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Abstract

Video Individual Counting (VIC) aims to predict the
number of unique individuals in a single video. Existing
methods learn representations based on trajectory labels
for individuals, which are annotation-expensive. To provide
a more realistic reflection of the underlying practical chal-
lenge, we introduce a weakly supervised VIC task, wherein
trajectory labels are not provided. Instead, two types of la-
bels are provided to indicate traffic entering the field of view
(inflow) and leaving the field view (outflow). We also pro-
pose the first solution as a baseline that formulates the task
as a weakly supervised contrastive learning problem under
group-level matching. In doing so, we devise an end-to-end
trainable soft contrastive loss to drive the network to distin-
guish inflow, outflow, and the remaining. To facilitate future
study in this direction, we generate annotations from the ex-
isting VIC datasets SenseCrowd and CroHD and also build
a new dataset, UAVVIC. Extensive results show that our
baseline weakly supervised method outperforms supervised
methods, and thus, little information is lost in the transition
to the more practically relevant weakly supervised task. The
code and trained model can be found at CGNet.

1. Introduction

Video Crowd Counting (VCC) has garnered much interest
due to its broad range of practical applications, particularly
in crowd safety management. This task requires a model
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(a) Annotation of VIC method (b) Annotation of our method

Figure 1. Existing VIC method requires a unique label indicat-
ing the position of each human in each frame, and these labels
are consistent across frames. Weakly supervised VIC only re-
quires labels indicating each human position and whether they
are an inflow/outflow pedestrian (purple/yellow in (b)) in the cur-
rent frame. The transition from individual-level labels to identity-
agnostic group-level labels represents a significant reduction in the
labeling effort.

to count the number of people in each frame of a video. A
limitation of VCC [12, 51, 53] is that it gives an imprecise
estimate of the number of unique individuals appearing in
a video sequence, as people are counted multiple times if
they appear in several frames. To overcome this drawback,
Video Individual Counting (VIC) was introduced, wherein
a method must count the total number of people with unique
identities appearing in a video sequence.

The apparent approach to crowd counting is to count
the people who appear in the first frame and add the num-
ber of people who come into the camera’s field of view in
later frames (the inflow). Following this principle, Han ef
al. [14] devised DRNet, the only existing published method
for VIC, identifying repeated observations of individuals
across consecutive frames based on their appearance, simul-
taneously predicting inflow and outflow. Although the num-
ber of outflows does not contribute to the final count, DR-
Net finds it helps determine individual associations. Han et
al. [14] also explored using conventional multi-object track-
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ing (MOT) methods [7, 41, 44, 54, 56] to tackle the VIC
problem. Unfortunately, it turns out MOT methods suffer
from poor accuracy. More notably, DRNet and MOT-based
methods require trajectory labels (or similar individual as-
sociation labels) to supervise identity association, which is
highly annotation-expensive.

Our key insight is that counting people in the previous
and current frames does not require accurate identity asso-
ciations for those appearing in both frames. For example,
as long as we can predict individual 15~17 as entering in
Fig. 1a, even if we arbitrarily associate individuals O~14 in
frame 7 to individuals O~ 14 in frame ¢, we can still correctly
infer the crowd counts. We can still count crowds if we relax
individual-level identity associations to group-level associ-
ations and do not require trajectory annotations. Thus, we
just need to annotate inflow and outflow people (then we can
derive the individual exists in two frames), which reduces
annotation costs compared to creating individual pairwise
target associations for each observed pedestrian between
neighboring frames. We name crowd counting with such
annotations as Weakly supervised Video Individual Count-
ing (WVIC).

To address the WVIC task, we propose a benchmark
method based on Contrastive learning with Group-level
matching, namely CGNet. We design a soft contrastive
loss to drive the network to learn discriminative represen-
tations that can facilitate identifying the required group as-
sociations and, thus, the inflow. Moreover, to better rep-
resent each individual, we design a memory-based individ-
ual count predictor, where historical templates of individ-
uals are stored and updated in memory to enhance the ro-
bustness of association during inference. Considering that
the two existing datasets for VIC are all captured by static
cameras, we collect a weakly supervised VIC dataset based
on moving UAVs, named UAVVIC. This dataset provides
about 400,000 inflow/outflow and bounding box labels for
four categories: pedestrian, car, bus, and van. Although
devised for crowd counting, our proposed baseline method
also performs well in counting other objects.

