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Figure 1. Video-P2P generates new characters while optimally maintaining the pose and environment in videos.

Abstract

Video-P2P is the first framework for real-world video

editing with cross-attention control. While attention con-

trol has proven effective for image editing with pre-trained

image generation models, there are currently no large-scale

video generation models publicly available. Video-P2P ad-

dresses this limitation by adapting an image generation

diffusion model to complete various video editing tasks.

Specifically, we propose to first tune a Text-to-Set (T2S)

model to complete an approximate inversion and then opti-

mize a shared unconditional embedding to achieve accurate

video inversion with a small memory cost. We further prove

that it is crucial for consistent video editing. For attention

control, we introduce a novel decoupled-guidance strategy,

which uses different guidance strategies for the source and

target prompts. The optimized unconditional embedding for

the source prompt improves reconstruction ability, while an

initialized unconditional embedding for the target prompt

enhances editability. Incorporating the attention maps of

these two branches enables detailed editing. These techni-

cal designs enable various text-driven editing applications,

including word swap, prompt refinement, and attention re-

weighting. Video-P2P works well on real-world videos for

generating new characters while optimally preserving their

original poses and scenes. It significantly outperforms pre-

vious approaches.

1. Introduction

Video creation and editing are key tasks [16, 17, 25, 37, 42].
Text-driven editing becomes one promising pipeline. Sev-
eral methods have demonstrated the ability to edit gener-
ated or real-world images with text prompts [13, 19, 24].
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Figure 2. Video-P2P vs Image-P2P. Editing a video frame-by-
frame (Image-P2P) cannot guarantee semantic consistency across
frames. Video-P2P enables changing the penguin into the same
robotic type in every frame.

Till now, it is still challenging to edit only local objects
in a video, such as changing a running “dog” into a “cat”
without influencing the environment. This paper proposes
a pipeline that can edit a video both locally and globally, as
shown in Figs. 1 and 5.

Text-driven image editing requires a model capable of
generating target content, such as changing the category or
property of an object. Diffusion models have demonstrated
outstanding generation capabilities in this area [3, 13, 19,
40]. Among these methods, attention control emerges as the
most effective pipeline for detailed image editing [13, 24].
In order to edit a real image, this pipeline includes two nec-
essary steps: (1) inverting the image into latent features with
a pre-trained diffusion model, and (2) controlling attention
maps in the denoising process to edit the corresponding
parts of the image. For example, by swapping their attention
maps, we can replace a “child” with a “panda”.

In this paper, we aim to build an attention control-based
pipeline for video editing. Since no large-scale pre-trained
video generation models are publicly available, we propose
a novel framework to show that a pre-trained image diffu-
sion model can be adapted for detailed video editing.

While a pre-trained image diffusion model can be uti-
lized for video editing by processing frames individually
(Image-P2P), it lacks semantic consistency across frames
(the 2nd row of Fig. 2). To maintain semantic consistency,
we propose using a structure on inversion and attention con-
trol for all frames, by transforming the Text-to-image diffu-
sion model (T2I) into a Text-to-set model (T2S). This ap-
proach is effective, as illustrated in the 3rd row, where the
robotic penguin maintains its consistency across frames.

We adopt the method proposed in [47] to convert a T2I
model into a T2S model by altering the convolution ker-
nels and replacing the self-attentions with frame-attentions.
This conversion yields a model that generates a set of se-
mantically consistent images. The generation quality will
be degraded with the inflation step but it can be recovered
after tuning on the original video. Although the tuned T2S
model is not an ideal video generation model, it suffices
to create an approximate inversion for a video as shown in
Fig. 3 (c). It is just an approximation because errors are
accumulated in the denoising pass, consistent with conclu-
sions in [24, 43].

To improve the inversion quality, we propose to optimize
a shared unconditional embedding for all frames to align the
denoising latent features with the diffusion latent features.
Our experiments show that shared embedding is efficient for
video inversion and crucial for video editing. Comparisons
are shown in Fig. 3 and Fig. 9.

