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Abstract
Recent text-to-image (T2I) diffusion models have revolu-

tionized image editing by empowering users to control out-
comes using natural language. However, the ease of image
manipulation has raised ethical concerns, with the poten-
tial for malicious use in generating deceptive or harmful
content. To address the concerns, we propose an image im-
munization approach named semantic attack to protect our
images from being manipulated by malicious agents using
diffusion models. Our approach focuses on disrupting the
semantic understanding of T2I diffusion models regarding
specific content. By attacking the cross-attention mecha-
nism that encodes image features with text messages during
editing, we distract the model’s attention regarding the con-
tent of our concern. Our semantic attack renders the model
uncertain about the areas to edit, resulting in poorly edited
images and contradicting the malicious editing attempts. In
addition, by shifting the attack target towards intermedi-
ate attention maps from the final generated image, our ap-
proach substantially diminishes computational burden and
alleviates GPU memory constraints in comparison to pre-
vious methods. Moreover, we introduce timestep universal
gradient updating to create timestep-agnostic perturbations
effective across different input noise levels. By treating the
full diffusion process as discrete denoising timesteps during
the attack, we achieve equivalent or even superior immu-
nization efficacy with nearly half the memory consumption
of the previous method. Our contributions include a prac-
tical and effective approach to safeguard images against
malicious editing, and the proposed method offers robust
immunization against various image inpainting and editing
approaches, showcasing its potential for real-world appli-
cations.

1. Introduction

In recent years, there has been an exponential surge in the
development and deployment of diffusion models [7, 9,

Figure 1. An illustration of our semantic attack. We aim to immu-
nize the image by corrupting the semantic understanding of T2I
diffusion models regarding specific content (in this case, ”woman”
as shown in the figure). Subsequently, the editing process is com-
promised, as the model cannot accurately identify the proper re-
gion for editing a certain concept.

27].These models exhibit the ability to generate highly re-
alistic images conditioned on various inputs such as text,
layouts, and scene graphs [8, 11, 38, 45]. Among them,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24462



text-to-image (T2I) diffusion models advance the state of
the art in image modeling. They allow humans to control
the outcomes of diffusion models using natural language,
making them accessible and intuitive for a wide audience.
The potential of large pretrained T2I models such as Stable
Diffusion [16, 19], Imagen [22] and DALLE 2 [18] further
goes beyond conditional generation and extends across di-
verse applications including image inpainting, image edit-
ing, zero-shot image classification, open-vocabulary seg-
mentation [2–4, 13, 14, 30, 33, 36, 37, 46, 47].

While the technological leap has opened exciting pos-
sibilities, it has also raised ethical concerns related to the
misuse of text-driven image editing since the barriers to im-
age manipulation have been substantially lowered. For in-
stance, malicious attackers can harness these advanced dif-
fusion models to produce inappropriate, deceptive, or even
harmful digital content that is almost indistinguishable from
reality. The thrives of AI-powered image editing can have
severe ethical implications, posing substantial risks to the
privacy and reputation of individuals as shown in Figure 1.1

Amidst these concerns, image immunization emerges
as a central theme to defend personal digital visual con-
tent [1, 20, 21, 23, 40]. The concept of image immuniza-
tion is aimed at providing protection against the potential
malpractice of AI-powered image editing, empowering in-
dividuals and organizations to share their images with confi-
dence. It usually involves the addition of a carefully crafted
and imperceptible perturbation to an image, which disrupts
the operation of AI-powered editing approaches. Several
works have explored related ideas and techniques to pro-
tect digital property from AI-powered image editing, dis-
rupting the output generation by either nullifying the image
transformation [40] or corrupting the output image [1, 21].
However, the majority of these image immunization ap-
proaches were designed to counter GAN-based image edit-
ing. For diffusion models, Salman et al. are the first to in-
troduce PhotoGuard [23] that makes subsequent edits us-
ing T2I diffusion models appear unrealistic. They execute
a targeted attack on the model using projected gradient de-
scent (PGD) [12], forcing any output editing to resemble
the target image. However, it requires backpropagation
through the entire diffusion process, leading to inefficient
GPU memory usage. Additionally, its efficacy in inpainting
scenarios is unstable due to the lack of constraints on the
region for adding perturbation. For instance, the noise can
be eliminated by the mask during inpainting, leading to a
significant reduction in the overall immunization ability.