Our main contributions are as follows:

* We propose WVIC, a weakly supervised video indi-
vidual counting task. This task does not require expen-
sive per-target trajectory annotations and only requires two
types of identity-agnostic annotations.

e We automatically reannotate two existing datasets,
CroHD and SenseCrowd, and collect a new dataset,
UAVVIC, to pave the way for future studies.

* We propose a strong baseline, CGNet, equipped with a
newly designed group level matching soft contrastive loss,
performing favorably against the supervised methods on
the three datasets mentioned above.

2. Related Works

Video Crowd Counting (VCC) estimates the number of
people in each video frame. Most of the existing VCC
methods [2, 5, 6, 11, 12, 30, 51, 53, 58] can be divided
into two categories according to their solved problems: re-
gion of interest (ROI) and line of interest (LOI). ROI meth-
ods [11, 12, 51, 53] detect pedestrians within a specific
region (or the whole image), and they focus on leverag-
ing temporal context information to improve the prediction
of the current frame. LSTN [12] models the group flow
of crowds in local regions. Xiong et al. in [53] fuse his-
tory frame features using a ConvLSTM. TAN [51] explores
context information from adjacent density maps. CLRNet
proposes a local self-attention module to help the model
focus on highly related regions in adjacent frames. ROI
methods can not be used in the VIC task. LOI methods
[2,5,6,30,57, 58] counts people passing through a specific
line. Most of the existing LOI methods [2, 5, 6] apply blobs
to crowds, counting objects when the whole blobs cross the
line. Ma et al. in [30] sample fixed line width areas within
temporal image slices and accumulated crowds in this area.
Zheng et al. [58] instead sum the number of people within
neighboring blocks near a line based on local velocity. Zhao
et al. in [57] train a crowd velocity map predictor with the
help of trajectory labels. In practice, LOI methods perform
poorly on the VIC task as people can enter or leave the field
of view in any direction, making it difficult to find a suitable
virtual line.

Multiple Object Tracking (MOT) aims to predict the tra-
jectories for multiple targets in a video. Object association
is a main challenge in MOT, establishing correspondences
between objects across frames to generate targets’ trajecto-
ries. Existing object association methods in MOT include
Probabilistic Data Association (PDA) [36, 37], Joint Proba-
bilistic Data Association (JPDA) [16, 23, 29, 40], and graph
matching methods like the Hungarian algorithm [3, 50]. Re-
cent research has started to use more powerful feature rep-
resentations to enhance the robustness of data association.
Deep learning-based methods like LSTM can model tempo-
ral information to handle long-term occlusion [20, 34, 45].
Many works [4, 15, 46] also focus on the association of
tracklets. Specifically, they associate multiple tracklets over
longer periods using a graph model to combine the final tra-
jectory, which can relieve the effects of lost tracked targets.
These methods perform poorly on the VIC task, however,
due to the inevitable ID switching problem [14]. Addition-
ally, they require trajectory labels to train their models.
Video Individual Counting (VIC). To the best of our
knowledge, DRNet [ 14] is the only method for the VIC task.
It predicts the number of initial pedestrians and matches
pedestrians in adjacent frames by adapting a differentiable
optimal transport loss. Although the VIC task only re-
quires the total count in the video, DRNet needs individual
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matching between frames. WVIC avoids the requirement
for such matching annotation, which enables easy expan-
sion of dataset scales and thus facilitates future large deep
learning models.

3. A Benchmark Method

The goal of Weakly-supervised Video Individual Count-
ing (WVIC) is to predict the number of unique indi-
viduals (N ) in a video provided a series of its frames
with 0 as the sampling rate. Given a video V con-
sisting of T frames V!,---, VT, the label informa-
tion comprises coordinate/inflow/outflow data for each in-
dividual. ~ Specifically, letting P = [pi,...,p} | de-
note the annotation of the coordinates of the center of
the people in frame V?, we sample the frame pairs
{(vivothy (vorl v+l (VT=9 VT)}, where §
is an integer frame offset. The weakly supervised inflow la-
bel I' = [I}, ..., I/, | and outflow label O = [O1, ..., O}, ].
If the u-th person in frame i doesn’t appear in V?~9 then
I!, = 1; otherwise, I{, = 0. For O, if the u-th person in
frame V'* doesn’t appear in V*9, then Of, = 1; otherwise
O, = 0. If, by a slight abuse of notation, we refer to people
by their coordinates in particular images, we see that the set
{pi|O% = 0} and {piO|T}, = 0} represent the people that
appear both in V* and V*+9,

