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Abstract

Vision-language navigation (VLN) requires an agent to
navigate through an 3D environment based on visual ob-
servations and natural language instructions. It is clear
that the pivotal factor for successful navigation lies in the
comprehensive scene understanding. Previous VLN agents
employ monocular frameworks to extract 2D features of
perspective views directly. Though straightforward, they
struggle for capturing 3D geometry and semantics, lead-
ing to a partial and incomplete environment representa-
tion. To achieve a comprehensive 3D representation with
fine-grained details, we introduce a Volumetric Environ-
ment Representation (VER), which voxelizes the physical
world into structured 3D cells. For each cell, VER aggre-
gates multi-view 2D features into such a unified 3D space
via 2D-3D sampling. Through coarse-to-fine feature extrac-
tion and multi-task learning for VER, our agent predicts
3D occupancy, 3D room layout, and 3D bounding boxes
jointly. Based on online collected VERs, our agent per-
forms volume state estimation and builds episodic memory
for predicting the next step. Experimental results show our
environment representations from multi-task learning lead
to evident performance gains on VLN. Our model achieves
state-of-the-art performance across VLN benchmarks (R2R,
REVERIE, and R4R).

1. Introduction

Vision-language navigation (VLN) requires an agent to

navigate in a 3D environment following natural language

instructions [3, 64]. As a holistic understanding of the

environment plays a pivotal role in decision-making within

VLN, environment representation learning serves as a

foundation for formulating accurate navigation policies.

Early VLN approaches [3, 23] typically learn the navi-

gation policy through the sequence-to-sequence (Seq2Seq)

framework [72], which directly maps instructions and

multi-view perspective observations to actions. They sim-
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Figure 1. The agent observes its surroundings with correspond-

ing perspective features of different candidate views ( ). Previous

methods construct the topological graph or semantic map based

on these 2D features. Our VER aggregates the multi-view features

into structured 3D cells via 2D-3D sampling. VER is a powerful

representation for both 3D perception tasks and VLN, providing a

volume state space for decision-making.

ply embed their immediate observation of local environ-

ment into the hidden states of recurrent units. As a re-

sult, they lack of explicit environment representations and

struggle to access their past states during long-time explo-

ration [61, 82]. To address this issue, later VLN agents

are equipped with an external memory module [61], which

stores the environment representations distinctly from nav-

igation states. In this way, they can explicitly model and

maintain the environment layouts and contents in a form of

topological graph [2, 11, 16, 19, 32, 62] or semantic map

[1, 4, 10, 12, 26, 34, 38, 55, 75, 94] (Fig. 1). Despite their

promising performance with advanced frameworks (e.g.,

graph neural network [44] and Transformer [79]), their en-

vironment representations are still built upon 2D perspec-

tive features extracted by monocular frameworks. While

straightforward, they compress depth information onto the

perspective plane, sacrificing the integral scene structure in

the 3D space. Thus, they encounter challenges in capturing

3D geometry and semantics in complex scenes. Such an

incomplete environment representation easily leads to sub-

optimal navigation decisions.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this article, we propose a Volumetric Environment

Representation (VER) that quantizes the physical world into

structured 3D cells (Fig. 1). These cells, arranged within

a predefined volumetric space, maintain both height and

depth dimensions. Each cell corresponds to local con-

text of the 3D space. VER aggregates multi-perspective

2D features within these cells through an environment en-
coder (§3.1). Compared to previous partial representa-

tions derived from hidden states and external memory,

our VER captures the full geometry and semantics of the

physical world. These 3D cells stores the properties of

the corresponding space in the scene by predicting 3D

occupancy [70, 77], room layout [106], and 3D object

boxes [51]. However, directly reconstructing the high-

quality VER from 2D perspective views is challenging to

capture the fine-grained details. As a response, we propose

a coarse-to-fine VER extraction architecture, which uses

learnable up-sampling operations to construct the represen-

tations progressively. It is supervised by multi-resolution

semantic labels at different scales, utilizing the coarse-to-

fine representations as hierarchical inputs. The annotations

of the 3D tasks are collected for multi-task learning (§3.4).

At each navigation step, our agent initially encodes the

multi-view observations into VER (§3.2). With VER, in-

structions can be more effectively grounded in the 3D con-

text. This is achieved by establishing cross-modal correla-

tions between linguistic words and 3D cells of VER. Based

on the correlations, a volume state estimation module is pro-

posed to calculate transition probabilities over the surround-

ing cells. With the help of this module, our agent performs

comprehensive decision-making in volumetric space, and

then maps the volume state into local action space. In ad-

dition, an episodic memory module is established to online

collect the information of observed viewpoints and build a

topological graph providing global action space (§3.3). The

node embeddings in the graph are from neighbor pillar rep-

resentations in VER corresponding to the respective view-

points. To balance the long-range action reasoning and lan-

guage grounding, our agent combines both the local action

probabilities derived from the volume state and the global

action probabilities obtained from the episodic memory.