In this paper, we propose semantic attack, which is de-
signed to attack the T2I diffusion models, ensuring the im-
munization against various editing approaches. Our objec-
tive is to tackle the memory-intensive issue while enhancing

1For ethical considerations, the human face image is synthesized by the
diffusion model.

the efficacy of immunization. As malicious editing often
seeks to preserve specific content while manipulating other
regions or change particular content in the image negatively,
we argue that the goal of image immunization is to protect
certain content rather than the entire image. Therefore, our
method aims to disrupt the semantic understanding of dif-
fusion models regarding the specific region of our concerns
within the image. As long as the concerned region is not
masked out during inpainting, our immunization leads to
poor model comprehension during editing, ultimately com-
promising or rendering the editing outcomes ineffective.

Specifically, T2I diffusion models understand the seman-
tics of an image through the cross-attention mechanism,
where the text message interacts with the image features.
As successful text-based image editing relies on a robust
understanding of the image, faithful attention maps play a
pivotal role in effective image editing and, vice versa, im-
munization. Hence, our semantic attack focuses on disrupt-
ing the cross-attention associated with the content of our
concerns within the diffusion model. We intend to distract
the attention, lead the model to lose focus, impair its judg-
ment, and render it uncertain about which areas should be
edited. Figure 1 illustrates the immunity of our proposed
semantic attack against diffusion-based image editing. Sup-
posing the area representing a woman is our primary con-
cern, our semantic attack disrupts comprehension of the dif-
fusion model, and the attention to the word ”woman” within
the image region is distracted. As a result, the subsequent
editing process fails to identify the proper content for mod-
ification, leading to the generation of an unrealistic image.

Moreover, since our attack focuses on corrupting the in-
termediate attention map rather than the final generated im-
age, the extensive backpropagation path through the whole
diffusion process is no longer necessary. The lengthy pro-
cess that involves several diffusion steps can be broken
down and treated as independent denoising steps with dif-
ferent levels of input noise. Accordingly, our semantic at-
tack significantly reduces the computational burden and al-
leviates GPU memory constraints. In addition, to create a
perturbation capable of disrupting the denoising model un-
der varying noise levels, we introduce timestep universal
gradient updating. It considers different noise levels of in-
put and seeks a timestep-agnostic perturbation to interfere
with the denoising model during the whole generative pro-
cess. Combined with our semantic attack, our approach
can be seen as attacking the cross-attention map of a sin-
gle denoising model with different noise levels of input,
and the resulting perturbation can be viewed as discretely
disrupting the full diffusion process. Experimental results
show that the proposed approach is able to effectively dis-
rupt semantic information and provide robust immunization
against various image inpainting and editing approaches.
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2. Related Work

2.1. Text-to-Image Diffusion Models

Recently, there has been noteworthy progress in text-
conditioned diffusion models, leading to great enhance-
ments in the quality of generated samples. These strides
have empowered large-scale diffusion models like Stable
Diffusion [19], Imagen [22], and DALL-E [18] to gener-
ate high-fidelity images that adhere closely to predefined
text-based conditions. Researchers have also harnessed the
potential of text-guided diffusion models in tackling the
challenge of single-image editing [2, 4, 10, 13–15, 39, 44].
Their objective is to tap into the rich and diverse seman-
tic knowledge embedded within these expansive models.
Several approaches have been devised to facilitate text-
conditioned inpainting under the assumption that the user
provides a mask to constrain and guide the editing pro-
cess [2, 15]. However, the reliance on the user-provided
masks can be burdensome. Consequently, alternative meth-
ods have been introduced to enable direct image editing
based solely on textual descriptions, eliminating the need
for explicit masks. For instance, Meng et al. [13] pro-
posed to add random noise to the input image and then
perform a text-guided denoising process from a predefined
step. Couairon et al. [4] proposed to automatically gener-
ate the mask and then edit an image based on a text query.
Mokady et al. [14] proposed to edit a real image by op-
timizing a null-text embedding for better image structure
preservation and altering the cross-attention map during the
denoising process.

