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Figure 1. Material Palette. We introduce the task of material extraction from a single real-world image without any prior knowledge.
Given an image as input (left and right), our method extracts Physically-Based Rendering (PBR) materials from input regions, which are
either provided by a user (right) or output of a segmenter such as SAM [25] (left). The extracted Spatially Varying BRDF (SVBRDFs)
encode material intrinsics (Albedo\Normal\Roughness). These can be reused for realistic material editing of 3D scenes (center).

Abstract

Physically-Based Rendering (PBR) is key to modeling
the interaction between light and materials, and finds exten-
sive applications across computer graphics domains. How-
ever, acquiring PBR materials is costly and requires special
apparatus. In this paper, we propose a method to extract
PBR materials from a single real-world image. We do so
in two steps: first, we map regions of the image to mate-
rial concept tokens using a diffusion model, allowing the
sampling of texture images resembling each material in the
scene. Second, we leverage a separate network to decom-
pose the generated textures into spatially varying BRDFs
(SVBRDFs), offering us readily usable materials for ren-
dering applications. Our approach relies on existing syn-
thetic material libraries with SVBRDF ground truth. It
exploits a diffusion-generated RGB texture dataset to al-
low generalization to new samples using unsupervised do-
main adaptation (UDA). Our contributions are thoroughly
evaluated on synthetic and real-world datasets. We fur-
ther demonstrate the applicability of our method for editing
3D scenes with materials estimated from real photographs.
Along with video, we share code and models as open-source
on the project page: https://github.com/astra-
vision/MaterialPalette

1. Introduction
Whether it is a soft blanket, a rugged carpet, or a crumbling
stone, humans can identify materials from a photograph.
Besides geometry understanding, this ability derives from
our sensing of how light interacts with materials, allowing
us to identify the substance at stake without even touching
it. In sciences, this has pushed research in spectrophotom-
etry [18] or light sensing [4], while in the arts Vermeers
and Caravaggio, among others, have used this long stand-
ing observation to convey the feeling of materials in their
paintings. Modern CG artists also deploy significant ef-
forts to mimic realistic light-material interaction, through
the design of Physically-Based Rendering (PBR) materials.
While many libraries of material assets exist, no dataset can
capture the true variety of real-world materials. What is
more, capturing real-world materials is still a complex en-
deavor requiring special apparatus [2]. In many scenarios,
however, one may wish to estimate a material from an RGB
image, for example, to capture a unique marble stone during
a trip or the fur of a wild animal from a souvenir photo.

Hence, we formulate the novel task of extracting PBR
materials from a single real-world image, as shown in
Fig. 1. Given a set of regions, our method solves this task by
generating corresponding textures along with their Spatially
Varying BRDFs (SVBRDFs) without a priori knowledge
about the capturing viewpoint, scene geometry or lighting.
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This sets our work aside from the literature. We coined our
method Material Palette because, just like a painter would
create their own color mix, one can create their palette of
materials from their own photos (Fig. 1, left and right).
Moreover, extracted materials are readily usable for CG ap-
plications such as 3D renderings (Fig. 1, middle).

There are major challenges in the estimation of PBR
materials from just one RGB image, since single-view de-
composition is highly ill-posed [9]. To address these hur-
dles, we rely on recent advances in text-to-image genera-
tion [38, 44, 46] to disentangle the specific material appear-
ance from the scene geometry and imaging conditions, al-
lowing us to generate close-up tileable RGB textures of the
materials in the scene. We further extract the PBR intrinsics
of these diffusion-generated images, with a domain adapta-
tion strategy that benefits from a novel synthetic dataset.
Experiments show that Material Palette outputs convinc-
ing results and performs better than baselines. The ex-
tracted materials closely resemble their real-world counter-
parts, which makes them usable for 3D scene editing.
We contribute in the following ways:
• We formulate the novel challenging task of material ex-

traction from a single real-world image.
• We introduce Material Palette, a method to extract mate-

rials within an image, operating in either a user-assisted
or fully automated mode (Sec. 3.4).