Our agent is evaluated on three VLN benchmarks, i.e.,

R2R [3], REVERIE [64], and R4R [39] (§4.1). It yields

solid performance gains (about 3% SR and 4% SPL on R2R

test, 4% SR and 4% SPL on REVERIE val unseen). The

ablation study confirms the efficacy of core model designs

(§4.2). Additional results show our model achieves promis-

ing performance in 3D occupancy prediction, 3D detection,

and room layout estimation (§4.3).

2. Related Work
Vision-Language Navigation (VLN). Early VLN agents

[3, 23] are built upon Seq2Seq [66, 72] framework to re-

serve the observation history in hidden state. Thus they

struggle to capture long-range context as the path length in-

creases. Later efforts are devoted to multimodal represen-

tation learning, navigation strategy learning, and data gen-

eration [27]. As a primary step, multimodal representation
learning helps agents understand the environments and es-

tablish relations between the instructions and visual obser-

vations. Inspired by the success of vision-language pretrain-

ing [58, 65, 73], recent approaches [14, 33] use transformer-

based architectures [42, 79] for joint visual and textual rep-

resentations. Some attempts further exploit the visual infor-

mation by modeling semantic relation [37] and spatial in-

formation [11, 19, 32, 83, 86, 100]. For navigation strategy
learning, many VLN models [24, 88] use imitation and rein-

forcement learning-based training strategies. Previous solu-

tions [45, 85] introduce world models [29] to perform men-

tal simulations and make mental planning. Furthermore, the

scarcity of human instructions and limited diversity of the

scene hinder the agent to learn navigation policy and gener-

alize to unseen environments well [54]. Therefore, several

VLN data generation strategies have been proposed to cre-

ate new trajectories from existing datasets [15, 28, 93], gen-

erate more instructions [41, 74, 84, 90], or create synthetic

environments [48, 49]. In addition, driven by large models

[5], existing agents [13, 57, 71, 101] demonstrate promising

zero-shot performance.

Despite their outstanding contributions, most of them

rely on 2D visual cues in perspective observations. These

representations are constrained by occlusion and limited ge-

ometric information, especially in complex scenes. In this

paper, we propose VER, a unified environment representa-

tion learned by 3D perception tasks. During navigation, our

agent performs volume state estimation on VER, facilitating

comprehensive decision-making within the 3D space.

Environment Representation. Existing VLN models in-

troduce various representations for environment modeling,

including topological graphs [2, 11, 16, 19, 32, 82], and

semantic spatial representations [1, 4, 12, 26, 34, 38, 55,

75, 94]. With a broader view, diverse representations

have been proposed for robotics and autonomous driving

[25, 47, 68, 76, 96]. In the early stage, 2D occupancy

grid maps [22] model occupied and free space in the sur-

roundings based on Bayesian estimation for robot navi-

gation. Classic SLAM systems [21] construct a map di-

rectly by integrating information from various sensors, in-

cluding LiDAR and cameras. However, the representations

in SLAM still rely on primitives such as 3D point clouds

and image patches. Some efforts [6, 8, 31] focus on de-

veloping learnable semantic map representations. To en-

hance spatial reasoning, scene graph representations [9, 80]

define the topological relations between spatial elements

of the environment. In addition, neural scene representa-

tions [46, 50] embed image observations into latent codes
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Figure 2. Overview of our model. Given the perspective features of candidate views, a group of 3D queries are used to sample and

aggregate them into VER (§3.1). To encode VER, we adopt coarse-to-fine extraction and perform multi-task learning on 3D perception.

Based on VER, a volume state estimation module is proposed to predict state transition (§3.2). The episodic memory is used to store past

observations using neighboring pillar representations for each viewpoint (§3.3). For decision-making, our agent combines both the local

action probabilities from the volume state and the global action probabilities obtained from the episodic memory. See §3 for more details.

for object categories, showcasing scalability to large scenes

[40, 59]. Vision-centric BEV perception, which transforms

perspective-view inputs to BEV grid representations, has

recently received increasing attention [47, 51, 63]. As the

BEV representations simplify the vertical geometry, 3D oc-

cupancy prediction [36, 78] is further proposed to infer the

3D geometry from perspective images [68, 70, 87, 98].

However, existing VLN agents mainly employ abstract

relations or compressed spatial maps, lacking the ability

to access complete scene information. Providing more

world context can be beneficial for the subsequent decision-

making and policy learning. Motivated by this insight, we

explore a holistic environment representation VER that vox-

elizes the world into structured 3D cells. VER captures both

semantic information and geometric details of the whole

scene. Building upon VER, our agent is able to predict the

3D occupancy, room layout, and 3D boxes accurately.

