e.g., images from Im-
ageNet [8], we first use BLIP [33] to generate natural cap-
tions for each image. Then a referring segmentation model
pre-trained on referring datasets [25] is applied to recognize
and segment the object related to the caption, obtaining the
desired mask-caption pairs.

To remove undesired low-quality triplets and reduce the
impact of annotation noise exist in pseudo-labeled data, we
first leverage CLIP [58] to calculate the matching score of
each caption with corresponding mask region. By filtering
triplets with excessively low matching score, the quality of
these pseudo-labeled data is improved. Besides, we incor-
porate the hide-and-seek strategy [61] during the training
process to effectively alleviate the detrimental effects of in-
accurate pseudo labels. The patch hiding probability is 0.2.

4. Experiment

4.1. Implementation Details.

We take the text encoder of CLIP ViT-B/16 [58] and Swin
Transformer [47] pre-trained on ImageNet [8] as our en-

coder in default. Both language and vision encoder are ini-
tialized using the official pre-trained weights. The rest of
weights in our model are randomly initialized. The input
images are resized to 480 × 480 by default and no data
augmentation technique is applied. We adopt a two-stage
pre-training strategy to fully utilize data of different distri-
butions. For the first stage, we train the model on 192 Tesla
V100 GPUs with the batch size of 8 for each GPU. Training
data of the first stage is sampled from SA-1B dataset [30].
The learning rate is set to 5e-5 and the epoch is set to 5. For
the second stage, the training data consist of supervised data
collected from a group of benchmarks and remain pseudo
labeled data. We train the model for 15 epochs in this stage
with learning rate of 1e-4. The learning rate is decayed by
0.1 after 10-th epoch. Besides, we also set a smaller learn-
ing rate for the visual backbone and the scaling factor is
0.1. The model is optimized with the combination of cross-
entropy loss and Dice loss [52] with the Adam [28] opti-
mizer. For convenience, we randomly sample one expres-
sion for each object within one iteration. During inference,
the output mask is upsampled to the size of the input image
by bi-linear interpolation. We binarize the prediction masks
by the threshold of 0.5 and do not utilize other post-process
operations.

4.2. Main Results

We evaluate our UniLSeg on 6 tasks with correspond-
ing evaluation metrics. The inference benchmarks con-
tain RefCOCO [25], RefCOCO+ [25], G-Ref [54], Ref-
YouTubeVOS [60], ADE20K [83], Pascal Context [12],
PartImageNet [17], ECSSD [64], SOD [57], and Pascal-
S [53]. Note that we report the performance of two versions
of UniLSeg, i.e., UniLSeg-20 and UniLSeg-100, which dif-
fer in sampling proportion of the SA-1B dataset during pre-
training. The results are presented below.

Referring Image Segmentation: Referring image segmen-
tation task is the most appropriate measure for language-
based segmentation because of the diversity and flexibility
of the captions in this task. We compare our method with
both proprietary approaches [40, 41, 68, 78] in RIS field and
large unified segmentation models [75, 86]. The results are
shown in Table 2. It can be seen that UniLSeg surpasses
all existing methods by a significant margin, e.g., 79.27 vs
73.41 on G-Ref [54] validation set and 73.18 vs 70.04 on
RefCOCO+ [25] validation set.

Referring Video Object Segmentation: Results shown
in Table 3 demonstrate the effectiveness of our UniLSeg
in language-guided video segmentation. UniLSeg handles
videos in a frame-by-frame manner. Actually, such perfor-
mance stems in part from the lack of consideration of inter-
frame relationships in the current RVOS benchmarks. How-
ever, robust image-level understanding ability also indicates
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Table 2. Comparison with state-of-the-art methods in terms of oIoU on the popular referring image segmentation benchmarks Ref-
COCO [25], RefCOCO+ [25], and G-Ref [54]. We compare our UniLSeg with both proprietary approaches of RIS field and strong
large segmentation models on both validation and test split. “-” represents that the result is not provided.

Method
Vision RefCOCO RefCOCO+ G-Ref
Backbone val test A test B val test A test B val test

Proprietary Methods
LSCM [22] ResNet101 61.47 64.99 59.55 49.34 53.12 43.50 - -
CMPC+ [42] ResNet101 62.47 65.08 60.82 50.25 54.04 43.47 - -
MCN [50] DarkNet53 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40
EFN [13] ResNet101 62.76 65.69 59.67 51.50 55.24 43.01 - -
BUSNet [77] ResNet101 63.27 66.41 61.39 51.76 56.87 44.13 - -
CGAN [49] DarkNet53 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69
LTS [24] DarkNet53 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25
VLT [9] DarkNet53 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65
ResTR [27] ViT-B 67.22 69.30 64.45 55.78 60.44 48.27 54.48 -
CRIS [68] ResNet50 69.52 72.72 64.70 61.39 67.10 52.48 59.35 59.39
CRIS [68] ResNet101 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36
LAVT [78] Swin-B 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09
GRES [40] Swin-B 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97
PolyFormer [41] Swin-B 74.82 76.64 71.06 67.64 72.89 59.33 67.76 69.05