• We show how a finetuned text-to-image diffusion model
can generate realistic tileable texture images (Sec. 3.2)
suitable for SVBRDF estimation (Sec. 3.3).

• We provide a non-trivial evaluation pipeline to assess the
quality of extracted PBR materials along with a novel
prompt-generated dataset named TexSD. Experiments
show our materials are close to those of real material
datasets and readily usable for 3D editing.

2. Related works
To the best of our knowledge, we are the first to address
end-to-end extraction of multiple materials from single real-
world images, but we cover literature connected to our task.

Single-image intrinsics decomposition. Long after the
pioneering work of [21], deep networks were leveraged
for decomposition, exploiting their great pixel-wise esti-
mation capabilities. Most early works focused on object-
centric scenes with Lambertian assumption [54], user inter-
action [32], or scene layers [23]. To decompose in-the-wild
objects, symmetry [59] or cross-instance [36] constraints
are applied, while [24] requires the 3D mesh [24]. Holis-
tic scene decomposition was addressed splitting albedo and
shading [3, 29, 37], also with the support of image-to-image
translation [33], or inverse rendering [52]. To account for
spatially-varying lighting, some use mixture of illumina-
tions or SVBRDF [3, 16, 30, 31, 65]. Notably, many of

these works rely on estimated light sources and are designed
for either indoor or outdoor scenes. Additionally, they cap-
ture the intrinsics of a scene image without distinguishing
between the materials present. We instead wish to extract
the intrinsics of dominant materials.

Material and texture extraction. Typical material cap-
ture requires expensive multi-view [2] or polarized [11]
apparatus. Many use synthetic data to train single-view
SVBRDF estimation networks [9], often coupled with ad-
ditional single-view data [15, 35] or custom training strate-
gies [10, 27, 55]. Importantly, all works mentioned require
orthogonal close-up views of the materials which is imprac-
tical for real scenes. UMat [45] uses a single image ac-
quired with a flatbed scanner. PhotoScene [62] is the clos-
est to our work, but it requires CAD inputs and it is lim-
ited to a set of synthetic material graphs. Instead, we pro-
pose a single-image method targeting real-world materials.
TexSynth [12] provides a guided texture editing method but
does not model materials explicitly.
A connected field is texture extraction from real-world im-
ages. Note that while materials model light interaction, tex-
tures only describe the spatial arrangement of colors. A
common strategy is to cluster the image textures and ex-
tend them to full resolution [28, 48] or apply dataset distil-
lation [7]. While we inspire from texture extraction meth-
ods, our task differs drastically as we seek to estimate the
full SVBRDF – not only the color.

Text-to-image generative models. Seminal works for
text-to-image generations exploited conditional generative
networks, allowing image synthesis in constrained scenar-
ios only [61, 63, 66]. Instead, training on billions of sam-
ples has been proven effective in generalizing on a wide
range of prompts [43, 44]. To this extent, diffusion mod-
els are exploited for their stability at scale [38, 44, 46, 50],
although adversarial-based methods are also used [51]. Re-
cently, MatFuse [57] and ControlMat [56] adopted diffusion
processes for material generation. We get inspiration from
them while avoiding long training times.

3. Material Palette
Our method extracts PBR materials from regions of a real-
world image. Different from approaches relying on close-
up captures [9, 35] or dedicated hardware [2], the problem is
more challenging when presented with an in-the-wild image
(Sec. 3.1) with unknown lighting and geometry. We build
on advances in vision-language models to achieve this goal.