3.1. Weakly Supervised Representation Learning

As shown in Fig. 2, the inference pipeline of our CGNet
consists of three components: an image-level locator to
generate coordinates for pedestrians, an encoder to pro-
duce representations based on pedestrians’ coordinates, and
a Memory-based individual Count Predictor (MCP) to pre-
dict the final inflow count based on the representations.
The locator is trained independently with the coordinate
annotations, and existing image crowd localization net-
works such as FIDT [25] can be used. The encoder is
trained with our Weakly Supervised Representation Learn-
ing method (WSRL) to extract the discriminative features
of each individual. It can be any feature extractor, such as
ConvNext [26]. MCP does not need training.

Provided two d§-adjacent frames V' and V/ and the cor-
responding annotations P?, P7, O? and I, we group the
individuals into four sets: X = {p{|O! = 0}, Y =
{p?|lJ, = 0}, denoting shared individuals in the previous
frame and the current frame, respectively; X = P - X,
and Y = P/ — Y, denoting outflow individuals and inflow
individuals, respectively. An encoder learns representations
F for each pedestrian based on the crops around those co-
ordinates. Specifically, to generate the u-th feature f¢ in F,
if the locator outputs points, we extract a rectangle patch of
size 96 x 64 centered at the predicted coordinate p?,, and if
the outputs are bounding boxes, we directly crop the bound-
ing box from the original picture. Each cropped patch is

resized to 224 x 224 and fed into the encoder, a ConvNext-
S [26], generating a feature of 7 x 7 x 768, which is flat-
tened and normalized into a 1D vector f! to represent the
final feature for the individual:

= Encoder(X), F%
FJ, = Encoder(Y), F%{

= Encoder(X)

. 1
= Encoder(Y) M

Then, a similarity matrix S € R™*" between F' =
{F&’le} and F/ = [F%DF;} is computed by:

So Si
By e
The matrix S is divided into four parts: Sy € R™.3 X"
S; € Rmiix(nj=—mij) S, ¢ RMi—mij)xmi; Q. ¢
R(u=mig)x(ni=mis) where m; ; = (1 — I)7(1 — OY)
denotes the number of shared individuals in V* and V7. S,
is the similarity matrix of X and Y wh11e S1, So and Ss
are the similarity matrix of X and Y, of X and Y, of X and
Y, respectively.

To pull the matched groups (X and Y) closer and push
away individual pairs from unmatched groups, we propose
a weakly supervised Group-level Matching Loss (GML) to
constrain different parts of S.

(F) FY

(Fy) TFY,
(Fi)TFY

S= iNT
(Fi)TF),

Constraint for Sy, S1, So. S denotes the similarity among
individuals shared between two frames, and it does not mat-
ter whether the individuals are correctly matched as long
as we can assign them a one-to-one match. As for S; and
So, they are the similarities of different identities and thus
should be zero.

To this end, we introduce a latent variable matrix ) €
R™i3*™mi5 where the (u,v)-th element (2, , denote the
probability that the u-th pedestrian in X is matched with
v-th pedestrian in Y. To increase the similarity between the
pairs that have a higher matching probability and decrease
the similarity between the pairs that have a lower matching
probability, inspired by [32, 39], we define the soft con-
trastive loss as:

Mg, 5 My 5

‘cscon(z) - Hlln— Z Z Qu vCu vy
u=1 v=1 (3)
st 15 Q=1 Ql,,  =1,0<Q,,<1,

where C,, ,, denotes the contrastive similarity [10], and is
calculated as,

1
=Su,v
— ey
Cu,v - 1g w! £u 1g v! v 1g ) (4)
eYTWV L S ertwvgp S ey Tu
1<u/<ny 1<v/<ny

where < is a temperature hyper-parameter [52] and S, , =
(f, f7) is the (u,v)-th element of S, calculated by the u-
th feature in F* and the v-th feature in F7. As Qy,, de-
scribes the matching probability, our soft contrastive loss
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Figure 2. The inference pipeline of our CGNet and the weakly supervised representation learning method (WSRL). The pipeline comprises
a frame-level crowd locator, an encoder, and a Memory-based individual count predictor (MCP). The locator predicts the coordinates
for pedestrians. The encoder generates representations for each individual, and MCP predicts inflow counts and updates the individual
templates stored in the memory. To pull the matched groups (X and Y) closer and push away individual pairs from unmatched groups,
WSRL exploits inflow and outflow labels to optimize the encoder with a novel Group level Matching Loss (GML), which consists of a soft

