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Abstract

Video Frame Interpolation (VFI) has witnessed a surge
in popularity due to its abundant downstream applications.
Event-based VFI (E-VFI) has recently propelled the ad-
vancement of VFI. Thanks to the high temporal resolution
benefits, event cameras can bridge the informational void
present between successive video frames. Most state-of-
the-art E-VFI methodologies follow the conventional VFI
paradigm, which pivots on motion estimation between con-
secutive frames to generate intermediate frames through a
process of warping and refinement. However, this reliance
engenders a heavy dependency on the quality and consis-
tency of keyframes, rendering these methods susceptible to
challenges in extreme real-world scenarios, such as missing
moving objects and severe occlusion dilemmas.

This study proposes a novel E-VFI framework that
directly synthesize intermediate frames leveraging event-
based reference, obviating the necessity for explicit mo-
tion estimation and substantially enhancing the capacity
to handle motion occlusion. Given the sparse and inher-
ently noisy nature of event data, we prioritize the relia-
bility of the event-based reference, leading to the develop-
ment of an innovative event-aware reconstruction strategy
for accurate reference generation. Besides, we implement
a bi-directional event-guided alignment from keyframes to
the reference using the introduced E-PCD module. Finally,
a transformer-based decoder is adopted for prediction re-
finement. Comprehensive experimental evaluations on both
synthetic and real-world datasets underscore the superior-
ity of our approach and its potential to execute high-quality
VFI tasks.

1. Introduction

Video frame interpolation (VFI) is an important direction in
current computer vision research and finds widespread ap-
plications in various domains, including slow-motion gen-
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Figure 1. Qualitative comparison of the occlusion handling. (a)
and (b) estimate occlusion mappings by frames, (c) use events for
occlusion judgments, and (d) make occlusion judgments for op-
tical flow at the feature level. Our method (e) achieves the best
results by no longer estimating the occlusion mapping but giving
a direct structural reference.

eration [1, 16, 46], and video compression [44]. It is pri-
marily used to generate non-existent intermediate frames
in video sequences, enabling various effects such as video
smoothing and high frame rate conversion. Existing VFI
methods mostly employ motion-based strategies, estimat-
ing pixel-level motion from keyframes and using warping
techniques to obtain interpolated frames. However, these
methods have certain limitations when dealing with occlu-
sion and non-linear motion, often struggling to accurately
predict motion in complex scenes, thus affecting the quality
of interpolated frames.

In recent years, the emergence of event cameras has
brought new possibilities to address this challenge. Event
cameras, detecting brightness changes asynchronously at
the micro-second level [8–10, 34], can fill the information
blank of the inter-frame gap. By leveraging event data,
researchers can obtain more accurate motion estimation,
resulting in higher-quality interpolated frames through a
motion-based warping process [13, 21, 40, 45]. However,
despite significant progress brought by more accurate mo-
tion estimation, another tricky issue in VFI tasks, namely
occlusion problems such as severe occlusions (Fig. 1) and
situations that the interpolation scene is not visible in the
keyframes (Fig. 6), still remains unresolved.

We suggest the core challenge in achieving reliable
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frame interpolation lies in the unknown nature of inter-
frame information. Whether it is traditional synthesis-based
approaches [19, 38] or motion-based methods [15, 17, 30,
45], the generation process heavily relies on the informa-
tion provided by the keyframes, such as scene content and
temporal correlations. This raises us a question: If we could
directly provide reliable references for intermediate frames,
would it be possible to overcome the common limitations in
frame interpolation tasks?

In response to this question, this study proposes a novel
approach by directly synthesizing interpolated frames based
on the inter-frame reference reconstructed from event data.
While current E-VFI works leverage inter-frame cues from
events as well, they typically treat this information as an
augmentation to the keyframes, such as assisting in mo-
tion estimation of keyframes. Instead, our work inverts
the role of events and keyframes. We regard keyframes as
auxiliary information for completing the event-based refer-
ence, circumventing the challenges of fitting nonlinear mo-
tion and the occlusion issues introduced by warping oper-
ations. Meanwhile, by utilizing event data as a reference,
we avoid the reliance on additional keyframes and long-
term temporal messages commonly adopted in traditional
synthesis-based methods [19, 38].