Unified Segmentation Models
SEEM [86] FocalT - - - - - - 65.60 -
UniNext [75] ConvNext-L 80.32 82.61 77.76 70.04 74.91 62.57 73.41 73.68
UniLSeg-20 Swin-B 80.52 81.83 78.43 72.70 77.02 66.99 78.41 79.47
UniLSeg-100 Swin-B 81.74 83.17 79.85 73.18 78.29 68.15 79.27 80.54

Table 3. Results of referring video object segmentation on Ref-
YouTubeVOS validation set.

Method J&F J F
URVOS [60] 47.2 45.3 49.2
LBDT-4 [10] 49.4 48.2 50.6
MTTR [2] 55.3 54.0 56.6
VLT [9] 63.8 61.9 65.6
ReferFormer [70] 59.4 58.0 60.8
SOC [51] 62.4 61.1 63.7
UniLSeg-20 64.1 61.9 66.3
UniLSeg-100 64.9 62.8 67.0

the potential for extending our UniLSeg to corresponding
video-level model.

Semantic Segmentation: Expressions in referring segmen-
tation tend to be long texts that describes an object in de-
tail. To prove UniLSeg has the ability to understand di-
verse linguistic descriptions and perform high-level scene
understanding, we test it on semantic segmentation task un-
der both out-vocabulary and in-vocabulary settings with the
coarse-grained category name as language instructions.

Open-Vocabulary Setting: we directly take the pre-
trained UniLSeg for open-vocabulary inference on
ADE20K-150 [83] and Pascal Context-59 [12] datasets.
From Table 4 we can see that our UniLSeg achieves
excellent performance for open-vocabulary settings. It is

Table 4. Results of open-vocabulary semantic segmentation with
mIoU as metric. LMM denotes large multi-modal model.

Method Additional LMM ADE20K-150 PC-59
LSeg+ [31] × 13.0 36.0
SimSeg [73] ✓ 20.5 47.7
OpenSeg [15] ✓ 21.1 42.1
GKC [16] × 18.8 45.2
MaskCLIP [11] ✓ 23.7 45.9
OVSeg [34] ✓ 24.8 53.3
UniLSeg-20 × 27.6 54.3
UniLSeg-100 × 29.5 56.7

worth noting that UniLSeg even outperforms the methods
utilizing additional large multi-modal models such as
ALIGN [23] and CLIP [58] for region classification.

In-Vocabulary Setting: we finetune the UniLSeg on
ADE20K [83] dataset to evaluate it for the in-vocabulary
setting. The results are shown in Table 5. Although our ap-
proach performs worse than the specialist models due to its
uncustomized design about this task, it surpasses previous
unified model that utilizes visual information for guidance,
e.g., SegGPT [67], by a remarkable margin.

Salient Object Detection: With the intuitive prompt “the
most salient object”, our UniLSeg achieves the best perfor-
mance on all popular salient object detection benchmarks.
Table 6 shows the corresponding comparison with Fmean
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Table 5. Results of semantic segmentation with mIoU as metric.

Method ADE20K
FCN+ [48] 29.4
DeepLabV3+ [5] 44.1
RefineNet [36] 40.7
SegFormer [72] 51.1
MaskCLIP [6] 51.1
SegGPT [67] 39.9
UniLSeg-20 45.2
UniLSeg-100 49.5

Table 6. Comparisons with salient object detection methods.

Method ECSSD SOD PASCAL-S
F3Net [69] 0.912 0.775 0.816
MINET [55] 0.911 - 0.809
GateNet [82] 0.894 - 0.797
ICON [85] 0.936 0.802 0.854
MFABA [71] 0.935 - 0.857
RCSBNet [26] 0.927 - 0.842
UniLSeg-20 0.954 0.857 0.881
UniLSeg-100 0.961 0.863 0.889

Table 7. Results on part segmentation benchmark.

Method Val IoU Test IoU
SemanticFPN [29] 56.76 54.57
DeepLabV3+ [5] 60.57 58.71
SegFormer [67] 61.97 61.46
UniLSeg-20 62.46 62.03
UniLSeg-100 63.87 63.62

as metric. The larger is better.

Part Segmentation: The tasks above are basically
instance-level or category-level. To prove the effectiveness
of our method on segmenting images at any spatial gran-
ularity, we evaluate UniLSeg on the large-scale part seg-
mentation benchmark PartImageNet [17] and the results are
shown in Table 7.