contrastive 10ss (Lscon) and a hinge 1088 (Lringe)-

evaluates the expectation of contrastive loss. It should be
noting that in C,, ,,, (f¢, f7) is considered as positive pairs,
while {(f1, )l # v} and {(f5,, f1)lu’ # u} are con-
sidered as negative pairs. Thus, L., can encourage Sy to
be a permutation matrix, which indicates that there exists a
one-to-one match between X and Y, and drive S¢,S, to be
zero matrices.

The problem defined by Eq. (3) is a typical balanced Op-
timal Transport (OT [35]) problem which transports 1,
to 1,,, ; using 1 — C as the cost matrix and 2 is the trans-
port matrix. Therefore, we consider Loy, (7) as an OT loss,
which can be solved with the Sinkhorn algorithm [38].

Constraint for S;. Obviously, the elements in S3 mea-
sure the similarity of different individuals, so they should
be as small as possible. However, directly constraining Ss
to zero matrix will make features from X, Y easily collapse
to zero-vector. To this end, the widely used Hinge L1 loss
[18] is adopted to constrain Ss:

> Relu(Ss — 6)

(ni —my ;) (nj —m; ;)

Ehinge (7/) = s (5)

where 6 is a threshold used to ignore small values in Ss.

Finally, the group-level matching loss of the training set
V is formulated as,

GML(V) = (Lscon (1) + Lhinge(i)) . (6)

>

0<i<T,i=ké+1

3.2. Memory-based Count Predictor

To handle individuals’ appearance variance and re-entering
cases, inspired by [22, 33, 55], we propose a memory-
based count predictor (MCP) to reason the final count for
the video, which stores templates of recently appeared in-
dividuals in a flexible memory. Specifically, when pro-
cessing frame V*°, the memory is denoted as G' =
{Gi, G5, ...,Gi: }» where N* is the memory size at time .
Gl = {9h0, - gl 1} is a set of templates for u-th pedes-
trian in the memory, and % is the number of templates stored
for u-th pedestrian.

We first use the crowd locator to predict the coordinates
of pedestrians in V9, and then extract their corresponding
features, denoted as { f{*°, f37°, -+, fi* }. To associate
the individuals in V**? with templates in memory, we first
define the cost Cﬂ’uyu/ of matching the u-th pedestrian with
the u’-th template in G* as

O1L,u’ = HlEJX(l - <fzi+67gqi/,v>)' (7)

Then, we generate an optimal one-to-one match 7 €
{0, 1}7+5*N" (assuming N* > n;) by solving the follow-
ing problem with Hungarian Algorithm [21]:

7 = arg min E T Cuu
s

u,u’

®)
s.t. Vu’,Zwu’ul =1, Vu,Zwu,u/ <1.
u u

If the matching cost for © meets 2321 wu,u,C'u’u, > ¢,
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u will be judged as an inflow pedestrian. Otherwise, if
Tuw = 1, uis associated with g¢¢,,.

Template update. Similar to [22], G has a time-to-live
factor (ttl). ttl, will decrease one if G’ has no mapping to
any pedestrian feature in F*+9_ If ttl, decreases to zero, the
template QZ will be dropped. Meanwhile, whenever QZ is
associated with a pedestrian in the current frame, ttl,, will
be reset to ttlmax. This time-to-live threshold allows us to
save some recently appeared targets while discarding those
that have not appeared for a long time. If pedestrian wu is
associated with u’-th template, we add fff‘; to g;, to update
the template

GO G Ui s = 1, Tur G <€} (9)

If pedestrian u is an inflow pedestrian, { f>+9} will be added
to the memory G*t9 as a new template.

The output number of the total individuals in video I is
then calculated via

N=m+ > (10)
S+1<i<T,i=ké+1

where 7; is the number of inflow pedestrians at time .