3. Approach

Problem Formulation. For brevity, we present the tech-

nical description in the context of R2R [3]. The naviga-

ble area of the environment is organized as an undirected

graph, containing a set of nodes (viewpoints) and connec-

tivity edges. In R2R, an embodied agent needs to navigate

to a target location in the 3D environment following human

instructions with L words (embedded as E∈RDw×L, where

Dw is the channel dimension). At time step t, the agent

looks around and obtains multi-view observations of its sur-

rounding scene from the current location. Each view is rep-

resented by a 2D visual feature F 2d
t ∈RDi×H×W , where H

and W are the spatial shape of image plane, Di denotes the

channel dimension. The local action space At∈RNt+1 is de-

fined by Nt candidate views, which correspond to neighbor-

ing navigable nodes {v∗t,n}Nt
n=1, as well as a [STOP] action.

Previous agents predict the action probabilities p2d
t ∈RNt+1

directly based on F 2d
t of each candidate view. However,

these 2D features with limited geometric information are

partial representations of the 3D environment, easily lead-

ing to suboptimal decision making.

Overview. To achieve comprehensive scene understanding,

we introduce VER, which voxelizes the 3D world into struc-

tured 3D cells (Fig. 2). At step t, an environment encoder is

proposed to sample multi-view features (F 2d
t of each view)

into the volumetric space of VER, forming a unified repre-

sentation F 3d
t ∈RDe×X×Y×Z (§3.1). X and Y are the shapes

of horizontal plane, Z reserves the height information of 3D

space, and De represents the channel dimension. The vol-

umetric space aligns with gravity in the world coordinate

system based on the Manhattan assumption [106]. To en-

code VER, we devise coarse-to-fine extraction with multi-

ple 3D perception tasks supervised by multi-resolution an-

notations (§3.4). Based on VER, a volume state estima-
tion module is proposed to predict state transition probabil-

ities p3d
t ∈RX×Y×Z over surrounding 3D cells (§3.2). With

this module, our agent performs comprehensive decision-

making in the 3D space and maps p3d
t to p2d

t . To predict the

next step, our agent combines both the local action proba-

bilities derived from the volume state and the global action

probabilities obtained from the episodic memory (§3.3).

3.1. Environment Encoder

2D-3D Sampling. At step t, the agent observes its sur-

roundings and acquires the multi-view images. We intro-

duce cross-view attention (CVA) to aggregate their fea-

tures (F 2d for each view) into a unified volumetric rep-

resentation F 3d with a group of learnable volume queries

Q ∈ R
De×X×Y×Z (t is omitted for simplicity). Specifi-

cally, for the 3D cell positioned at (x, y, z) within the ego-

centric world, a single query Q(x, y, z) ∈ R
De is used to

sample each image feature F 2d as:

F 3d(x, y, z)=CVA
(
Q(x, y, z),F 2d(h′, w′)

)
, (1)

where (h′, w′) denotes the location of corresponding sam-

pling point on the image plane. Note that we only show
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Figure 3. Our coarse-to-fine VER representation extraction (§3.1)

adopts cascade up-sampling operations with 3D deconvolutions

(Eq. 2) and 3D queries (Eq. 1). The training process is supervised

at different scales by multi-resolution semantic labels.

the formulation of a single sampling point for conciseness.

Since the sampling strategy of vanilla cross-attention is

computationally expensive, the deformable attention [51,

104] is introduced and extended in CVA. In this way,

Q(x, y, z) selectively attends to a set of key sampling points

around a reference instead of the entire F 2d.

Coarse-to-Fine VER Extraction Architecture. Directly

recovering the fine-grained VER from perspective fea-

tures easily leads to performance and efficiency degrada-

tion [17, 95]. The coarse-to-fine extraction is proposed

to reconstruct VER progressively. Our approach involves

cascade up-sampling operations (Fig. 3), dividing this ex-

traction into M levels. At each level, 3D deconvolutions

are utilized for lifting spatial resolution, and then CVA is

used to query the multi-view 2D features (Eq. 1) for refin-

ing the detailed geometry. This enables the direct learn-

ing of details and avoids the inaccuracy of interpolation

[56, 77, 92] (see Table 7). Between the input coarse feature

F 3d(0) ∈R
De× X

2M
× Y

2M
× Z

2M from Eq. (1) and the target fine

feature F 3d(M) ∈ R
De×X×Y×Z , the intermediate features

with varying shapes are calculated as follows:

F 3d(1) = ↑F 3d(0), · · · ,F 3d(M) = ↑F 3d(M−1), (2)

where F 3d(1), · · · ,F 3d(M−1) denote the intermediate fea-

tures from different levels, and ‘↑’ denotes the up-sampling.

Multi-task Learning. Our VER offers a unified scene rep-

resentation for various 3D perception tasks. Existing studies

[68, 70] highlight that semantics and geometry are tightly

intertwined. We train our environment encoder to extract

VER under the supervision of multiple 3D perception tasks

(§3.4). This process utilizes {F 3d(0), · · · ,F 3d(M)} as in-

puts and is supervised at different scales (Fig. 3). For 3D

occupancy prediction, the decoder is implemented as MLPs

with the focal loss [52]. For 3D layout estimation, we adopt

a query-based head to yield the manhattan room layouts. A

combination of the L1 loss and the IoU loss [67] is used as

the training objective. For 3D detection, we employ a detec-

tion head to predict the 3D boxes [51]. The bipartite match-

ing and the bounding box loss [51, 104] are employed for

detection. A weight vector [2.0, 0.25, 0.25] is used to bal-

ance the optimization of the three tasks, respectively. Dur-

ing navigation, the agent traverses between different view-

points and encodes VERs through the frozen environment

encoder.