2.2. Image Immunization

As text-guided diffusion models continue to lower the bar-
rier for image editing, the need to safeguard our digital
property from malicious alterations becomes increasingly
critical. Image immunization serves as a defense mech-
anism, involving the proactive disruption of image edit-
ing models to thwart potential manipulations and protect
our digital assets. Yeh et al. [40] proposed the Limit-
Aware Self-Guiding Gradient Sliding Attack (LaS-GSA)
to counter manipulation by image-to-image GANs under
black-box settings. Aneja et al. [1] introduced Targeted
Adversarial Attacks Against Facial Image Manipulations
(TAFIM) to cancel the effect of manipulation by generat-
ing the perturbation that will lead to a predefined target.
While most of the previous approaches targeted GAN-based
image manipulation, Salman et al. [23] introduced Pho-
toGuard to first counter manipulations by diffusion-based
models. Their introduced encoder attack aimed at disabling
the autoencoder in text-guided diffusion models. In addi-
tion to encoder attack, they proposed the diffusion attack,
which disrupts the entire diffusion process of the diffusion
model to corrupt any editing attempts. While these pro-

posed attacks against diffusion models have proven effec-
tive against image editing, their versatility against image
inpainting can be uncertain, as the regions containing the
perturbation can potentially be masked out. Furthermore,
it is worth noting that attacking the full diffusion process
can be memory-intensive due to the lengthy full diffusion
process. In this paper, we propose an approach to immu-
nization against diffusion-based image editing that is both
memory-efficient and effective against image editing and
inpainting, which marks a distinct and important shift in our
approach.

3. Method
3.1. Text-to-Image Diffusion Model

The objective of a T2I diffusion model is to generate high-
quality images by progressively denoising the noisy inputs
conditioned on the given text. The denoising diffusion pro-
cess is typically accomplished using a time-conditioned U-
net, which is frequently trained within the latent space of a
Variational Autoencoder (VAE) [19]. To generate an image,
a latent vector zT with Gaussian noise is first initialized as
input. The denoising diffusion process follows, wherein the
U-Net iteratively denoises the latent vector conditioned on
a text prompt c embedded with the CLIP text encoder [17].
Finally, the resulting vector is decoded into an image utiliz-
ing the decoder D of the VAE.

During training, the encoder E of the VAE encodes a
given image x into its latent representation z0. Then, a
forward diffusion process is applied to transform the latent
vector z0 to the approximate Gaussian noise zT over time T .
After the denoising diffusion process, the decoder D recon-
structs the estimated x̃. The main objective of the denoising
U-Net is to reconstruct the latent representation z0 from a
perturbed representation zT considering the textual descrip-
tion c, and the overall training objective can be written as:

  \label {eq1} \mathbb E_{z_0,\epsilon }\left [ \lVert \epsilon - \epsilon _\theta \left (z_t, t, c\right )\rVert ^2_2\right ], 


   


 (1)

where ϵ is the noise added in the forward diffusion process, t
is the timestep indicating the perturbation noise level, and ϵθ
is the denoising U-net with attention blocks parameterized
by θ. As the model is conditioned on t, the optimization
can be viewed as seeking the best model ϵθ for denoising
across all levels of noises. For image editing, recent ap-
proaches typically introduce random noise [13, 43] or lever-
age DDIM inversion [4, 14, 29] to incorporate estimated
noise into target images as the forward diffusion process,
generating the noisy zT and enabling further editing of the
image based on the condition c.