In specific, our E-VFI model consists of three stages: re-
construction, synthesis, and refinement. In the reconstruc-
tion stage, we use events solely to reconstruct a structural
reference for the moving foreground at the interpolated po-
sitions. We introduce an event-aware reconstruction strat-
egy built on a customized erosion and dilation operation to
force the model to focus on enhancing the structural infor-
mation of the regions related to moving objects as well as
reducing the impact of noise except for these regions. In
the synthesis stage, we extend the PCD module [42] to the
E-VFI field, named E-PCD, which is designed to synthe-
size coarse interpolated frames by aligning keyframes to the
computed reference leveraging explicit event-based guid-
ance. Finally, we adopt an off-the-shelf Transformer-based
decoder for refinement.

Our contributions can be summarized as follows:
• We propose a novel E-VFI framework that eliminates the

need for motion estimation and directly synthesizes inter-
mediate frames based on the event-based reference.

• We introduce a reconstruction strategy for obtaining the
event-based reference, namely event-aware reconstruc-
tion strategy, aiming to emphasize precise structural in-
formation in the interpolated frame while suppressing re-
gions with low confidence.

• A deformable synthesis module E-PCD is proposed to
align useful keyframes’ features with the event-based ref-
erence for information completion , resulting in coarse
interpolated frames.

• Extensive experiments on both synthetic and real E-VFI

datasets demonstrate the effectiveness and generalization
of the proposed framework.

2. Related Work
Video Frame Interpolation (VFI). Four research paths can
be distinguished. (1) Motion-based approaches [1, 2, 14–
16, 18, 25, 30]; (2) Synthesis-based methods [19, 38]; (3)
Kernel-based [1, 2, 4] and (4) phase-based [26] method-
ologies. Due to the strong constraints imposed by motion
estimation, the motion-based method becomes a choice of
most works. For example, Jiang et al. [16] and Niklaus
et al. [29] employ an optical flow estimation network and
compute occlusion maps to generate multiple intermediate
frames. Park et al. [30] and Jin et al. [18] introduce bi-
directional motion estimation strategies for handling more
complex motion conditions. Building upon these works,
studies in [17, 22] achieve state-of-the-art (SOTA) perfor-
mance through synchronized updates of motion and syn-
thesized images with the iterative feature learning schedule.
However, these methods generally struggle to address ex-
treme occlusion issues, holding defects in performing reli-
able VFI in the real world. To this end, recent works [19, 38]
have revived research on synthesis-based methods aiming
to avoid the occlusion issues brought by the warping pro-
cess. However, without the assistance of motion estimation,
these approaches can only achieve comparable performance
by leveraging additional keyframes and temporal informa-
tion, enlarging the training pressure. In this paper, we draw
inspiration from synthesis-based approaches and instead of
relying on additional temporal information, we employ the
inter-frame events as references for the VFI task.
Event-based VFI (E-VFI). Thanks to the microsecond-
level temporal resolution, event cameras can fill the inter-
frame information blank, giving rise to numerous success-
ful E-VFI works [11, 13, 21, 23, 40, 41, 45, 48, 50].
Mainstream E-VFI models are built on the combination of
motion-based warping and synthesis. Initially, Tulyakov et
al. [40] incorporate events into their workflow, using image-
level attention to merge the warped and synthesized predic-
tions. Following studies [13, 23, 41, 48, 50] have all been
dedicated to improving the accuracy of motion estimation
to achieve better results via the warping process. In this
regard, Kim et al. [21] achieve SOTA performance with the
help of motion predictions on both image- and feature-level.
Yet, though achieving more accurate motion estimation, the
natural limitations of motion-based approaches in handling
large motion trajectories and extreme occlusion problems
still remain unsolved. Gao et al. [11] attempt to handle
these issues by providing a slow-fast joint synthesis net-
work, yet the lack of direct reference at the interpolated
frame causing their method easy to overfitting keyframes’
patterns and thereby resulting in unsatisfied performance.
In this work, we provide a solution to handle the above is-
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sues by proposing a purely synthesis-based E-VFI method
with the aid of event-based references containing structural
messages of the interpolated frames.
Event-based Video Reconstruction. Event cameras can
report pixel-level intensity changes between frames, theo-
retically allowing for the reconstruction of inter-frame de-
tails. Early reconstruction efforts depend on handcrafted
features to estimate the intensity of events [3, 20, 27, 36].
With the rise of deep learning, numerous studies have be-
gun to employ neural networks for video reconstruction
[33, 34, 37, 39, 43]. However, due to the nature of event
cameras that only detect areas with contrast changing, the
reconstruction of smooth and static regions poses chal-
lenges and instability. Therefore, we focus on the recon-
struction of regions with clear events and propose an event-
aware reconstruction strategy to assist in restoring high-
confidence structural information of moving scenes, im-
proving the credibility of the reconstructed event-based ref-
erence.