3.2. Volume State Estimation

VLN task is typically viewed as a state estimation and tran-

sition problem [76]. With our VER, the agent state is rep-

resented as “volume state”. As such, the state transition

within the locally observed 3D environment, computed by

Eq. (3)&(4), is referred as “volume state estimation”. Dif-

ferent from previous plane-level state models [1, 4], VER

introduces additional height dimension for 3D state estima-

tion. This enables a more accurate action prediction.

Volume State. At the beginning of a navigation episode,

the agent is located at a start viewpoint (x0, y0, z0). Based

on its perception range, a volume state space X ∈R
X×Y×Z

is defined corresponding to the 3D physical world with an

initial state s0=(x0, y0, z0). At step t, the next intermediate

state st+1=(xt+1, yt+1, zt+1) is determined by the instruc-

tion embeddings E and VER F 3d
t for reaching the goal state

sT (0<t<T ). As the entire environment is partially observ-

able, the current state transition (st→st+1 in X ) is regarded

as a local consideration for action prediction.

State Estimation. A volume state estimation module is de-

vised to predict the probability distribution p3d
t ∈R

X×Y×Z

of the intermediate state st+1 conditioned on E and F 3d
t .

The environment representation is first reshaped as F 3d′
t ∈

R
De×XY Z , and then adopt multi-layer transformers (MLT)

to model the relations between E and F 3d′
t as follows:

F̃ 3d
t = MLT

(
[E;F 3d′

t ]
) ∈R

De×XY Z , (3)

where ˜F 3d
t is the updated representations, and [;] denotes

the concatenation operation. MLT consists of stacked self-

attention blocks. Then we use MLPs for state estimation:

p3d
t = Softmax

(
MLP(F̃ 3d

t )
) ∈ [0, 1]X×Y ×Z . (4)

Efficient Height-aware Group. The computational and

memory efficiency of Eq. (3) is compromised due to the

resolution of F 3d
t (XY Z�L). Considering the simi-

larity and sparsity of information along the height direc-

tion [97, 99], we partition F 3d
t into several uniform groups

{F g
t,z ∈ R

De×XY }Zz=1 along this axis. Then we apply MLT

to each group, and Eq. (3) is reformulated as:

F̃ g
t,i = MLT

(
[E;F g

t,i]
) ∈R

De×XY ,

F̃ 3d
t = {F̃ g

t,z}Zz=1 ∈R
De×XY Z ,

(5)

where the weights of MLT are shared among differ-

ent groups. The updated features from different groups

{ ˜F g
t,z}Zz=1 are aggregated along the height to leverage com-

plementary information. For ease of notation, the symbol

16320



˜F 3d
t is slightly reused for the gathered 3D representations.

Then, p3d
t is calculated by Eq. (4).

3.3. Action Prediction

For action prediction across the entire explored scene, a

topological graph Gt = {Vt, Et} is constructed and up-

dated online to represent episodic memory during naviga-

tion. Specifically, Vt denotes the observed viewpoints, i.e.,

all visited viewpoints and their candidate viewpoints. These

viewpoints are encoded by compressing previous VERs.

The edge Et denotes the navigable connections between

these viewpoints. To predict the next step, our agent com-

bines both the volume state estimation and episodic naviga-

tion memory for decision-making.

Mapping Volume State to Action. As our agent navi-

gates on the horizontal plane to reach the adjacent candidate

viewpoints {v∗n}Nt
n=1, we map the volume state space into

2D space to align with this movement pattern. Specifically,

we average p3d
t along the height (z-axis) axis as ph

t∈RX×Y .

Then we sum probability values in the neighborhood of

{v∗t,n}Nt
n=0 (v∗0 for the current viewpoint, i.e., [STOP]), and

normalize them as the local action probabilities:

p2d
t =

{∑
ph
t (xn, yn)

}Nt

n=0
∈ [0, 1]Nt+1, (xn, yn) ∈ Ωn, (6)

where ph
t (xn, yn) is the value at the coordinate (xn, yn),

and Ωn is the neighborhood of v∗n in the horizontal plane. In

the training stage, a heatmap [102] with a Gaussian kernel

is used to supervise this action prediction (§3.5).