Given an input image I and some input regions
{R1, · · · ,RN}, Material Palette extracts a set of corre-
sponding materials SVBRDF {M1, · · · ,MN}. Fig. 2 il-
lustrates the complete pipeline. For each region, we ex-
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Figure 2. Material Palette pipeline. From a single image I (left) our method extracts the SVBRDF of dominant materials (right). Consid-
ering a set of regions {R1, · · · ,RN} from a user or a segmenter (Sec. 3.4), we process each region Ri separately following two steps. In

(Sec. 3.2), we finetune Stable Diffusion [46] on crops of the region PC to learn a concept S∗, which is later used to generate a texture im-
age PSD resembling PC. Then in (Sec. 3.3), these patches are decomposed into SVBRDF intrinsics maps (Albedo, Normal, Roughness)
using a multi-task network. Finally, the output is the palette of extracted materials {M1, · · · ,MN} corresponding to input regions.

Multi view training Single view training

Image A N R A N R

Figure 3. Decomposition with known illumination. Training on
ACG [1] we note that even with known lighting, single-view leads
to degenerated intrinsics (A,N,R) due to viewpoint ambiguities.

tract a texture approximating its material appearance us-
ing Stable Diffusion [46] (Sec. 3.2) . Then, we rely on
a domain-adaptive SVBRDF decomposition using our dif-
fusion prompt-generated samples for generalizing to the ex-
tracted textures (Sec. 3.3). While our pipeline can rely on
user inputs to define the image regions, we can also query
any off-the-shelf segmenter (Sec. 3.4).

3.1. Problem statement

Considering a typical intrinsics decomposition, an image
P with known illumination can be approximated as the
result of a rendering operation ρ̃(.) from SVBRDF maps
M̃ = {Ã, Ñ , R̃}, being pixel-wise Albedo, Normals, and
Roughness, respectively. This writes: P = ρ̃(M̃). Our
goal is to learn the inverse rendering process with a neural
network f to predict M̃ from P . In details:

f(P ) = M = {A,N,R} ∼= M̃, (1)

where M̃ is the ground truth SVBRDF. A dataset with such
labels is obtainable with expensive procedural generation
of top-view materials or acquisitions in controlled scenar-
ios [1]. We can train f , by rendering multiple views with
known illuminations ρ̃1...n, and enforcing both a regression
loss Lreg towards the ground truth maps and a multi-view

rendering loss Lren on the n renderings [19]:

Lreg=||M − M̃ ||1, Lren=

n∑
i=1

||ρ̃i(M)− ρ̃i(M̃)||1 . (2)

After training, f can be used to estimate M from unseen
images with unknown SVBRDF (Fig. 3, multi-view). How-
ever, in our scenario we wish to estimate M from specific
regions of an in-the-wild image with variable illumination
and geometry, thus being shifted w.r.t. the training distribu-
tion of materials datasets. Besides, even assuming known
illumination, a single view is ambiguous for intrinsics de-
composition (Fig. 3, single-view).

Without any geometry or illumination priors, we tackle
the problem per region by extracting tileable textures which
are then decomposed into SVBRDF (Sec. 3.2) while ac-
counting for the domain gap (Sec. 3.3).

3.2. Tileable texture extraction

Given an image I and a material region R, a naive ap-
proach to disentangle the appearance from the scene geome-
try/lighting would be to classify the material in R and use its
label to generate patches with a text-to-image network [46].
This would however fail to capture the fine-grained char-
acteristics of the material in R. Considering for example
the picture of a rundown house in Fig. 1 (right), the label
“brick” does not fully capture the intricate appearance of
unaligned and weathered stones. Indeed, a mere classifica-
tion of the material fails to encompass the complexity of the
texture and its unique appearance.

We formulate the problem as texture extraction from a
region R, thus seeking to remove geometric distortion and
lighting in R by generating a flat texture image which we
further decompose. To do so, we build upon text-to-image
models [46], exploiting their capabilities for disentangling
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Figure 4. SVBRDF Unsupervised Domain Adaptation. We
train a decomposition network f on labeled SVBRDF materials
S and unlabeled target data T from our novel TexSD dataset. Ul-
timately, T reduces the domain gap between the SVBRDF dataset
and the real domain, i.e., patches generated from our extraction
method (cf. Sec. 3.2). We enforce both regression and rendering
losses on S and T using pseudo-maps M̂ extracted by the source-
only model fS (top). The final adapted model is denoted fT .

semantics. Essentially, we finetune a text-to-image diffu-
sion model [49] to encode the material depicted in R as a
token. This allows us to generate a resembling tileable tex-
ture at any arbitrary resolution.