3. Event Representation
The i-th event, denoted as ei, in an event stream can be rep-
resented as (xi, yi, pi, ti). Here, xi and yi represent the spa-
tial coordinates, pi and ti denote the polarity and the times-
tamp of events respectively. To handle the unstructured for-
mat of event data, a common approach [6, 7, 21, 40, 51] is to
discretize the time dimension into B consecutive temporal
bins and then integrate the events into a 3D spatio-temporal
Voxel Grid (E ∈ RB×H×W ) linearly. The integration of a
specific temporal bin can be formulated as Eq. (1).

E(k) =
∑

i pi max
(
0, 1−

∣∣∣k − ti−t0
tNe−t0

(B − 1)
∣∣∣) , (1)

where t0 and tNe
respectively denote the start time and end

time of the integrated event stream, and Ne represents the
number of event data. The range of k is in [0, B − 1].

4. The Proposed Method
Given two input keyframes, I0&I1, and the events between
them, we aim to estimate the intermediate frame Iτ at a
specific timestamp between I0 and I1, where τ ∈ [0, 1] rep-
resents the timestamp of the interpolated frame. The overall
structure of our E-VFI framework is shown in Fig. 2. It con-
sists of the reconstruction, synthesis, and refinement stages.

We first divide events at τ into two segments and con-
vert them into voxel grids E0→τ and Eτ→1 before feeding
them to the network. At the reconstruction stage, we di-
rectly utilize E0→τ and Eτ→1 to reconstruct an event-based
reference (R), which contains the structural messages of
the frame to be interpolated, following the proposed event-
aware reconstruction strategy. Then, at the synthesis stage,
we aim to synthesize a coarse interpolation by bidirection-
ally aligning keyframes to the event-based reference. We

perform this process utilizing the proposed E-PCD through
explicit guidance proffered by event data. Finally, we sim-
ply adopt an off-the-shelf Transformer-based decoder to re-
fine the obtained coarse interpolation.

The following sections will describe the core compo-
nents of our method in detail. Please refer to the supple-
mentary for the exact architecture of our method.

4.1. Reconstruction of Event-Based Reference

State-of-the-art E-VFI methods [13, 15, 21, 45] primarily
obtain the intermediate frame through warping process us-
ing motion flow estimated from events and keyframes. To
achieve reliable interpolated frames, not only high-quality
keyframes but accurate occlusion detection are necessary
for these approaches. Specifically, keyframes lacking infor-
mation about moving objects can adversely affect motion
estimation, while poor occlusion detection can result in the
presence of artifacts in the interpolated images. Estimating
accurate occlusion in real-world scenarios with large mo-
tion and complex motion patterns is indeed a challenging
task. To address these issues, we leverage the high temporal
resolution of events and directly reconstruct an event-based
reference, encoding the structural features of the interpo-
lated frames precisely. Based on the event-based reference,
we no longer need motion estimation or occlusion detection
but can directly perform feature alignment and inter-frame
synthesis.