Global Action Prediction. The episodic memory module

is used to store past environment representations and allows

easy access to them. To memory the environment represen-

tations efficiently, we use the neighboring pillar [91] repre-

sentations F p
t,n∈R

De×|Ωn|×Z , corresponding to the current

observed viewpoints {v∗n}Nt
n=0 at step t:

F p
t,n = {F̃ 3d

t (xn, yn, zn)}(xn,yn)∈Ωn,zn∈[1,Z] (7)

where ˜F 3d
t (xn, yn, zn) is the representation at position

(xn, yn, zn) of ˜F 3d
t (Eq. 5). {F̄ p

t,n∈R
De}Nt

n=0 is obtained

by average pooling as the corresponding node embeddings,

which are then incorporated into Gt. For previously ob-

served nodes, we compute the average of their features.

The episodic memory Gt, which includes the observed

viewpoints, offers a global action space A∗
t ∈ R

|Vt|. This

enables our agent to change its current navigation state eas-

ily by ‘jumping’ directly to another viewpoint, which may

be even observed several steps ago. The global action prob-

abilities on Gt are calculated as:

Ĝt = MLT
(
[E;Gt]

) ∈R
De×|Vt|,

pg
t = Softmax(MLP(Ĝt)) ∈ [0, 1]|Vt|,

(8)

where Gt denotes the node embeddings of Gt. The ultimate

action probabilities are given as:

p̂2d
t = [p2d→g

t ;p2d
t ] ∈ [0, 1]|Vt|,

p̂g
t = Wgp

g
t + (1−Wg)p̂

2d
t ∈ [0, 1]|Vt|,

(9)

where p2d→g
t ∈ R

|Vt|−(Nt+1) denotes the probabilities of

global backtracking and we use the same value as the lo-

cal [STOP] probability in Eq. (6); Wg is a learnable weight.

State Transition and Memory Update. After executing

the action in A∗
t , our agent reaches the next viewpoint

v∗t+1,0, and will iteratively: (1) encode its current obser-

vation as F 3d
t+1 through Eq. (1); (2) update its volume state

as st+1 = (xt+1, yt+1, zt+1); (3) add the node embeddings

of {v∗t+1,n}Nt+1

n=0 into the episodic memory Gt+1; and (4)

predict the next step with the updated episodic memory (i.e.,

Gt+1) and volume state (i.e., st+1). Our agent repeats the

above process until it chooses the [STOP] action or reaches

the maximum step limit.

3.4. Annotation Generation

A multi-task learning framework is proposed to extract and

encode the VERs (§3.1). To achieve this, we generate anno-

tations on Matterport3D dataset [7] for 3D occupancy pre-

diction, object detection, and room layout estimation. We

design a room-object-voxel pipeline to automatically gen-

erate these annotations. This pipeline leverages existing

LiDAR point labels without additional human annotations

(more details in Appendix). We utilize the egocentric ob-

servations with multi-view images as input.

Room Layout. The room layout in our context specifies

the positions, orientations, and heights of the walls, relative

to the camera center. It aims to reconstruct cuboid room

shapes within the Manhattan world [18]. Given that the

horizontal plane is aligned on the x−z axis, we parameter-

ize the layout with center coordinate, width, length, height,

and rotation. In contrast to directly operating on a single

panoramic image [105, 106], we use the embodied observa-

tions with multi-view images as input.

Object Detection. Based on the room layout, we collect the

surrounding objects if the agent locates in a room. In a non-

closed environment, we collect information about nearby

objects based on their distance from the agent. For each

object, the eigenvectors of its vertices are used to define an

oriented bounding box that tightly encloses the object [35].

Considering some objects may disappear from view due to

occlusion but still exist in the environment (referred to as

permanence [98]), we also include them in the analysis.

Point Accumulation for Occupancy. To generate voxel

labels for occupancy [77, 95], we accumulate the sparse Li-

DAR points and utilize 3D boxes. Given dense background

and object points, we first voxelize the 3D space and label

each voxel based on the majority vote of labelled points in

that voxel. Due to the limited number of LiDAR points,

we leverage the Nearest Neighbors algorithm to generate

dense labels for remaining voxels by searching the nearest
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semantic label. Moreover, the agent infers the complete 3D

occupancy of each object (amodal perception), including re-

gions that are not directly observed. This attribute enables

the agent to predict the entire object instead of only visible

surfaces [98].

Statistics. For high-resolution labels, we define 120×120×
35 voxel grids in world coordinates, where the scene voxel

size equals to 0.1 m (see more details about multi-resolution

labels in Appendix). We annotate over 50 billion voxels

and 16 classes, including 11 foreground objects and 5 back-

ground stuffs. It comprises about 100k annotated bounding

boxes and 1,500 room layouts within the scenes. These an-

notations follow the same train/val/test splits as R2R [3].

There are 61 scenes for train/val seen, 11 scenes for val un-
seen, and 18 scenes for test.

3.5. Implementation Details

Initially, the environment encoder (§3.1) is introduced for

VER through coarse-to-fine extraction. Then multi-task

learning is performed across multiple 3D perception tasks,

including 3D occupancy prediction, 3D layout estimation,

and 3D detection. During navigation, our agent is equipped

with the frozen environment encoder and predicts the next

step. Following recent VLN practice [14, 16, 33], both of-

fline pretraining and finetuning are adopted. In this sec-

tion, we will mainly introduce the details of architecture and

training (see more details in Appendix).