4. Experiments
4.1. Dataset

We test our CGNet on three datasets: CroHD [42], Sense-
Crowd [24], and UAVVIC. CroHD has four training videos
and five testing videos. SenseCrowd contains 634 videos,
and we split the train, validation, and test dataset follow-
ing DRNet [14]. UAVVIC is our proposed dataset col-
lected by a moving UAV camera in various scenes, includ-
ing campus, beach, car park, highway, city road, and square.
UAVVIC consists of 221 videos (100 for training, 100 for
testing, and 21 for validation), and 5,396 frames are sam-
pled with 3s as the interval. Annotations consist of 398,158
bounding boxes, and group-level matching labels in neigh-
bor frames are provided. The resolutions of UAVVIC are
4K and 1080P for better capture of tiny pedestrians from
drone view. A detailed comparison of UAVVIC with ex-
isting video crowd counting datasets [8, 9, 13, 24, 42] is
shown in Tab. 1. UAVVIC provided a moving shot with a
larger range of pedestrians. More details about UAVVIC
are provided in the supplementary materials.

4.2. Metrics

Mean Absolute Error (MAE), Mean Square Error (MSE),
and Weighted Relative Absolute Errors (WRAE) are used
for evaluation. The first two metrics are common metrics
applied in VCC. However, unlike VCC schemes, we only
count the same person once in the video. WRAE [14]
is proposed to balance the performance on videos with

Name Resolution  Range  Moving shot Point Box Trajectory In-Out

Mall [9] 640%480  13-53 X 4 X X
uCsD [8] 238*158  11-46 X v X X X

R 1920%1080
FDST [13] sos0 957 X v X X X
SenseCrowd [24] - 1-296 X v v X
CroHD [42] - 25-346 X v v v X
UAVVIC 384072160, 75 4 4 4 X 4

1920*1080

Table 1. Comparison of different video crowd counting datasets.

different lengths and pedestrian numbers: WRAE =

ZiK:l Zf: 7 |Ni1§iN”, where K is the total number of

videos, and T; is the length of video i, N;/ Ni denotes the
number of ground truth/predicted counts in i-th video.

4.3. Implementation Details

Training. If there are no special instructions, the loca-
tor we applied is a well-known crowd localization model,
FIDT [25]. All parameters are official from FIDT, except
that we replaced the backbone from HRNet-W48 [47] to
HRNet-W18 [47] for efficient inference. The learning rate
is set as 1e~* along with AdamW [28] as the optimizer and
applying the pre-train weight from Timm [49]. All related
models can be trained on one RTX3090 (24G memory).

Testing. In the testing phase, the time interval d is set as 3s
following the setting in [14], the threshold ( is set as 0.7, ~y
in Eq. (4) is set as 10, and the max time-to-live (ttlmax) is
set as 3, the max size of memory (memmax) is set as 5.

4.4. Overall Performance

Comparison Methods. To the best of our knowledge, only
DRNet[14] has been specifically designed for the VIC task.
To evaluate the effectiveness of our proposed CGNet, we
also tested two categories of approaches that could be ap-
plied to VIC: 1) Multi-object tracking (MOT) methods, in-
cluding HeadHunter-T [43], FairMOT [56], PHDTT [44],
SMILE [48], SparseTrack [27], Deep-OC-SORT [31], and
BoT-SORT [1], where we consider the total number of in-
dices in the entire video as individual count. We set the
frame rate to 1 FPS for HeadHunter-T and 0.33 FPS for the
other MOT methods to obtain better VIC performance. 2)
A recent cross-line video crowd-counting, LOI [57], which
also requires trajectory labels in training.

Results on SenseCrowd: As shown in Tab. 2, it is evi-
dent that our CGNet exhibits superior performance on this
larger dataset, SenseCrowd. Particularly, CGNet improved
the overall MAE by about 28% compared to DRNet. Fur-
thermore, we achieve the lowest MAE across all density lev-
els except for DO. Compared to the existing lowest MAE on
D1, D2, D3, and D4, the performance improvements of our
CGNet are about 27%, 63%, 37%, and 17%, respectively.
In Fig. 3, we show qualitative results on three representa-
tive scenes,i.e., mall, station, and outdoor plaza. Although
the inflows in the current flow are not concentrated, CGNet
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(b) Current frame (3s)

Figure 3. Results on the SenseCrowd dataset. Red dots are predictions of the locator. Blue/green/yellow circles are correct predicted
inflow, error predicted inflow, and missed inflow, respectively.