3.2. Semantic Attack

Given an image x, we aim to immunize the image into xadv

by adversarial attacking the diffusion models and introduc-
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Figure 2. An illustration of the text-to-pixel interaction in the dif-
fusion model. The model associates distinct words, or content,
with specific regions in the image, enabling further manipulation
of the identified areas.

ing perturbations δ:

xadv = x+ δ, s.t. ∥δ∥ < κ,

where κ is the perturbation budget. After immunization,
any subsequent attempts at modification on xadv using dif-
fusion models should be sabotaged while the perturbation
remains imperceivable, i.e., δ is constrained by a norm ∥·∥,
which could be either the ℓ1-, ℓ2-, or ℓ∞-norm.

The goal of our semantic attack is to immunize images
by attacking the T2I diffusion model employed in the im-
age editing process, ensuring that editing results of the im-
munized image xadv yield poorly edited images, e.g., con-
tradicting the original editing intention. The core principle
of image editing using a T2I diffusion model hinges on its
capacity to precisely identify objects targeted for editing.
Our objective, therefore, is to impair the model’s semantic
understanding of the current image. Given that malicious
editing typically entails either changing specific content or
maintaining it while altering other areas, our semantic at-
tack is designed to safeguard particular content rather than
the whole image. Essentially, if the diffusion model faces
difficulty in accurately recognizing the semantics of certain
content within the image, it becomes challenging to carry
out the intended editing effectively.

The semantic knowledge that a diffusion model pos-
sesses about an image stems largely from the pixel-to-text
interaction within its architecture, particularly through the
cross-attention mechanism of the denoising U-net, as high-
lighted in recent studies [6, 28, 31, 32, 35]. This interac-
tion can be visualized in attention maps, such as the one
shown in Figure 2, where each word in the text descrip-
tion corresponds to specific pixels in the image, revealing

the semantic relationship between text and image context.
To disrupt this crucial relationship, we propose a targeted
suppression of the attention responses for specific content
within the textual description during the denoising process.
This intervention is designed to disrupt the semantic knowl-
edge that the diffusion model holds about the current image,
ultimately sabotaging the image editing process.

To realize this idea, we propose an effective way to ag-
gregate the attention response associated with the textual
description of our focal content for immunization. In T2I
diffusion models, the interaction between the image and
textual description occurs in the noise prediction U-net,
where visual and textual features are fused using cross-
attention layers. The attention map can be written as:

  A^l(x_{adv},c_a) = Softmax((W_q^l \epsilon ^l_\theta (x_{adv})) (W_k^l c_a)^T/\sqrt {d}),    











(2)

where Al(xadv, ca) indicates the attention map of the lth

intermediate block in the U-net, Wq and Wk are the pro-
jection matrices, ϵlθ(xadv) is the output deep features of the
lth block in the denoising U-net, ca denotes the text em-
bedding of the concerned content, and d is the latent pro-
jection dimension. To execute a comprehensive attack on
the entire denoising U-Net, it is crucial to efficiently aggre-
gate attention maps across various scales. Given the fully-
convolution nature of the U-net, intermediate coordinates
map locally to surrounding areas in the initial-sized feature
map. Therefore, we upsample the intermediate attention
maps to match the size of the initial feature map using bicu-
bic interpolation. We sum the attention maps pixel by pixel:

  Att(x_{adv}, c_a) = \sum _{l=1}^L upsample(A^l(x_{adv}, c_a)),  




  (3)

where L is the number of intermediate blocks in the U-net.
The aggregated attention maps corresponding to the textual
token, represent the semantic knowledge that the diffusion
model possesses for the target image at various scales.