Environment Representation Learning. For the multi-

view images, we adopt ViT-B/16 [20] pretrained on Ima-

geNet to extract features. The number of 3D volume queries

is 15× 15× 4. For each query, it is projected to sample 2D

views according to intrinsic and extrinsic parameters of the

camera. We set the perception range as [−6m, 6m] for x−y
axis and [−1.5m, 2m] for the height (z axis). We adopt six

layers of CVA (Eq. 1) for 2D-3D sampling, and then use

M=3 cascade deconvolutions for up-sampling (Eq. 2). The

feature dimension is 768 (i.e., Di=Dw=De=768).

Navigation Network. MLT with 4 layers is initialized from

[73] for state estimation (Eq. 4) and global action prediction

(Eq. 8), respectively. The range of neighborhood for each

candidate is set as |Ωn| = 9. The standard deviation of the

Gaussian kernel for the heat map is set as 3.0. Based on this

heat map, the focal loss [52] is used to supervise the local

action prediction (Eq. 6). We also use a cross-entropy loss

for the global action prediction (Eq. 9).

Pretraining. For R2R [3] and R4R [39], Masked Lan-

guage Modeling [14, 42] and Single-step Action Predic-

tion [14, 33] are adopted as auxiliary tasks on offline-

sampled instruction-route pairs [30]. For REVERIE [64],

an additional Object Grounding (OG) [16, 53] is used for

object reasoning. During pretraining, we train the model

with a batch size of 64 for 100k iterations, using Adam [43]

optimizer with 1e-4 learning rate. Only one task is adopted

R2R

val unseen test unseenModels

TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑
Seq2Seq [3] 8.39 7.81 22 − 8.13 7.85 20 18

SF [23] − 6.62 35 − 14.82 6.62 35 28

EnvDrop [74] 10.70 5.22 52 48 11.66 5.23 51 47

AuxRN [103] − 5.28 55 50 − 5.15 55 51

Active [81] 20.60 4.36 58 40 21.60 4.33 60 41

RecBERT [33] 12.01 3.93 63 57 12.35 4.09 63 57

HAMT [14] 11.46 2.29 66 61 12.27 3.93 65 60

SOAT [60] 12.15 4.28 59 53 12.26 4.49 58 53

SSM [82] 20.7 4.32 62 45 20.4 4.57 61 46

CCC [84] − 5.20 50 46 − 5.30 51 48

HOP [65] 12.27 3.80 64 57 12.68 3.83 64 59

DUET [16] 13.94 3.31 72 60 14.73 3.65 69 59

LANA [89] 12.0 − 68 62 12.6 − 65 60

TD-STP [100] − 3.22 70 63 − 3.73 67 61

BSG [55] 14.90 2.89 74 62 14.86 3.19 73 62

BEVBert [1] 14.55 2.81 75 64 − 3.13 73 62

Ours 14.83 2.80 76 65 15.23 2.74 76 66

Table 1. Quantitative results on R2R [3] (more details in §4.1).

at each mini-batch with the same sampling ratio.

Finetuning. Following the standard protocol [1, 16, 94],

we finetune the navigation network using Dagger [69] tech-

niques. In addition, the OG loss [1, 16, 53] is employed on

REVERIE. In this stage, we set the learning rate to 1e-5 and

batch size to 8 with 20k iterations.

Inference. During the testing phase, the agent receives the

multi-view images and encodes them as VERs through the

frozen environment encoder (§3.1). Based on VERs, the

agent performs volume state estimation (§3.2) and models

episodic memory (§3.3). By combining both of them, the

agent predicts the next step accurately until stops.

Reproducibility. Our model is implemented in PyTorch

and trained on eight RTX 4090 GPUs with a 24GB memory

per-card. Testing is conducted on the same machine.

4. Experiment
4.1. Performance on VLN
Datasets. The experiments are conducted on three datasets.

R2R [3] contains 7,189 trajectories sampled from 90 real-

world indoor scenes. It consists of 22k human-annotated

navigational instructions. The dataset is split into train, val
seen, val unseen, and test unseen sets, which mainly fo-

cus on the generalization capability in unseen environments.

REVERIE [64] contains high-level instructions which de-

scribe target locations and objects, with a focus on ground-

ing remote target objects. R4R [39] is an extended version

of R2R with longer trajectories.