Normally, the event-based reference (R) can be simply
reconstructed from event data using a U-Net [35]. However,
we notice that event cameras are challenging to encode re-
gions that are static or with low textures and often carry a
significant amount of noise, resulting in inaccurate recon-
struction of these places. Therefore, to address this issue
and prevent error amplification through network flow, we
introduce an event-aware reconstruction strategy that aims
to emphasize precise structural information in the interpo-
lated frame while suppressing regions with low confidence.
Event-Aware Reconstruction Strategy. In detail, we first
compute an event-aware mask (M) where each pixel records
whether events occurred at its location, e.g. if an event has
occurred, the corresponding pixel is set to 1, otherwise it
is set to 0. Then, we apply a customized erosion operation
to the M for removing the impact of low event confidence
area in R reconstruction. Considering the extreme sparsity
of events (as shown in Fig. 1), direct application of erosion
operations, even with the smallest kernel size, could cause a
significant loss of events. Hence, we define a kernel of size
n×n and calculate the number of surrounding pixels whose
values differ from the center pixel. If this number exceeds
the threshold δ, we invert the value of the center pixel, as
shown in Fig. 3.(a). Next, we use the dilation operation to
connect the sparse event points in M into pathways for pre-
serving the semantic coherence of the R to a certain extent.
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Figure 2. An overview of the proposed E-VFI framework. It consists of reconstruction, synthesis and refinement staged. The Lrec, Lsyn

and Lrefine are used to supervise the obtained event-based references R, coarse interpolated frames Îτ , and final prediction Î , respectively.
Modules with the same name share weights. The blue modules represent convolutional blocks.
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Figure 3. Illustration of the event-aware masking. (a) shows the
generation of the event-aware mask, where yellow, green, and red
refer to the center of the kernel. (b) shows a practical example,
and the event-aware masking removes the adverse impact from
unreliable locations.

Finally, we take the R masked by the M as input to the fol-
lowing modules. As shown in Fig. 3.(b), the failing recon-
struction of the bottle’s logo has been masked thereby alle-
viating wrong messages conveyed in the unmasked event-
based reference.

During training, we introduce a pseudo ground truth
(IM gray

gt ) for supervising the reconstruction process. In
particular, we first apply the same M to the Igt. Further-
more, due to no color and precise value of pixels can be ex-
tracted from event data, we adopt the gray-scale version of
the masked ground truth IM gray

gt as the final supervision for
the reconstruction stage. Leveraging the IM gray

gt , we aim to
prevent the network from performing reference generation
based on inductive biases introduced by whole images but
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Figure 4. An overview of the proposed E-PCD module. Resize
refers to up-sampling using bilinear interpolation.

focus on the specific task that only reconstructs the struc-
tural information from event data.

4.2. Synthesis via Event-Based Reference

The primary objective during the synthesis stage is to com-
plete the event-based reference (R) by utilizing the effective
messages of keyframes through an aligning process.

As depicted in Fig. 2.B, the core at this stage is the syn-
thesis module E-PCD, which is proposed by customizing
the PCD (Pyramid, Cascading, and Deformable convolu-
tions) module [42] to our task. Specifically, we introduce a
bidirectional alignment mode, employing two E-PCD mod-
ules with shared weights to align I0 and I1 with the ref-
erence R, respectively. Concurrently, we utilize the inter-
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frame events (E0→τ and E1→τ ) to provide temporal and
motion cues for this alignment process explicitly, assisting
the network in discerning moving and static regions in the
keyframes during alignment. Ultimately, we fuse alignment
results with R at each scale, emphasizing the consistency
and guidance of the structural information in R. In the fol-
lowing, we will delineate the workflow of the E-PCD mod-
ule. For clarity, we take the E-PCD module guided by E0→τ

as an example.
E-PCD. The E-PCD module takes as input features ex-
tracted from keyframes, events, and the event-based refer-
ence as illustrated in Eq. (2).

F 0,1,2
m = EI(Im),m ∈ {0, 1},

G0,1,2
o = EE(Eo), o ∈ {0 → τ, 1 → τ},

V 0,1,2 = ER(R⊙M)),

(2)

where ⊙ denotes the Hadamard Product. Specifically, E-
PCD consists of three pyramid feature levels, as shown in
Fig. 4. At level i, we first calculate an offset and a mask
using features of keyframes (F i

0&F i
1), the event-based ref-

erence (V i) and corresponding events (Gi
0→τ ), as indicated

in Eq. (3).