Specifically, the region in the immunized image xadv

containing the particular content should exhibit a low atten-
tion response associated with the textual description. Con-
sequently, we generate a mask M to identify the region con-
taining the content using the original image x:

  M = \mathbb {I}(Att(x, c_a) > \tau ),      (4)

where the indicator function I(·) is applied to binarize the
attention map of the original image Att(x, ca) using a
threshold τ .

The overall objective of the proposed semantic attack
is to suppress the attention pattern of our focal content
in the corresponding region by minimizing the attention-
suppressing loss:

  L = \lVert Att(M \odot x_{adv}, c_a)\rVert _1,      (5)
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Here, ∥·∥1 denotes the component-wise ℓ1-norm, ca is the
textual description of the content that we aim to immunize,
and Att(M ⊙ xadv, ca) denotes the attention response on
the region containing concerned content in the immunized
image xadv . It is worth noting that, as our attack focuses on
distracting the attention of the diffusion model from certain
regions containing specific content, the immunity remains
consistent in the context of inpainting as long as the con-
cerned content is not masked out.

3.3. Timestep Universal Gradient Updating

While attacking the full diffusion process, the primary ob-
jective is to influence the generation of the image. The back-
propagation for every pixel across all T time steps is neces-
sary since the entire sequence is treated as a holistic image
generation process, resulting in significant memory require-
ments. In contrast, our proposed method aims to interfere
with the semantic knowledge that the model has regarding
the current image. Therefore, our attack shifts from dis-
rupting the full diffusion process to impairing the denois-
ing U-net itself. Interfering the full diffusion process can
then be broken down into corrupting independent denoising
timesteps, each operating on input with varying levels of
injected noise. Consequently, our approach demonstrates
memory efficiency since it operates depending on gradients
from a single iteration of the denoising U-net.

Since we perceive the diffusion process as denoising in-
put with varying levels of noise, we aim to achieve effec-
tive attack across different timesteps, or noise levels, to en-
sure its immunity in disrupting the holistic process of im-
age editing. To create immunizations capable of corrupt-
ing the semantic knowledge within an image under vary-
ing levels of injected noise, we introduce timestep univer-
sal gradient updating. In essence, we calculate and update
the adversarial sample while taking into account different
levels of injected noise simultaneously. The proposed im-
munization aims to disrupt the image in a way that prevents
the time-conditioned denoising U-net from functioning ef-
fectively across different timesteps. Specifically, we gen-
erate the perturbation in an update process by minimizing
the attention-suppressing loss L. In each iteration, the per-
turbation δ is computed using the gradient from the model
in different diffusion timesteps. To ensure the perturbations
remain imperceptible, we constrain our attack by limiting
the distance from the original clean sample x, so it does
not exceed the perturbation budget κ. The detailed gradient
updating algorithm is provided in Algorithm 1.

4. Experimental Results
4.1. Training Setup

In our experiments, we generate the immunization for
the images by attacking the open-source Stable Diffusion

Algorithm 1 Timestep Universal Gradient Updating

1: Input: Input image x, the focal content to immunize
ca, content mask M , perturbation budget κ, attack-
ing step size s, number of attacking steps N , diffusion
timestep T = {t1, t2, ...tj}

2: Initialize adversarial perturbation δ ← 0, and immu-
nized image xadv ← x

3: for n = 1...N do
4: Initialize all gradients: all grad← 0
5: for t in T do
6: Inject the forward noise onto the immunized

image: xt
adv ← xadv

7: Compute the attention suppressing loss:
L← ∥Att(M(xt

adv), ca)∥1
8: Compute the gradient: ∇xadv

L
9: Update the gradients:

all grad← all grad+∇xadv
L

10: end for
11: Compute the mean of the gradient values:

all grad← mean(all grad)
12: Update the adversarial perturbation:

δ ← (δ + s · sign(all grad))
δ ← clip(δ,−κ, κ)

13: Update the immunized image: xadv ← xadv − δ
14: end for
15: Return: The immunized image xadv

model V1.4 [19] hosted on the Hugging Face. We eval-
uate the performance of our semantic attack qualitatively
and quantitatively compared to two state-of-the-art attacks
proposed in [23], encoder attack and diffusion attack. The
encoder attack targets only the VAE in the stable diffusion
model, while the diffusion attack aims to target the entire
diffusion process. For a fair comparison, we set the pertur-
bation budget κ = 0.06, number of iterations N = 100 for
all attacks. For the diffusion attack and our semantic attack,
the number of diffusion timesteps T is set to 10.