As discussed in [13], successful attention control re-
quires a model to have both reconstruction ability and ed-
itability. While image inversion has been argued to possess
both abilities in [24], we find that video editing presents
different challenges. The T2S model, as an inflation model
not trained on any videos, is not robust to the perturbations
caused by various unconditional embeddings. Although our
optimized embedding can achieve reconstruction, chang-
ing prompts can destabilize the model and result in a low-
quality generation. On the other hand, we find that the ap-
proximate inversion with an initialized unconditional em-
bedding (the text embedding of an empty prompt) is ed-
itable but cannot reconstruct well. To address this issue, we
propose a decoupled-guidance strategy in attention control,
utilizing different guidance strategies for the source and tar-
get prompts. Specifically, we use the optimized uncondi-
tional embedding for the source prompt and the initialized
unconditional embedding for the target prompt. We incor-
porate the attention maps from these two branches to gener-
ate the target video. These two simple designs prove effec-
tive and successfully complete video editing. Our contribu-
tions can be summarized as:

• We propose the first framework for video editing with
attention control. A decoupled-guidance strategy is de-
signed to further improve performance.

• We introduce an effective and efficient video inversion
method with shared unconditional embedding optimiza-
tion to improve video editing substantially.

• We conduct extensive ablation studies and comparisons
to show the effectiveness of our video editing framework.
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Figure 3. Inversion Comparison. (b) The inflated model cannot generate high-quality results. (c) Tuning the model can create an approxi-
mate video inversion. (d) Optimizing a shared unconditional embedding can accurately reconstruct the input video.

2. Related Work

2.1. Text Driven Generation

DALL-E [32] first considers the text-to-image (T2I) gen-
eration task as a sequence-to-sequence translation prob-
lem, with subsequent research improving generation qual-
ity [6, 10, 50]. Denoising Diffusion Probabilistic Mod-
els (DDPMs)[15] have recently gained popularity for T2I.
GLIDE[26] utilizes classifier-free guidance to improve text
conditioning. DALLE-2 [33] leverages CLIP [31] for
better text-image alignment. Latent Diffusion Models
(LDMs) [34] propose processing in the latent space to en-
hance training efficiency. In our work, we employ a pre-
trained image diffusion model based on LDMs.

Text-to-video (T2V) generation is a nascent research
area. GODIVA [46] first introduces VQ-VAE [41] to T2V.
CogVideo [18] combines T2V with CogView-2 [6], uti-
lizing pre-trained text-to-image models. Video Diffusion
Models (VDM) [17] propose a space-time U-Net for per-
forming diffusion on pixels. Imagen Video [16] success-
fully generates high-quality videos with cascaded diffusion
models and v-prediction parameterization. Phenaki [42]
generates videos with time-variable prompts. Make-A-
Video [37] combines the appearance generation of T2I
models with movement information from video data. While
these approaches generate reasonable short videos, they still
contain artifacts and do not support real-world video edit-
ing. Additionally, most of these approaches are not pub-
licly available at this time. Tune-A-Video [47] inflates an
image diffusion model into a video model and tunes it to
reconstruct the input video. It allows for changes in seman-
tic content but with limited temporal consistency. We find
that using DDIM inversion results can improve its tempo-
ral consistency. However, it cannot avoid altering unrelated
regions. We adapt some designs of TAV to do our model
initialization.

2.2. Text Driven Editing

Generative models have demonstrated impressive perfor-
mance in image editing, with approaches ranging from
GANs [12, 27, 28, 44] to diffusion models [1, 19].
SDEdit [22] adds noise to an input image and uses the
diffusion process to recover an edited version. Prompt-to-

Prompt [13] uses attention control to minimize changes to
unrelated parts, while Null-Text Inversion [24] improves
real image editing. Plug-and-Play [40] uses feature and
self-attention injection, which are unable to avoid edit-
ing the whole image when changing a local part. In-
structPix2Pix [3] enables flexible text-driven editing with
user-provided instructions. Textual Inversion [11], Dream-
Booth [35], and Custom-Diffusion [20] learn special to-
kens for personalized concepts and generate related images.
Some improved inversion methods [7, 23] are proposed af-
ter our work.