Pyramidi = C(F i
0, F

i
1, V

i, Gi
0→τ )

Oi,M i
dc = FOE(Pyramidi,Oi−1),

(3)

where C denotes the concatenation operation, Oi, and M i
dc

denote the learned offset and mask for deformable convo-
lution usage, FOE represents the offset estimator in Fig. 4.
Then, we can align I0 with R through deformable convolu-
tion and fusion operations as formulated in Eq. (4).

Ii
0→τ = Ffu(C(Fdc(F

i
0,Oi,M i

dc),Fco(V
i), Ii−1

0→τ )) (4)

where Fdc represent the deformable convolution operation,
Fco and Ffu denote feature projection and fusion modules
built on convolution blocks, and Ii−1

0→τ denotes the output
from the previous level. Regarding the alignment from I1
to the reference R, a symmetrical operation is performed.
Finally, we use a dense residual network to fuse the obtained
bidirectional features (I0→τ&I1→τ ) for achieving coarse
interpolated frame Îτ .

4.3. Refinement

This stage is employed for solving silhouette issues and
slight artifacts caused by the last two stages, and we achieve
this target by adopting an off-the-shelf transformer-based
decoder commonly used in previous works [21, 25, 32]. In
specific, the coarse interpolation (Îτ ), keyframes (I0, I1),
and the inter-frame events (E0→1) are utilized for interac-
tive learning within Transformer blocks to obtain final inter-
polation Iτ . Please refer to the Supplementary for details.

4.4. Loss

As shown in Fig. 2, our approach adopts a hybrid loss for
each network stage as formulated in Eq. (5).

Ltotal = λrecLrec + λsynLsyn + λrefineLrefine (5)

At the reconstruction stage, we utilize Lrec to optimize
the structural accuracy of the event-based reference R in
high confidence areas, supervised by the pseudo ground
truth IM gray

gt , as depicted in Eq. (6).

Lrec =Llpips(R⊙M, IM gray
gt )+

L1(R⊙M, IM gray
gt ),

(6)

where the Llpips is the perceptual loss introduced in [49],
which excels at measuring perceptual similarity between
images, providing a more human-eye aligned evaluation
compared to traditional pixel-wise losses. The function L1

denotes the L1 loss that measures pixel-level distances be-
tween two images.

Similarly, we adopt the combination of Llpips and L1 for
supervising the other two stages, as formulated in Eq. (7)

Lsyn = Llpips(Îτ , Igt) + L1(Îτ , Igt)

Lrefine = Llpips(Iτ , Igt) + L0,1,2
1 (Iτ , Igt),

(7)

where the L0,1,2
1 denotes the computation of losses at three

different scales. The proposed model is trained end-to-end
by minimizing Ltotal, where λrec, λsyn and λrefine are set
as 1, 1, 1 respectively.

5. Experiment
5.1. Setup

Dataset. Following the optimization strategy in [40], we
train our method on the training set of Vimeo90k-Septuplet
[47], where synthetic event data is simulated using the
ESIM [12]. For evaluation, we follow the evaluation meth-
ods used in [21, 40] and test our method on both syn-
thetic and real-world datasets. For instance, we choose
Vimeo90k-Triplet [47], GoPro[28], and SNU-FILM (Hard
& Extreme) [5] as the evaluated synthetic datasets, where
SNU-FILM is deemed to be the most challenging one
since it only contains samples with complex motion con-
ditions. Besides, we utilize two commonly adopted real-
world datasets for testing, including High Quality Frames
(HQF) DAVIS240 [39] and High Speed Event and RGB
camera (HS-ERGB) [40]. These real-world datasets can
measure the generalization and practical value of the pro-
posed E-VFI approaches more accurately.
Training Settings. Our method is optimized by AdamW
[24] with weight decay 10−4 for 40 epochs using PyTorch
[31]. The initial learning rate was set to 10−4 and decreased
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Table 1. PSNR(dB)/SSIM results on synthetic datasets. The best results are marked in Bold while the second ones are marked with
underlines. We reconstructed all skipped frames for GoPro. †: Trained with full GoPro training set. ‡: The training strategy is identical to
ours.