MAE on five different density levels

Method MAE MSE WRAE(%)
DO D1 D2 D3 D4
FairMOT [56] 354 62.3 48.9 13.5 224 67.9 84.4 145.8
HeadHunter-T [43] 30.0 50.6 38.6 11.8 25.7 56.0 92.6 131.4
SMILE [48] 27.22 36.7 325 9.2 21.0 33.8 76.5 203.5
SparseTrack [27] 28.36 43.8 30.8 9.9 21.5 42.1 89.2 189.5
Deep-OC-SORT [31] 26.04 43.6 29.5 9.5 25.1 29.1 60.3 156.5
BoT-SORT [1] 24.67 324 28.3 8.7 20.5 31.1 70.2 165.1
LOI [57] 24.7 33.1 374 12.5 254 39.3 39.6 86.7
DRNet [14] 12.3 24.7 12.7 4.1 8.0 233 50.0 71.0
CGNet (Ours) 8.86 17.69 12.6 5.0 5.8 8.5 25.0 63.4

Table 2. Performance comparison on SenseCrowd. The density labels D0-D4 are defined in [14], where DO, D1, D2, D3, and D4 correspond
to the count range [0, 50), [50, 100), [100, 150), [150, 200) and [200, +00), respectively. The best values are highlighted in blue font.

MAE on five testing scenes

Method MAE MSE  WRAE(%)
CroHD11 CroHD12 CroHD13 CroHD14 CroHDIS5
PHDTT [44] 2130.4 2808.3 401.6 247 3793 4794 491 1327
FairMOT [56] 256.2 300.8 44.1 11 427 284 408 1000
HeadHunter-T [43] 253.2 351.7 32.7 65 101 515 582 1003
SMILE [48] 257.6 334.5 40.5 16 231 156 649 246
SparseTrack [27] 176.6 208.6 27.6 29 172 258 336 88
Deep-OC-SORT [31] 165.2 195.9 33.1 68 351 186 161 60
BoT-SORT [1] 154.8 176.42 274 49 210 138 286 91
LOI [57] 305.0 371.1 46.0 60 243 458 630 131
DRNet [14] 141.1 192.3 274 31 338 18 255 61
CGNet (Ours) 75.0 95.1 14.5 7 72 14 144 138

Table 3. Performance comparison on CroHD dataset. CroHD11-CroHD15 are five test scenes labeled in [14]. The best values are
highlighted in blue font.

can accurately predict them. More visualization results can
be found in supplementary material.

Results on CroHD. Comparison with existing methods on
CroHD is shown in Tab. 3. Our CGNet achieved the lowest
MAE, MSE, and WRAE. Especially, except for CroHD15,
our method obtained the lowest MAE across the other four

testing scenes. As CGNet is trained with only point an-
notations, it cannot crop the patch of optimal size to ex-
tract features on CroHD15. It should be noted that on
CroHD13 and CroHD14, which have the highest average
density (245.9 and 259.6 person/frame), the performances
of all the compared methods except for DRNet degrade sig-
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MAE/MSE/WRAE on four different categories

Method MAE/MSE/WRAE
Pedestrian Car Bus Van
BoT-SORT [1] 49.9/228.2/29.9 92.4/398.2/49.0  59.1/259.1/39.2  23.0/109.6/57.1  25.1/146.2/77.3
Deep-OC-SORT [31] 37.1/115.4/35.2 85.2/213.5/22.1  33.4/113.1/21.0  19.1/ 78.2/26.2 10.7/56.6/32.8
DRNet [14] 18.4/41.0/15.2 34.5/ 92.1/19.1  19.0/ 32.7/17.8 10.4/ 22.1/32.2 9.9/17.2/29.4
CGNet (Ours) 12.9/ 37.4/ 12.0 31.2/ 98.4/144 169/ 45.2/7.3 2.1/ 4.1/19.2 1.3/ 2.0/25.1

Table 4. Performance comparison on UAVVIC. All the methods are trained independently with four classes. The values of each entry are

MAE/MSE/WRAE. The best values are highlighted in blue font.

MAE on five different density levels
DO DI D2 D3 D4

Method MAE MSE  WRAE(%)

©) 1335 323 22.8 9.7 123 153 265 434
@ 9.84 20.0 13.8 53 63 120 288 67.7
® 10.71  17.40 16.9 6.9 89 11.7 243 506
@ 8.86 17.69 12.6 5.0 5.8 85 250 634

Table 5. Ablation study on the main components. The density
labels DO-D4 are defined in [14], where DO, D1, D2, D3, and D4
correspond to the count range [0, 50), [50, 100), [100, 150), [150,
200) and [200, +00), respectively. @, No constrain on S1, Sa; @,
w/o Eq. (5); ®, w/o MCP; @, full CGNet. The best values are
highlighted in blue font.

nificantly. In contrast, the performance of our CGNet is rel-
atively stable in these two scenes. Furthermore, even with-
out individual-level matching labels, our CGNet performs
favorably against the state-of-the-art approach, DRNet, by
a large margin (about 46% on the MAE), demonstrating the
effectiveness of our method.