Video editing with generative models has seen sev-
eral advances recently. Text2Live [2] employs CLIP to
edit textures in videos but struggles with significant se-
mantic changes. Dreamix [25] uses a pre-trained Imagen
Video [16] backbone to perform image-to-video and video-
to-video editing, with the ability to change motion as well.
Gen-1 [8] trains models jointly on images and videos for
tasks such as stylization and customization. While these
methods enable modifying video content, they operate like
guided generation and tend to modify all regions together
when editing an object. Our proposed method allows for
local editing with a diffusion model pre-trained on images.

Besides, there have been some concurrent works and fol-
lowers after our work, such as [5, 9, 21, 30, 45, 49, 52].
Video-P2P focuses more on introducing the image diffu-
sion models to detailed video editing, instead of conditional
video generation.

3. Method

Let V be a real video containing n frames. We adopt the
Prompt-to-Prompt setting by introducing a source prompt P
and an edited prompt P⇤ which together generate an edited
video V⇤ containing n frames. The prompts are provided
by the user. Similar to TAV [47], we assume that the object
of interest is present in the first frame.

To achieve cross-attention control in video editing, we
propose Video-P2P, a framework with two key technical
designs: (1) optimizing a shared unconditional embedding
for video inversion, and (2) using different guidance for the
source and edited prompts, and incorporating their attention
maps. The framework is illustrated in Fig. 4.
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3.1. Preliminary

Latent Diffusion Models (LDMs). LDMs generate an im-
age latent z0 using a random noise vector zt and a textual
condition P as inputs. As variants of DDPMs, these models
aim to predict artificial noise by minimizing the following
objective:

min
✓

Ez0,"⇠N(0,I),t⇠ Uniform (1,T ) k"� "✓ (zt, t, C)k22 , (1)

where C =  (P) is the embedding of the text prompt, and
noise " is added to z0 according to step t to obtain zt. Dur-
ing inference, the model predicts noise "✓(·) for T steps to
generate an image from zT .
DDIM sampling and inversion. Deterministic DDIM
sampling can be used to generate an image from latent fea-
tures in a small number of denoising steps:

zt�1 =

r
↵t�1

↵t
zt+

 r
1

↵t�1
� 1�

r
1
↵t

� 1

!
·"✓ (zt, t, C) .

(2)
We use an encoder to encode the real image before the dif-
fusion process and a decoder to decode after the denoising
process. DDIM sampling can be reversed in a few steps
through the equation:

zt+1 =

r
↵t+1

↵t
zt+
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↵t+1
� 1�

r
1
↵t

� 1

!
· "✓ (zt, t, C) ,

(3)
known as DDIM inversion [38]. This can be used to obtain
the corresponding latent features of a real image.
Null-text inversion. To mitigate the amplification effect
of text conditioning during image generation, classifier-free
guidance is proposed, which performs unconditional pre-
diction [14]:

"̃✓ (zt, t, C,?) = w · "✓ (zt, t, C) + (1� w) · "✓ (zt, t,?) ,
(4)

where ? =  (””) is the embedding of a null text and w is
the guidance weight. However, the classifier-free guidance
increases errors accumulated in the denoising process, lead-
ing to imperfect image reconstruction using the DDIM in-
version. [24] proposes to align the diffusion latent trajectory
z⇤T , . . . , z

⇤
0 with the denoising latent trajectory zT , . . . , z0

by optimizing a step-wise unconditional embedding ?t:

min
?t

��z⇤t�1 � zt�1

��2
2
. (5)

3.2. Video Inversion

We begin by constructing a T2S model that is capable of
performing an approximate inversion. Following the VDM
baselines [16, 17] and TAV [47], we employ 1⇥3⇥3 pattern
convolution kernels and temporal attention. Moreover, we