Method Motion Synthesis Modal Vimeo90k-Triplet GoPro SNU-FILM
1 frame 7 frame 15 frame Hard Extreme

BMBC[30] ! % F 35.06/0.944 25.45/0.755 24.29/0.752 29.23/0.921 23.60/0.833
RIFE[15] ! % F 34.74/0.957 29.66/0.889 25.14/0.772 30.36/0.920 25.54/0.853
UPR-Net-L[17] ! % F 36.24/0.966 27.91/0.855 24.61/0.758 30.82/0.928 25.61/0.862
VFIT-B[38] % ! F 31.94/0.926 - - 30.95/0.932 27.82/0.880
A2OF[45]† ! % F&E - 36.61/0.971 - - -
CBMNet-L[21]† ! ! F&E - 38.15/0.975 37.05/0.969 - -
TimeReplayer[13]‡ ! % F&E 35.12/0.963 - - - -
A2OF[45]‡ ! % F&E 36.54/0.967 34.08/0.954 32.65/0.937 31.72/0.924 28.21/0.890
TimeLens[40]‡ ! ! F&E 36.31/0.962 34.81/0.959 33.21/0.942 31.75/0.935 28.64/0.889
CBMNet-L[21]‡ ! ! F&E 37.69/0.970 36.07/0.972 35.46/0.966 29.59/0.885 28.99/0.858
Ours % ! F&E 39.17/0.977 36.95/0.975 35.77/0.968 33.04/0.914 31.46/0.893

UPR-Net-L VFIT-B TimeLens CBMNet-L Ours GTFrame 0 Frame 1
Figure 5. Visual comparison among different methods on synthetic datasets.

gradually to 10−6 using cosine annealing. The batch size
for each training step was set to 6. We randomly select 3
frames from a set of 7, where the first and the third frames
are keyframes (I0, I1), and the second frame is chosen as the
ground truth frame (Igt) to be interpolated. As for data aug-
mentation, we crop the input frames and their paired event
voxel grids to a size of 256 × 256 and randomly apply ro-
tation and flipping. Also, we include a small set (10%) of
GoPro training data for training to enlarge the capability of
our method in handling large-resolution inputs.
Particulars. We set B as 8 for all event voxel grids con-
struction. At the reconstruction stage, we set the kernel
sizes of erosion and dilation operations as 3 and 5, respec-
tively, and a threshold δ used in the erosion process as 6.
The evaluation metrics utilized in our experimental section
are SSIM and PSNR [19, 21, 40], which are commonly em-
ployed for the VFI task.

5.2. Comparison to State-of-the-Art Methods

In evaluating the effectiveness of our proposed method,
we conduct a comprehensive comparison with state-of-the-
art techniques in both VFI and E-VFI fields, categoriz-
ing them as follows: (1) Motion-based VFI approaches:
This category includes BMBC [30], RIFE [15] and UPR-

Net [17]. (2) Synthesis-based VFI techniques: Encom-
passing FLAVR [19]. (3) E-VFI methods containing
both motion estimation and synthesis: Including TimeLens
[40] and CBMNet-L [21]. (4) Motion-based E-VFI ap-
proaches: Comprising A2OF [45] and TimeReplayer [13].
(5) Synthesis-based E-VFI method: SuperFast [11].

These studies employ diverse training strategies w.r.t
synthetic datasets, e.g. A2OF and CBMNet-L are optimized
using full GoPro training set. To ensure a fair comparison,
we retrain these models with identical training strategy to
ours as shown in Tab. 1. For the evaluation on real datasets,
we fine-tune our model following the method proposed in
[40, 45]. It is worth noting that CBMNet-L [21] does not
test HS-ERGB in their paper. Therefore, we fine-tune their
well pretrained model on this specific dataset for an accu-
rate and fair analysis.