Predict inflow: 73

(a) Previous frame (0s) (b) Current frame (3s)

Figure 4. Qualitative visualization of our CGNet on UAVVIC.
Results on UAVVIC. The results on our proposed UAVVIC
dataset are shown in Tab. 4. All methods are trained and
tested on each category, respectively. Since there is no
trajectory annotation on UAVVIC, we train the compared
methods [1, 14, 31] on VisDrone [59], a UAV dataset for
MOT. Our CGNet shows favorable performance in all cate-
gories. The average MAE is improved by about 30% com-
pared to DRNet. In Fig. 4, we show the quality result of our
CGNet on the UAVVIC dataset. Although the UAV moves,
CGNet can still detect inflow objects accurately.

4.5. Ablation Studies

We conducted several ablation studies on the SenseCrowd.
1). We verify the effectiveness of the main components of
our CGNet. 2). We analyze the effect of two main param-
eters. 3). We report the performance of our CGNet with
different locators. 4). We use the trajectories generated by

WRAE
16 /
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Video Length(s) ttlmax=3 w/o mep
—o— w/o MCP  —o— with MCP ttlmax=2
() (b)

Figure 5. Effectiveness of MCP on SenseCrowd. (a) The average
MAE with different lengths of videos with and w/o MCP. (b) Per-
formance with different max time-to-live factor ttlmax of MCP.

our CGNet as pseudo-labels for existing VIC methods. 5).
We compare the time cost of the WVIC and VIC labels.

Effectiveness of Constrain for S;,S,. Eq. (4) constrains
So, S1, S together. Without considering un-matched pairs
in X xY and X x Y, it can be changed to constrain only Sg
by remove elements in S;,So. As shown in Tab. 5, MAE
dropped by about 4.51 without constraints on S; and Sy (©
VS @). This is because elements in S; and S are related to
pedestrians that exist only in one frame. Considering X x Y
and X x Y as negative pairs, our soft contrastive loss can
push apart individuals in X (Y) with that in Y (X), thus
enhancing the distinguishing ability of the representations.

Effectiveness of Eq. (5). We replace the hinge MAE loss in
Eq. (5) to normal L1 loss and derive the method @ in Tab. 5.
Compared to L1 loss, our Lp;nge(-) gives a soft margin to
the inner product of two features other than encouraging
them to be 0. Optimizing the inner product of all features
toward 0 makes it easier to cause either side to collapse a
0 vector, which is not conducive to learning different repre-
sentations. Compared the performance of @ with that of @
in Tab. 5, Lpnge(-) improves MAE in all density levels.

Effectiveness of MCP. As shown in Tab. 5, compared @
with @, MCP brings about 4.1 improvements on WRAE.
Specifically, we evaluate the average MAE of our CGNet
on videos with different lengths. As shown in Fig. 5(a),
the performance gap between @ and @ becomes larger as
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5 MAE MSE WRAE(%) MAE on five different density levels Locater Ground Truth Labels Pseudo Labels

DO DI D2 D3 D4 MAE MSE WRAE | MAE MSE WRAE
5 1096 20.26 19.5 65 69 104 292 79.9 FairMOT 354 623 48.9 372 648 49.8
4 871 1433 12.9 42 49 102 278 70.1 HeadHunter-T 30.0 50.6 38.6 325 542 39.9
3 886 17.69 12.6 50 58 85 250 63.4 SMILE 272 36.7 32.5 275 370 352
2 977 2001 17.3 7.1 88 124 174 52.6 SparseTrack 284 438 30.8 305 450 31.5
1 956 1534 16.6 68 74 105 23.1 45.5 Deep-OC-SORT  26.0  43.6 29.5 29.5 453 31.7

Table 6. Ablation study on interval . The best values are high-
lighted in blue font.