During finetuning ( in Fig. 2), we extract crops PC
from R, utilizing them to map the material to a concept to-
ken S∗. The aim is for S∗ to accurately describe the appear-
ance of the specific material in R, more faithfully than when
using a class name. In practice, we first finetune Stable Dif-
fusion [46] and learn S∗ [22, 49] using a single prompt tem-
plate, PromptTrain=“an object with S∗ texture”. Note,
that the latter includes no information about the material
class, removing needs for material labeling.

During inference ( in Fig. 2), we rely on different
prompts PromptsGen chosen to enforce a texture-like ap-
pearance on a planar surface, such as “realistic S∗ texture
in top view”. The generative nature of the process lets us
generate not only one but a set of multiple textures from
S∗, all resembling the material in R. We rely on minimum
LPIPS [64] w.r.t. crops of R to select the ad-hoc texture
PSD. We later detail the effect of prompts on the acquisition
of S∗ and generation of textures (Sec. 4.5).

Additionally, we follow ControlMat [56] and adopt noise
unrolling at inference to generate tileable textures. Differ-
ent from ControlMat though, we are not conditioned on an
input image at inference, but rather on S∗ which we can
leverage to generate textures at any resolution.

3.3. SVBRDF estimation

We now seek to decompose each generated RGB-
only texture from PSD into intrinsics M = {A,R,N}.

From Sec. 3.1, a decomposition network f can be trained on
a SVBRDF dataset and used on our generated textures PSD.
Although these are much closer, than R, to actual render-
ings of SVBRDF datasets1, f still suffers from a distribution
shift. We address this problem as an unsupervised domain
adaptation (UDA) S7→T where the source domain S con-
sists of materials with SVBRDF labels, and the target do-
main T is composed of diffusion-generated RGB textures.

Source training. We train our source model fS by enforc-
ing a reconstruction loss on ground truth maps M̃ and a
multi-view rendering loss with 9 lighting configurations2,
denoted ρ1...9. Explicitly, we optimize fS by minimizing
Lreg and Lren defined in Eq. (2) with:

λLreg(M, M̃) + Lren(M,M̃) (3)

where M = fS(P̃ ) and P̃ the rendering of M̃ with a ran-
dom lighting ρrand. Ground truth maps M̃ ∈ S are obtained
from any SVBRDF library such as ACG [1].

TexSD. To bridge the gap with SVBRDF libraries, we
first generate training material textures in the target domain
by prompting the text-to-image model with PromptsGen,
e.g., “realistic Sc texture in top view”, replacing Sc with
a class name. Notably, we do not rely on finetuning, but
instead only exploit the text-to-image capabilities of large
diffusion models and their innate knowledge of material
classes. This allows us to construct a dataset, named TexSD,
of 9,000 textures generated from a set of 130 classes derived
from ACG and ChatGPT proposals [39]. A schematic view
is in Fig. 2 (block ‘TexSD’), and details are in the supple-
mentary. Crucially, despite the generation of multiple im-
ages per class, these texture images are not multiple views
of the same material instance. They are instead single-view
variations within a class.

Adaptation. Equipped with TexSD as target domain T ,
we overcome the ill-posed single-view training (cf. Fig. 3)
drawing inspiration from pseudo-labels [26]. We extract
pseudo-decomposition maps M̂ = {Â, N̂ , R̂} for all tex-
tures images P̃SD ∈ TexSD by processing them with our
source model fS . This enables pseudo multi-view training
on T with only single view images.