5.2.1 Evaluations on Synthetic Datasets

Quantitative Evaluations. In our initial assessment, we
focus on the performance of each method on synthetic
datasets, as presented in Tab. 1. Our method demon-
strates exceptional VFI performance across various syn-
thetic datasets. First, we conduct evaluations on the
Vimeo90k-Triplet [47] and GoPro [28] datasets, comparing
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Table 2. PSNR(dB)/SSIM results on real datasets. The best results are marked in Bold while the second ones are marked with underlines.

Method Motion Synthesis Modal
HQF HS-ERGB

1 frame 3 frame Close Far
5 frame 7 frame 5 frame 7 frame

BMBC[30] ! % F 30.72/0.881 27.09/0.741 29.22/0.820 27.98/0.807 25.62/0.741 24.14/0.710
RIFE[15] ! % F 31.70/0.889 27.93/0.796 33.12/0.857 32.32/0.846 29.47/0.849 27.20/0.801
UPR-Net-L[17] ! % F 32.15/0.915 27.96/0.863 32.22/0.841 31.01/0.829 28.85/0.841 26.27/0.787
VFIT-B[38] % ! F 31.50/0.882 - - - - -
TimeReplayer[13] ! % F&E 31.07/0.931 28.82/0.866 31.21/0.818 29.83/0.816 31.98/0.861 30.07/0.834
A2OF[45] ! % F&E 33.94/0.945 31.85/0.932 33.21/0.865 32.55/0.852 33.64/0.891 33.15/0.883
SuperFast[11] % ! F&E - - - 32.50/0.869 - 27.87/0.845
TimeLens[40] ! ! F&E 33.42/0.934 32.27/0.917 32.19/0.839 31.68/0.835 33.13/0.877 32.31/0.869
CBMNet-L[21] ! ! F&E 34.77/0.953 33.08/0.940 34.17/0.862 33.96/0.857 31.43/0.888 30.47/0.870
Ours % ! F&E 35.89/0.959 34.27/0.941 34.60/0.865 34.33/0.862 34.19/0.923 33.56/0.921

Frame 0 TimeLens CBMNet-L Ours GTFrame 1
Figure 6. Visual comparison among different methods on real datasets.

our results with those of other methods. Vimeo90k-Triplet
Dataset: Our method exhibits superior performance, sur-
passing other methods by a significant margin in various
metrics. GoPro Dataset: With the same training strat-
egy, our method reaches the leading performance among
all compared approaches. However, we notice that our ap-
proach holds lower PSNR than CBMNet-L that trained on
the full GoPro dataset. Considering the discrepancy be-
tween Vimeo-90K and GoPro in resolution (448× 256 ver-
sus 1280 × 720) and scene types, We speculate the perfor-
mance gap is caused by the different training strategies us-
age. To further emphasize the robustness of our method
in handling extreme conditions, we conduct tests on the
challenging scenarios presented in the SNU-FILM dataset.
These scenarios involve highly demanding VFI tasks char-
acterized by large and irregular motions. Our method holds
a substantial performance advantage over other approaches,
showcasing its resilience and adaptability under both nor-
mal and extreme motion conditions across diverse content
types.

Qualitative Evaluations. Visual comparison results on
synthetic datasets are illustrated in Fig. 5, showcasing the

performance of various methods in challenging scenarios.
As evident in Fig. 5, our method adeptly handles challeng-
ing issues in the VFI task, e.g. complex non-linear motion
and occlusion issues introduced by moving clothes and legs.
Compared to other methods, without explicit motion es-
timation, our approach accurately synthesizes moving ob-
jects with finer details while preserving the still background
unchanged based on guidance from the event-based refer-
ence. These visual comparisons substantiate the efficacy of
our proposed event-based reference for frame interpolation,
affirming its ability to accurately structural information re-
construction and occlusion handling.