Figure 4. Framework. We optimize one shared unconditional em-
bedding for the reconstruct branch (orange). The initialized un-
conditional embedding is utilized for the editable branch (green).
Their attention maps are incorporated to create the target video.

replace the self-attentions with frame-attentions, which take
the first frames v0 and the current frame vi as inputs and
update features for the frame vi. The formulation of the
frame-attention is as follows:

Q = WQvi,K = WKv0, V = WV v0, (6)

where W are the projection matrices in attention. Then,
attention maps are calculated as:

M = Softmax

✓
QKT

p
d

◆
, (7)

where d is the latent projection dimension. The model pro-
cesses a video pair-by-pair and computes n times to obtain
the prediction for every frame. We find that the simple de-
sign suffices for video inversion since the reversed latent
features can capture temporal information. Besides, frame-
attention conserves memory and speeds up the process.

While model inflation can aid in preserving semantic
consistency across frames, it adversely impacts the gener-
ation quality of the T2I model. This is because the self-
attention parameters are utilized to compute frame correla-
tions, which have not been pre-trained. Consequently, the
T2S model, generated through inflation, is insufficient for
the approximate inversion, as demonstrated in Fig. 2. To ad-
dress this, we fine-tune the query projection matrices WQ

of the frame- and cross-attentions, as well as additional tem-
poral attention, to perform noise prediction based on the in-
put video following [47]. After this initialization, the T2S
model is capable of generating semantically consistent im-
age sets while maintaining the quality of each frame, result-
ing in successful approximate inversion.

Using the fine-tuned T2S model, we perform video in-
version by optimizing a shared unconditional embedding.
During inversion, each latent feature zt contains a channel
for the frames with dimension n, where zt,i denotes the la-
tent feature for the i-th frame. We employ DDIM inversion
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to generate latent features z⇤0 , . . . , z
⇤
T . The unconditional

embedding is defined as follows:

min
?t

nX

i=1

��z⇤t�1,i � zt�1,i (z̄t,i, z̄t,0,?t, C)
��2
2
,where (8)

z̄t�1,i = zt�1,i (z̄t,i, z̄t,0,?t, C) (9)
is updated at each step. The T2S model’s frame-attentions
use two latent features to calculate the corresponding fea-
ture for the next step. Notice ?t is shared by all frames (i =
1, . . . , n) which minimizes the memory usage. Besides, us-
ing the same unconditional embedding for all frames avoids
destabilizing the semantic consistency in attention control.

3.3. Decoupled-guidance Attention Control

To perform attention control on real images, existing
works [13, 24] require an inference pipeline with both re-
construction ability and editability. However, achieving
such a pipeline for a T2S model is challenging. Video in-
version allows us to establish an inference pipeline to recon-
struct the original video well. However, the T2S model is
not as robust as T2I models due to a lack of pre-training with
videos. As a result, its editability is compromised with the
optimized unconditional embedding, leading to degraded
generation quality when changing prompts. In contrast, we
find that using an initialized unconditional embedding ?
makes the model more editable while it cannot reconstruct
perfectly. This inspires us to combine the abilities of two
inference pipelines. For the source prompt, we use the opti-
mized unconditional embedding in the classifier-free guid-
ance. For the target prompt, we choose the initialized un-
conditional embedding. We then incorporate attention maps
from these two branches to obtain the edited video, where
the unchanged parts are influenced by the source branch and
the edited parts are influenced by the target branch.