4.2. Comparison on Image Inpainting

We initially assess the immunizing impact of our semantic
attack on image inpainting, addressing the malicious sce-
nario where attackers seek to preserve specific content in the
image while maliciously altering other regions. The results
are demonstrated in Figure 3. As depicted in the figure, the
immunization generated through our semantic attack dis-
rupts the model’s ability to recognize the corgi or the men
in the image. Consequently, the editing process fails to ex-
ecute accurately. In the first example, the model misinter-
prets the corgi, generating another one instead of correctly
following the prompt for the dog or cat. In the second ex-
ample, the model fails to generate the correct background or
clothes described in the prompt for the men, as the region
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Figure 3. Qualitative Results of our semantic attack compared to previous approaches [23] against image inpainting. The content to be
immunized in our semantic attack is indicated by the underlined word in the text prompt. More examples are included in Supplementary.

corresponding to men is not successfully recognized.
On the other hand, previous methods that aim to attack

the entire image may have a chance to fail in immunization
and generate results following the prompt, as the perturba-
tion can potentially be masked during the inpainting pro-
cess. In contrast, our method is effective after applying the
inpainting mask, as our focus is on distracting the attention
of the model on certain content from corresponding regions.

4.3. Comparison on Image Editing

We simulate another scenario of malicious editing where
attackers alter specific contents in our images using image-
to-image editing, and assess the efficacy of our proposed
method against such vicious editing. Upon scrutinizing the
editing outcomes depicted in Figure 4, it is evident that the
dissimilarity between the editing results after our semantic
attack and the original editing attempt is pronounced, espe-
cially in the area that contains our concerned content, im-
plying the content of our concern is successfully protected.
Notably, our attack retains its effectiveness even when the
content indicated in the attack is not explicitly present in

the editing prompt. It stems from our attack strategy, which
distracts the attention of the model on certain content in the
image, disrupting its overall understanding and resulting in
editing outcomes with a structural disparity.

We then quantitatively evaluate the performance by as-
sessing the image quality of the edited results, measuring
the dissimilarity between the immunized editing outcomes
and the original editing attempts. Since there is no public
dataset for evaluating the efficacy of image immunization,
we adopt experimental settings similar to [23]. To be spe-
cific, we first generate 150 images featuring 3 distinct ob-
jects using the diffusion model. For each object, we create
2 editing prompts corresponding to two malicious editing
scenarios: altering specific content in the image or manipu-
lating other regions2. The editing results using Stable Dif-
fusion V1.4 and V2.0 according to the editing prompts are
reported by averaging the editing results over 20 random
seeds. The quantitative comparison of the image quality as-
sessment, highlighting the disparities between the original

2More details of the evaluation datasets are reported in Supplementary.
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Figure 4. Qualitative comparison of our semantic attack to previous approaches [23] against image editing [13]. The content to be
immunized in our semantic attack is indicated by the underlined word in the text prompt. More examples are included in Supplementary.