5.2.2 Evaluations on Real Datasets

Quantitative Evaluations. In this section, we assess the
effectiveness of our method on real-world HQF and HS-
ERGB datasets. These datasets present different sample
distributions than synthetic datasets and include more intri-
cate motion patterns. Also, these datasets, containing event
data and their paired videos that collected in the real world,
could better value the practical potential of E-VFI methods
compared to synthetic datasets.
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The test results, depicted in Tab. 2, highlight the lead-
ing performance of our model across all conditions and
datasets. Notably, even in challenging scenarios like 3 skips
in HQF, our model achieves 1dB PSNR higher than the
SOTA E-VFI approach CBMNet-L. In addition, remarkable
improvements are observed in both close and far scenar-
ios of HS-ERGB, evident in both PSNR and SSIM metrics.
These results underscore the superior image quality preser-
vation, enhanced structural information reconstruction ca-
pabilities, and heightened robustness to complex motion in
real-world scenarios offered by our model.
Qualitative Evaluations. Fig. 6 provides a visual com-
parison between different E-VFI approaches on real event
datasets. A direct comparison with the outputs of Time-
Lens and CBMNet-L reveals the better capabilities of our
approach, e.g. our method exhibits more accurate occlusion
detection and delivers clearer depiction of plain pattern, ex-
ploded balloon fragments and the rotation of the plate. In-
terestingly, we find that with the aid of the event-based ref-
erence, we can even obtain the interpolation that does not
occurred in keyframes such as the plate sides with clear
edges. From these observations, we suggest that though
these E-VFI methods perform well in most cases thanks
to the accurate motion estimation, the severe occlusion is-
sues introduced by the warping process or missing objects
still cannot be handled well. Instead, with the help of
event-based reconstruction, our pure synthesis-based E-VFI
method shows capability in addressing this problem.

5.3. Model Analysis

In this section, we perform experiments on the HS-ERGB
dataset to analyze the effectiveness of two core designs in
our proposed method such as the event-aware reconstruc-
tion strategy and the E-PCD module.
The effectiveness of E-PCD. To validate the efficacy of the
proposed E-PCD module, we introduce a baseline model
that adopts the original PCD architecture, only keep our
proposed bidirectional aligning mode but excluding the
event-based guidance and multi-level reference fusion de-
signed in E-PCD. The settings A and C in Tab. 3 demon-
strate that our customized designs for events and event-
based references, significantly enhance the PCD module’s
aligning capabilities from keyframes to the event-based ref-
erence, thereby improving the quality of the synthesized in-
terpolated frames.
The Efficacy of the Reconstruction Strategy. Here, we
verify the effectiveness of the Event-Aware Reconstruc-
tion Strategy (EARS) through settings B and C in Tab. 3.
Comparative results indicate that the proposed EARS en-
hances the quality of synthesized interpolated frames effec-
tively. This improvement is attributed to our reconstruc-
tion strategy’s fitness with the intrinsic properties of event
data, namely its extreme sparsity and noise. The event-

Table 3. Event mask settings were evaluated in the spinning um-
brella scenario of the HS-ERGB dataset.

Variants EACS PCD E-PCD HS-ERGB (far)
PSNR SSIM

A ! ! 29.92 0.852
B ! 32.47 0.906
C ! ! 33.56 0.921

Inputs(Overlay) Not used Used GT

Figure 7. Comparison of the effect of using event-aware recon-
struction strategy.

aware mask we computed can mitigate these disadvantages
of event data. Furthermore, the efficacy of EARS was
also evaluated from a qualitative perspective. As shown in
Fig. 7, the results with EARS are markedly superior to those
without. This disparity is particularly pronounced in scenes
with small motions such as areas of water or sky. These
regions do not generate dense events but do produce con-
siderable noise, resulting in inaccurate references in these
areas and, consequently, impacting the interpolated frames.

6. Conclusion

This study introduces a novel pure synthesis-based frame-
work for the E-VFI task, facilitating the generation of in-
terpolated frames through the alignment of keyframes to
the event-based reference. We have incorporated an Event-
Aware Reconstruction Strategy, tailored to properties of
events, ensuring that the event-based reference retains the
structural cues of high-confidence regions while mitigating
the adverse effects of sparsity and noise prevalent in event
data on interpolation. Furthermore, we propose the E-PCD,
a specialized bidirectional alignment module for synthesiz-
ing interpolated frames while preserving the structural in-
formation in the reference. Our method addresses the occlu-
sion challenges in VFI tasks by directly generating an event-
based reference for the frames to be interpolated. Extensive
experiments on synthetic and real datasets substantiate the
superiority of our model and its leading performance.
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