Evaluation Metrics. For R2R, Success Rate (SR), Trajec-

tory Length (TL), Oracle Success Rate (OSR), Success rate

weighted by Path Length (SPL), and Navigation Error (NE)

are used. For REVERIE, Remote Grounding Success rate
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REVERIE

val seen val unseen test unseenModels

TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑
RCM [88] 10.70 29.44 23.33 21.82 16.23 15.36 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14

FAST-M [64] 16.35 55.17 50.53 45.50 31.97 29.66 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08

SIA [53] 13.61 65.85 61.91 57.08 45.96 42.65 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20

RecBERT [33] 13.44 53.90 51.79 47.96 38.23 35.61 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51

Airbert [28] 15.16 48.98 47.01 42.34 32.75 30.01 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28

HAMT [14] 12.79 47.65 43.29 40.19 27.20 25.18 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08

HOP [65] 13.80 54.88 53.76 47.19 38.65 33.85 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34

DUET [16] 13.86 73.86 71.75 63.94 57.41 51.14 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06

TD-STP [100] − − − − − − − 39.48 34.88 27.32 21.16 16.56 − 40.26 35.89 27.51 19.88 15.40

BEVBert [1] − 76.18 73.72 65.32 57.70 51.73 − 56.40 51.78 36.37 34.71 24.44 − 57.26 52.81 36.41 32.06 22.09

GridMM [94] − − − − − − 23.20 57.48 51.37 36.47 34.57 24.56 19.97 59.55 53.13 36.60 34.87 23.45

LANA [89] 15.91 74.28 71.94 62.77 59.02 50.34 23.18 52.97 48.31 33.86 32.86 22.77 18.83 57.20 51.72 36.45 32.95 22.85

BSG [55] 15.26 78.36 76.18 66.69 61.56 54.02 24.71 58.05 52.12 35.59 35.36 24.24 22.90 62.83 56.45 38.70 33.15 22.34

Ours 16.13 80.49 75.83 66.19 61.71 56.20 23.03 61.09 55.98 39.66 33.71 23.70 24.74 62.22 56.82 38.76 33.88 23.19

Table 2. Quantitative comparison results on REVERIE [64]. ‘−’: unavailable statistics (see §4.1 for more details).

R4R val unseen
Models

NE↓ SR↑ CLS↑ nDTW↑ SDTW↑
SF [3] 8.47 24 30 − −

RCM [88] − 29 35 30 13

EGP [19] 8.00 30 44 37 18

SSM [82] 8.27 32 53 39 19

RelGraph [32] 7.43 36 41 47 34

RecBERT [33] 6.67 44 51 45 30

HAMT [14] 6.09 45 58 50 32

BSG [55] 6.12 47 59 53 34

LANA [89] − 43 60 52 32

Ours 6.10 47 61 54 33

Table 3. Quantitative results on R4R [39] (more details in §4.1).

(RGS), and Remote Grounding Success weighted by Path

Length (RGSPL) are also employed for object grounding.

For R4R, Coverage weighted by Length Score (CLS), nor-

malized Dynamic Time Warping (nDTW), and Success rate

weighted nDTW (SDTW) are used.

Performance on R2R. Table 1 compares our model with

the state-of-the-art models on R2R. As we find that our

model yields SR of 76% and SPL of 66% on text un-
seen, which leads to promising gains of 3% and 4% over

BEVBert [1], respectively. It verifies that using VER to rep-

resent the environment leads to better decision-making.

Performance on REVERIE. Table 2 presents the compar-

ison results on REVERIE. Compared with the recent state-

of-the-art VLN agent [55], our agent improves SR and SPL

by 3.86% and 4.07% on the val unseen split. This highlights

the effectiveness of our architecture design.

Performance on R4R. Table 3 shows results on R4R. Our

approach outperforms others in most metrics with a promis-

ing gain on nDTW (i.e., 1%). This suggests the episodic
memory module is able to retrieve the long-time context.

Visual Results. Fig. 4 depicts one exemplar navigation

episode from val unseen set of R2R. In this complex en-

vironment, there are many rooms with different objects and

3D layout. From the visualization of 3D occupancy pre-

REVERIE R2R
Models

SR↑ SPL↑ RGS↑ SR↑ SPL↑
w/o Volume State 52.31 34.91 32.75 72.71 61.13

w/o Episodic Memory 49.33 33.71 31.36 68.21 61.70

Full model 55.98 39.66 33.71 75.80 65.37

Table 4. Ablation study of overall design on val unseen of

REVERIE [64] and R2R [3] (see §4.2 for more details).

diction at the key steps, we find the geometric details and

semantics can be captured well by VER. The room layout

estimation can help the agent to understand “enter the bed-

room”. Finally, our agent finds the “bed” and accomplishes

the instruction successfully.

4.2. Diagnostic Experiment

To thoroughly test the efficacy of crucial components of our

model, we conduct a series of diagnostic studies on val un-
seen split of REVERIE and R2R.

Overall Design. We first investigate the effectiveness of

our core design. The results in Table 4 indicate that adding

Volume State leads to a substantial performance gain (i.e.,

3.67% on SR). After using Episodic Memory, a higher score

(i.e., 31.36% → 33.71% on RGS) is achieved.