Metrics
Edit Model Stable Diffusion V1.4 Stable Diffusion V2.0

Encoder Attack Diffusion Attack Ours Encoder Attack Diffusion Attack Ours

PSNR ↓ 18.8437 18.2617 15.1487 18.5955 19.3797 18.0589
SSIM [34] ↓ 0.6318 0.6504 0.4470 0.6045 0.6440 0.4719
VIFp [24] ↓ 0.2118 0.2656 0.1462 0.1618 0.1832 0.1008
FSIM [41] ↓ 0.7757 0.7693 0.6584 0.7453 0.7794 0.7313
LPIPS [42] ↑ 0.4131 0.4056 0.5901 0.5799 0.4869 0.6019

Table 1. Quantitative comparison of image quality assessment. The arrows next to the metrics indicate the decrease in image similarity
between the editing outcomes after immunization and the original editing attempt.

editing attempt and the editing outcomes after immuniza-
tion, is presented in Table 1. The results indicate that our
semantic attack outperforms the baseline attacks across var-
ious evaluation metrics. Notably, our attack excels in met-
rics related to visual quality as perceived by the human eye
such as SSIM, VIFp, and LPIPS, showcasing a significant
improvement compared to the baseline. It suggests that our
attack results in editing outcomes that are visibly different
from the original editing attempts, making them discernible
to humans and effectively protecting the image.
4.4. Comparison on Memory Efficiency

Figure 6 illustrates the comparison of GPU memory con-
sumption between our attack and the diffusion attack. The
x-axis represents the number of diffusion timesteps in the
attacked model, with a higher number indicating a stronger
attack. While both attacks target the diffusion model, the
diffusion attack aims to compromise the full diffusion pro-

cess, and our attack breaks down the process into different
denoising steps. As depicted in the figure, GPU memory
requirements for the diffusion attack scale proportionally
with the number of diffusion timesteps due to the extensive
gradients involved in the entire diffusion process. In con-
trast, the memory cost of our attack barely scales up even
with multiple diffusion steps to attack. As the backpropaga-
tion path is now reduced to the denoising model of a single
timestep instead of multiple steps, our attack can achieve
stronger immunization with lower memory cost.

4.5. Immunity against More Image Editing Ap-
proaches

Recently, advanced approaches have been proposed to en-
hance real-image editing using diffusion models [4, 14, 30].
We conduct experiments to examine if our semantic attack
remains effective against advanced editing techniques. Fig-
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Figure 5. Qualitative results of our semantic attack against state-of-the-art image editing approaches. The content to be immunized in our
semantic attack is indicated by the underlined word in the text prompt. More results are included in Supplementary.

Figure 6. Comparison on GPU memory consumption when attack-
ing the model with different numbers of diffusion timesteps.

ure 5 presents the results of our experiments. The edit-
ing results undergo significant disruption after immuniza-
tion through our semantic attack. Notably, null-text inver-
sion [14] results are severely impacted, given their reliance
on accurate attention maps for the editing object. In con-
trast, EDICT [30] generates a nullifying effect on the edit-
ing of immunized images. One possible explanation is that
EDICT seeks an exact inversion of a real image leveraging
the noises predicted by the denoising U-net. Our attack on
the denoising U-net may induce a failed inversion, render-
ing the forward diffusion process in editing ineffective and
nullifying the resulting edits.

5. Limitation
One potential limitation of our approach lies in its potential
ineffectiveness following noise purification applied to the

immunized image. Malicious attackers may nullify the im-
pact of the perturbation through blurring or JPEG compres-
sion. Nevertheless, various approaches for creating robust
perturbations can be integrated into our approach, mitigat-
ing this limitation by considering the impact of blurring or
compression during perturbation generation [5, 25, 26].

6. Conclusion
We propose semantic attack to safeguard images against
malicious editing using T2I diffusion models. Our method
disrupts the semantic knowledge of the models, proving
effective against various image inpainting and editing ap-
proaches. Moreover, we introduce timestep universal gra-
dient updating to ensure robustness across different noise
levels, discretely disrupting the full diffusion process with
a lower GPU memory load, enhancing the practicality. Ex-
periments highlight the superiority of our semantic attack in
both quantitative and qualitative evaluations. Our approach
offers a valuable defense against unauthorized diffusion-
based manipulations of digital visual content, enhancing the
integrity and reliability of images shared or stored online.
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