The pseudo algorithm is shown in Alg. 1. We adopt the
attention control methods from Image-P2P to Video-P2P.
For example, to perform word swap, the Edit function can
be represented as:

Edit (Mt,M
⇤
t , t) :=

(
M⇤

t if t < ⌧

Mt otherwise
, (10)

Mt and M⇤
t are the cross-attention maps for every frame at

every step, and DM is the tuned T2S model. Changing the
frame-attentions maps has a small influence on the final re-
sults. Attention maps are swapped only for the first ⌧ steps
because attentions are formed in the early period. M t,w is
the average attention map of the word w calculated at step
t. It is averaged over steps T, . . . , t independently for every
frame. For the j-th frame, we calculate:

M t,w,j =
1

T � t

TX

i=t

M i,w,j j = 1, . . . , n. (11)

Algorithm 1: Prompt-to-Prompt video editing
1 Input: A source prompt P , a target prompt P⇤,

source video Vsrc.
2 Output: Edited video Vdst.
3 Latent features from DDIM inversion: zT ;
4 z⇤T  zT ;
5 Initialized unconditional embedding ?⇤ and

optimized unconditional embedding ?;
6 for t = T, T � 1, . . . , 1 do

7 zt�1,Mt  DM(zt,P, t,?);
8 M⇤

t  DM(z⇤t ,P⇤, t,?⇤
);

9
cMt  Edit(Mt,M⇤

t , t);
10 z⇤t�1  DM(z⇤t ,P⇤, t,?⇤

){M⇤
t  cMt};

11 ↵ B
�
M t,w

�
[B

�
M

⇤
t,w⇤

�
;

12 z⇤t�1  (1� ↵)� zt�1 + ↵� z⇤t�1;
13 end

14 Return (z0, z⇤0)

B
�
M t,w

�
represents the binary mask obtained from the at-

tention map. A value is set to 1 when larger than a threshold.

4. Experiments

4.1. Implementation Details

We develop our method based on CompVis Stable Diffusion
(v1-5). Similar to TAV [47], we fix the image autoencoder
and sample 8 or 24 frames at the resolution of 512 ⇥ 512
from a video. To initialize the model, we fine-tune the T2S
model for 500 steps to reconstruct the original video. Dur-
ing attention control, we set the cross-attention replacing
ratio to 0.4 and the attention threshold to 0.3. For prompt
refinement, we set the refinement ratio to 0.4. Parameters
can be adjusted to control the editing fidelity for different
examples. All 8-frame experiments are conducted on a sin-
gle V100 GPU, with 5 minutes for initialization (tuning), 6
minutes for inversion, and 1 minute for inference. It is dif-
ficult to avoid the inversion cost when preserving the back-
ground faithfully according to [24]. To speed up to less than
one minute, one can replace the null-text inversion with re-
cent inversion methods [7, 23]. In the appendix, we show
that a shared unconditional embedding works on 24 frames.
Our inversion process extends to over 100 frames. However,
editing longer videos (1min) remains challenging. Video-
P2P and most existing works concentrate on shorter videos.

4.2. Applications

Video-P2P can be utilized for a range of editing applica-
tions, including prompt refinement, attention re-weighting,
and word swapping. Video-P2P is able to maintain semantic
consistency across different frames and preserve the tempo-
ral coherence of the original video during the editing pro-
cess. More examples can be found in the appendix.
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Figure 5. Videos edited by Video-P2P with text prompts. Video-P2P can do both word swaps and prompt refinement.

Word swap. Video-P2P enables the replacement of entities
based on word swapping while maintaining the coherence
of unrelated regions. As illustrated in Fig. 5, Video-P2P
seamlessly replaces the man on the motorbike with Spider-
Man while minimizing the changes to the motorbike’s ap-
pearance (the 4th row). The generated Spider-Man exhibits
a consistent appearance across frames, and the background
remains unchanged. Furthermore, we can replace a dog
with a cat while preserving its gesture and the surrounding
grass (the 5th row).

Prompt refinement. Video-P2P is able to do prompt refine-
ment, such as modifying object properties. For example,
we can transform the running dog into a robotic one (the

6th row in Fig. 5), and convert a motorbike into a Lego toy
with the same motion (the 3rd row). Notice the grass and
sky are almost not influenced. Additionally, Video-P2P can
perform global editing like changing the weather to sunset
or flooding the road with water (2nd row). Style transfer
can also be accomplished by Video-P2P, as exemplified by
transforming the video into a watercolor painting.