Neighborhood Range of Viewpoints. We use the neigh-

borhood of each viewpoint in the state space for local ac-

tion prediction (Eq. 6). Moreover, corresponding pillar rep-

resentations of the neighborhood are also used for node em-

beddings of the episodic memory (Eq. 7). From Table 5, the

limited range of neighborhood is insufficient to represent

the candidate viewpoint for navigation (e.g., 75.80% →
73.75% of SR on R2R). However, too large neighborhood

range will contain irrelevant information, leading to inferior

performance (e.g., 55.98%→53.49% of SR on REVERIE).

4.3. Analysis on 3D Representation Learning

Evaluation Metric. Following standard protocols, we em-

ploy Intersection over Union (IoU) to evaluate the occu-
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Figure 4. A representative visual result on val unseen of R2R [3]. We first visualize the 3D occupancy prediction at the key steps. In

addition, we provide the prediction of 3D boxes and 3D room layout at step 7 . We find that VER can capture the geometric details of

‘couch’ and the structure of ‘bedroom’. With VER, our agent easily finds the ‘bed’ and succeeds. See §4.1 for more details.

REVERIE R2R|Ωn|
SR↑ SPL↑ RGS↑ SR↑ SPL↑

4 53.30 35.90 34.16 73.75 62.77

9 55.98 39.66 33.71 75.80 65.37
16 52.18 36.37 33.14 73.82 63.49

25 53.49 35.87 33.46 74.63 63.24

Table 5. Ablation study of neighborhood range on val unseen of

REVERIE [64] and R2R [3] (see §4.2 for more details).

Occupancy Detection Layout
Models

IoU↑ mIoU↑ mAP↑ mAR↑ 3D IoU↑
BEVFormer [51] 20.38 8.97 27.30 43.88 62.71

OccNet [78] 22.12 10.66 29.91 47.15 64.04

Ours 24.31 12.93 33.57 51.60 66.45

Table 6. Quantitative results on 3D occupancy, 3D detection, and

room layout prediction (see §4.3 for more details).

pancy prediction quality, regardless of the semantic labels.

The mean IoU (mIoU) of 15 classes is also used to assess

the performance of semantic occupancy. For 3D object de-

tection, we utilize mean Average Precision (mAP) and mean

Average Recall (mAR) with IoU thresholds of 0.50. For

room layout, we adopt 3D IoU for cuboid layout evaluation.

Performance on 3D Tasks. In Table 6, our network (§3.1)

outperforms other methods [51, 78] by a significant mar-

gin (2.19% on IoU of occupancy, 3.66% on mAP of 3D

detection, and 2.41% on 3D IoU of room layout estima-

tion). The mIoU of occupancy is also exhibits improvement

(2.27%), underscoring the network’s proficiency in captur-

ing both scene geometry and fine-grained semantics.

Coarse-to-Fine Extraction. Table 7 lists the scores with

different up-sampling operations (Eq. 2). Our approach im-

proves the performance by solid margins (e.g., 11.03%→
12.93% for 3D occupancy, 75.14% → 75.80% on SR of

R2R). This verifies the efficacy of our design of the coarse-

to-fine extraction and learnable up-sampling operations.

Multi-task Learning. Table 8 reports performance com-

parison with different perception tasks (§3.1). We find that

multi-task learning yields a substantial performance gain.

3D Perception R2R
Up-Sampling

mIoU↑ mAP↑ 3D IoU↑ SR↑ SPL↑
w/o Coarse-to-Fine 12.39 32.95 66.57 − −

Trilinear Interpolation 11.03 29.42 63.45 75.14 64.30

3D Deconvolution 12.93 33.57 66.45 75.80 65.37

Table 7. Ablation study of Coarse-to-Fine Extraction on occu-

pancy prediction (mIoU), 3D detection (mAP), room layout (3D

IoU), and val unseen set of R2R [3] (see §4.3 for more details).

Multi-task Learning 3D Perception R2R

Occ. Obj. Room. mIoU↑ mAP↑ 3D IoU↑ SR↑ SPL↑
� 12.09 − − 74.90 63.82

� � 12.14 32.64 − 75.21 64.79

� � − 33.11 64.58 74.03 63.51

� � 11.37 − 63.29 74.97 64.66

� � � 12.93 33.57 66.45 75.80 65.37

Table 8. Ablation study of Multi-task Learning on occupancy pre-

diction (mIoU), 3D detection (mAP), room layout estimation (3D

IoU), and val unseen set of R2R [3] (see §4.3 for more details).

This suggests these 3D perception tasks are complementary

to each other in capturing geometric and semantic proper-

ties of scenes, further facilitating the decision-making.

5. Conclusion
In this paper, we propose a Volumetric Environment Rep-

resentation (VER), which aggregates the perspective fea-

tures into structured 3D cells. Through coarse-to-fine fea-

ture extraction, we can efficiently perform several 3D per-

ception tasks. Based on this comprehensive representation,

we develop the volume state for local action prediction and

the episodic memory for retrieving the global context. We

demonstrate that our agent achieves promising performance

on VLN benchmarks (R2R, REVERIE, and R4R).
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