Method Locator Encoder MAE MSE WRAE
@) FIDT ConvNext-S 8.86 17.69 9.27
® Yolov8 nano ConvNext-S 8.01 16.42 8.85
® Yolov8 small ~ ConvNext-S 7.56  15.19 8.05
@ VGG16+FPN  ConvNext-S 9.20 1745 9.55
® VGG16+FPN PrRolPooling 10.01 18.22 9.70
® VGG16+FPN  PrRolPooling 12.59 2332  12.58

BoT-SORT 247 324 28.3 25.0 359 33.8
LOI 247 331 37.4 269 352 39.9
DRNet 123 247 12.7 145 255 13.3

Table 8. Performance of existing VIC methods trained with differ-
ent trajectory labels.

(ns, nits) 9,8) (60,53) (116,115) (289,292) (645,724)
Association [14] 23.8s 104.5s 1744s 586.9s 1663.1s
In-Out 44s 42.6s 53.7s 95.0s 5719 s

Table 7. Performance on SenseCrowd of our scheme with differ-
ent locators and feature extractors. In ®, MCP is replaced with
the inflow reasoning method in DRNet. The best values are high-
lighted in blue font.

the length of the video increases. This is because, with the
stored templates of individuals, MCP can handle appear-
ance variations and individuals’ re-entry, alleviating error
accumulation during inflow reasoning.

Effect of ttlmax. The performance with different max long-
time-live factor ttlmax is shown in Fig. 5(b). Compared
with no memory (i.e., tthmax = 0), adding memory is help-
ful for all density levels except for extremely high-density
levels (D4). It may be because high-density crowds result
in too many candidate individual-level matches, making it
difficult for our CGNet to choose the right one. Meanwhile,
the performance degrades when ttlmax increases from 3 to
6 for that larger ttlmax = 6 leads to the templates of in-
dividuals that appeared a long time ago being stored in the
memory. As the probability of these people re-entering the
field is low, the recorded templates become distractions.
Effect of Interval §. The performance with different in-
tervals § is shown in Tab. 6. The performance on higher-
density video is better when ¢ is smaller. This is because
crowds flow faster in those videos, and long intervals may
lead to missing pedestrians in sampled frames. The overall
best performance is achieved when § is set as 4s.

Effect of the Locator. We replaced FIDT in our CGNet
with Yolo V8 [19] nano and small and the localization
branch (VGG16+FPN) used in DRNet, respectively. Dif-
ferent from FIDT, these three locators are trained with box
annotations. For Yolo V8, the predicted bounding boxes
are fed to our feature extractor to generate representations
of individuals. For a fair comparison with DRNet, we also
replace our feature extractor ConvNext-S with PrRoIPool-
ing [17] used in DRNet [14] and remove MCP. As shown in
Tab. 7, changing locators can further boost the performance
of our method. With the same locator and feature extractor
as DRNet (®), the MAE of our method is 10.01, 2.99 lower

Table 9. Time cost for a pair of frames with two types of labeling
methods. n; denotes the number of pedestrians in frame 3.

than that of DRNet. Even without MCP (®), the MAE of
our method is only slightly larger than that of DRNet (12.59
v.s. 12.3), demonstrating that our method can learn effective
representations without trajectory labels.

Performs as a Pseudo Trajectory Generator. The latent
variable (2 is obtained by solving a problem defined by
Eq. (3). The Hungarian Algorithm generates a one-to-one
match using €2 as the cost matrix. Based on the matching,
we generate pseudo trajectory labels, which are used to train
existing VIC methods. We show the results on SenseCrowd
in Tab. 8. With the generated pseudo label, the performance
of all the methods degrades slightly than using the ground
truth trajectory labels, demonstrating that exact individual-
level matching annotations may not be necessary for VIC.
Label time cost. We compare the time cost of annotating
our weakly supervised label and association label [14] on
five frame pairs with various densities in Tab. 9. The an-
notation time for our weakly supervised label is only about
30% of that of the association label, making it easier to build
a larger dataset for this VIC.

5. Conclusions

We propose a new task, Weakly supervised Video Individ-
ual Counting (WVIC), in this paper. Unlike conventional
video individual counting tasks, which require expensive
trajectory labels, our WVIC task just requires two types of
easily available identity-agnostic annotations. This largely
reduces the annotation cost and facilitates future works
to upscale data size. Furthermore, we propose a strong
baseline for the WVIC task. The key idea is a Group-level
Matching Loss (GML), which makes it easier to distinguish
inflow individuals from all objects. Last, we have extended
two existing datasets and built a totally new dataset for the
WVIC task. Our method achieves favorable performance
on all three datasets, even compared to supervised methods.
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