Attention re–weighting. Similar to Image-P2P, Video-P2P
also enables attention re-weighting. By adjusting the cross-
attention of specific words, we can manipulate the extent of
the corresponding generation. For instance, we can regulate
how fluffy a dog is in the video (the 6th row of Fig. 5).
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Figure 6. Video-P2P v.s. Tune-A-Video (TAV). Video-P2P offers the ability to edit content locally, while TAV+DDIM cannot avoid
influencing unrelated regions.

Figure 7. Video-P2P v.s. Dreamix. Both methods can change the
dogs to cats. Video-P2P can preserve background’s details.

4.3. Comparison

Comparison with Tune-A-Video. Both TAV+DDIM [47]
and our Video-P2P allow for video editing with text
prompts. However, TAV+DDIM cannot avoid altering the
entire video content when editing specific objects, while
Video-P2P can edit a local area and minimize the influence
on other regions. Fig. 6 (Left) demonstrates that Video-P2P
preserves the complex shape of the cloud when replacing a
lion with King Kong, whereas TAV+DDIM can only main-
tain the color tone of the sky in this case.

Although our model initialization is similar to TAV,
Video-P2P can still generate temporal-consistent results
where TAV+DDIM fails. As demonstrated in Fig. 6 (Right),
TAV struggles to generate a temporally consistent sequence
in the second row, even when the inputs are features from
DDIM inversion. In contrast, our method can produce bet-
ter structure-preserved results, as shown in the third row.

Comparison with Dreamix. In contrast to Dreamix [25],
which uses a pre-trained video diffusion model that is not
publicly available, our method yields superior results for
subject replacement. Although our method cannot perform
video motion editing due to the lack of temporal priors, we
outperform Dreamix in preserving details and motion con-
sistency. As it is not open-sourced, we conducted our eval-
uation on its released demo. As demonstrated in Fig. 7,
both methods can transform two dogs into two cats, but
our method preserves the details of the drawer in the back-
ground (the 3rd row). Furthermore, Dreamix may affect the
time sequence to some extent, as the generated cat moves
more slowly than the original dog in the video. Our method
completely preserves the motion of the original video.

Quantitative results. We create a test set of 45 samples
based on the DAVIS [29] dataset and report five metrics for
quantitative analysis. The CLIP Score measures the tex-
tual similarity between the text prompt and video, while
Masked PSNR and LPIPS [51] evaluate the quality of struc-
ture preservation. We also proposed a novel metric, Ob-
ject Semantic Variance (OSV), to measure semantic consis-
tency across frames. In addition, we report an average CLIP
similarity (Temp) between consecutive frames (as in Gen-
1 [8] and FateZero [30]) to evaluate the temporal coherence.
For detailed explanations of these metrics, please refer to
the appendix. Our results, as shown in Table 1, demon-
strate that Video-P2P performs well on all metrics. Com-
pared to TAV+DDIM, Video-P2P achieves higher Masked
PSNR and lower LPIPS, indicating better preservation of
unchanged regions. Compared to the other two methods,
Video-P2P has much lower OSV and Temp, indicating its
superior ability to maintain semantic and temporal consis-
tency across frames. When comparing to Image-P2P, we
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Figure 8. Model initialization improves the generation quality.

Shared Multiple

Figure 9. Ablation on shared unconditional embeddings.A Lego child is driving a bike on the road.

w/ Decoupledw/o Decoupled

Figure 10. Ablation on decoupled-guidance attention control.

consider it as a reference point rather than a direct competi-
tor because it does not account for the consistency between
different frames. Image-P2P represents the upper bound of
PSNR and LPIPS, which serve as metrics to evaluate per-
frame quality. Among all video editing methods, Video-
P2P is the best one. Moreover, in Tab. 3, we report the user
study results, where Video-P2P ranks first on average and
has a high preference rate compared to other methods.