4.3. Training Source Component

In this part we analyze the composition of training data.
Figure 3 (a) shows the proportions of supervised data col-
lected from different tasks. From the linguistic perspective,
language expressions from RIS and RVOS are natural long
linguistic captions. That from other tasks are coarse-grained
short expressions, e.g., category names. From the visual
standpoint, RIS, RVOS, and SOD are instance-level under-
standing. SS and PS are about semantic-level (scene-level)
and local part-level, respectively. The total number of su-
pervised images and mask-caption pairs is 360k and 7.58M.

Figure 3 (b) demonstrates the component of pseudo la-

(a) (b)

Figure 3. Illustration of training data component. (a) shows the
proportions of supervised source collected from different tasks. (b)
demonstrates the component of pseudo labeled training source.

Table 8. Ablation studies about the model components. The exper-
iments are performed on RIS, SS, and SOD tasks with RefCOCO,
ADE20k and SOD benchmarks, respectively.

Method RefCOCO ADE20K SOD
Baseline 48.68 21.89 0.671
+PF 65.38 37.45 0.784
+PF, +LP 74.47 43.12 0.811
+PF, +LP, +VP 77.56 44.63 0.827

beled training source generated from weakly annotated and
unlabeled data by the automatic annotation engine. “SA-
1B” is corresponding to the mask-based data. The figure
present the statistic for 20% SA-1B. Under such circum-
stances, we totally collect 3.5M images with 22M pseudo
mask-caption pairs. For 100% SA-1B data, the total num-
ber is about 11.5M images with 126M mask-caption pairs.

4.4. Ablation Study

Architecture Analysis To verify that the model design
of our UniLSeg is compatible with the language prompt
paradigm, we perform ablation experiments on different
parts of the network and the results are shown in Table 8.
PF, LP, and VP indicate Pre-Fusion, Vision Path, and Lan-
guage Path, respectively. We take RIS, SS, and SOD tasks
for evaluation. It is evident that the model’s performance
on the pertinent tasks enhances as the synergy between lan-
guage and visual content intensifies.

Training Source Analysis This part shows the impact of
different training source on segmentation performance.

Effectiveness of SA-1B data: SA-1B [30] contains a
large number of high quality images from diverse scenar-
ios. However, due to the lack of textual labels, we need to
leverage existing models to generate pseudo mask-caption
pairs, which leads to annotation noise and attenuates its ef-
fect. We have tried two strategies, i.e., joint training and
pre-training, for incorporating it into the training process.
Figure 5 shows the effect of sampling 20% and 100% SA-
1B data into training process under these two strategies.
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RVOS

“A brown colored cow at the center is standing and advancing forward”

RIS

Image “Banana behind pole” “White gorilla behind”

PS

Image “head” “body”

OVS

Image “natural landscape” all class in the image

SOD

“The most salient object”

SS

Image “all pillow” all class in the image

Figure 4. Visualization of segmentation results for different tasks.

Figure 5. Effect of incorporating 20% as well as 100% SA-1B data
into training process under pre-training and joint training strategy.

The vertical axis represents the performance increase or de-
crease compared to training without SA-1B data. It can be
seen that the pre-training strategy performs significantly su-
perior to joint training. We attribute this to the presence
of heavy noise in the pseudo-labeled SA-1B data disrupt-
ing the normal training space. In addition, 100% SA-1B
is significantly better than 20% under pre-training, but the
phenomenon is not the same under joint training due to the
larger noise distribution.

Effectiveness of multi-task joint training: We also test the
performance gains resulting from multi-task joint training.
From Figure 6 (a) we can see that vanilla multi-task joint
training does not result in performance boost on all tasks
without pseudo-labeled data aiding training. For short text
caption tasks, multi-task joint training leads to decrease. We
believe this is due to differences in visual and linguistic dis-
tribution across tasks. While with the large-scale pseudo-
labeled data for pretraining, this problem can be greatly mit-
igated by superior initialization, as shown in Figure 6 (b).

4.5. Visualization Results

Figure 4 shows some segmentation examples for each task,
which demonstrates the capability of our model to segment

(a) (b)

Figure 6. Influence of multi-task joint training. (a) shows the re-
sults without large-scale pseudo-labeled data for pre-training. (b)
demonstrates results trained with pseudo-labeled data.

images at arbitrary semantic granularity with language in-
structions. Due to limited space, please see more results in
supplementary materials.

5. Conclusion

In this paper we aim to achieve universal segmentation of
arbitrary semantic level with language instruction. We re-
organize a group of tasks from original diverse distributions
into a unified data format for joint training, i.e., triplet of
images, masks, and captions. To promote the model’s un-
derstanding of high-level language instructions, we present
a fully aligned framework called UniLSeg. Combined with
an automatic annotation engine for leveraging numerous
unlabeled or weakly labeled data, our UniLSeg achieves su-
perior performance on various semantic-related tasks.
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