4.4. Ablation Study

Model initialization. While the inflated image diffusion
model can generate semantically consistent images, the T2S
model’s generation ability is compromised during inflation.
As seen in Fig.8 (the 3rd column), directly using the in-
flated T2S model produces unrealistic results with an inac-
curate background. To mitigate this, we initialize the T2S
model by fine-tuning the given video. This is evident in
Fig.8 (4th column), where the cat’s appearance improves,
and the grass reconstruction becomes more accurate.

Shared unconditional embedding. The use of shared un-
conditional embeddings is crucial to ensure stable and con-
sistent generations. On our test set, we found that 10% of
the videos exhibit instability when multiple unconditional
embeddings are employed. A visual example is included
in Fig. 9 (Right). As shown in Tab. 1 (row 5), seman-
tic and temporal consistency are diminished without shared
unconditional embedding, reminiscent of the content code
in [39]. We observe that optimizing a shared unconditional
embedding can significantly improve the PSNR compared
to TAV+DDIM in Tab. 2. However, using multiple un-
conditional embeddings for each frame only increases the
PSNR by 0.2 but results in higher parameter usage (n times)

CLIP " M.PSNR " LPIPS # OSV # Temp "
TAV+DDIM 0.3343 17.37 0.4651 55.67 0.9697
Image-P2P 0.3272 22.92 0.3082 76.92 0.9021
Ours (w/o MI) 0.3213 20.62 0.3255 50.27 0.9460
Ours (w/o DG) 0.3226 18.97 0.3866 68.75 0.9451
Ours (w/o SU) 0.3351 20.64 0.3221 48.78 0.9665
Ours 0.3367 20.65 0.3213 47.38 0.9725

Table 1. Quantitative evaluation. We evaluate textual similar-
ity (CLIP), region preservation (Masked PSNR, LPIPS), semantic
consistency (OSV), and temporal consistency (Temp). DG and SU
mean Decoupled-Guidance and shared unconditional embeddings.

VQVAE TAV
+DDIM

Multi-
uncond

Shared-

uncond

PSNR(dB) " 24.73 15.43 22.97 22.75
#Param. # / 0.13M 22.68M 2.94M

Table 2. Video reconstruction quality. A shared unconditional
embedding can reconstruct a high-quality video with a small size.

Image-P2P TAV TAV+DDIM Video-P2P

Structure 2.67 3.33 2.61 1.39
Preserving 13.59% 6.52% 10.87% 69.02%
Text 3.40 2.78 2.28 1.54
Alignment 3.80% 14.13% 19.57% 62.50%
Realism & 3.38 2.98 2.21 1.43
Quality 4.35% 7.61% 19.02% 69.02%

Table 3. User study of average ranking # and preference rate ".

and leads to a lower Masked PSNR after attention control.
Thus, we conclude that shared unconditional embedding is
the most effective and efficient method for video inversion.
Decoupled-guidance attention control. To obtain the la-
tent features of the input video, we optimize an uncondi-
tional embedding using the source prompt. It is important
to note that this embedding is only suitable for the source
prompt during the prompt-to-prompt process. Using the
optimized embedding for the target prompt may negatively
impact the quality of the generated results, as shown in
Fig. 10 (Left). Instead, we utilize the initialized uncondi-
tional embedding for the target prompt and incorporate at-
tention maps from two branches. The decoupled-guidance
attention control approach significantly improves the edit-
ing quality, as shown in Fig.10 (Right). Quantitative abla-
tions can be found in Tab. 1 (the 4th row and 6th row).

5. Conclusion

Video-P2P provides the first framework for video editing
with cross-attention control. We optimize a shared uncondi-
tional embedding based on a well-initialized T2S model for
video inversion. We also propose the decoupled-guidance
strategy for attention control. These techniques enable
Video-P2P to perform various applications, such as word
swap, prompt refinement, and attention re-weighting.
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