Hence, we follow Eq. (3) to train on S with ground truth
M̃ , then finetune concurrently on S + T , using pseudo-
labels M̂ for T . An illustration of the training process is
shown in Fig. 4. In both stages, SVBRDF inputs are ren-
dered with random lighting conditions ρrand to encourage
invariance and robustness. At inference, we use fT to infer
the SVBRDF of PSD, leading to material maps MSD.

1By construction, PSD textures should be geometry- and lighting-free.
2Light configurations are defined as angles (α, ϕ) on the upper hemi-

sphere, with α the light angle and ϕ the viewing angle. Following [9], we
sample 6 symmetrical lighting/viewing angles to encourage specular and 3
uniformly sampled lighting/viewing angles to cover the parameter space.
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3.4. Pipeline automation

Our pipeline is readily usable to extract materials from any
region R of a real-world image. While 3D applications may
benefit from user interaction to define R, we also comple-
ment our pipeline with full automation.

To do so, we formalize the problem of defining regions
{R1, · · · ,RN} on real-world images as a 2D segmentation
task. We integrate two segmentation models in our pipeline:
the Segment Anything Model (SAM) [25], a large-scale in-
stance segmentation model, and Materialistic [53], a mate-
rial selection method. In Sec. 4.4, we show how all of these
region proposals lead to accurate material extractions.

4. Experiments
We study the performance of Material Palette along four
main axes: i) Measuring the quality of our generated tex-
tures with respect to textures scraping techniques (Sec. 4.2);
ii) Quantifying our SVBRDF adaptation scheme on real ma-
terial textures (Sec. 4.3); iii) Evaluating the quality of our
extracted materials end-to-end (Sec. 4.4); iv) Through ex-
haustive rendering of 3D scenes with our materials. We also
ablate our method in Sec. 4.5 and demonstrate the usage of
our Material Palette for 3D editing in Sec. 4.6. Please refer
to the demo video on the project page for better evaluation.

4.1. Experimental details

Networks. We use Stable Diffusion [46] v1.5 for tex-
ture extraction, training a LoRA [22] Dreambooth [49] for
learning S∗. Optimization times take around 3-5 min per
learned S∗ on a Tesla V100-16GB. When learning S∗,
PromptTrain is set to “an object with S∗ texture” while
for inference it is chosen randomly among PromptsGen
(see Fig. 10). To ensure tileability and high resolution gen-
eration, we roll the latent tensor on both spatial axes by
a random amount at every timestep of the diffusion pro-
cess [56]. We apply Poisson solving [40] to remove seams
remaining on the borders. We directly sample textures up to
1024px, while for higher resolutions we batch-decode the
latent code and blend overlapping patches using a weighted
average. For f , we use a multi-head CNN [34] with U-
Net [47], ResNet-101 [20] backbone, and custom decoders
with alternating upsample-conv layers.
Public datasets. We leverage three SVBRDF libraries
(AmbientCG [1], PolyHaven [41], CGBookcase [8]) and
one material segmentation dataset (OpenSurfaces [5]).
AmbientCG (ACG) contains 2000 high-resolution PBR ma-
terials obtained from real-world captures with special ap-
paratus, procedural generation, or image approximation.
It includes around 50 material classes. We use the high-
resolution 2k textures from ACG to train all source models.
PolyHaven (PH) and CGBookcase (CGB) are smaller li-
braries composed of 320 materials each. We use them as

Patch-based Region-based

Image Patch DeepTex[17]Quilting [13] PSGAN [6] Region Li et al. [28] Ours (2048x2048)

Figure 5. Textures extraction. We compare texture extracted
from natural images with 4 patch-based or region-based baselines.
Differently from baselines, our method is based on a learned con-
cept S∗ which, when used for generating samples, corrects ar-
tifacts, is not limited to a fixed resolution and is fully tileable,
resulting in homogeneous textures. For ease of comparison, we
show outputs at 2048x2048 along a x2 and x4 zoom. Images
are downscaled for visualization purposes.

evaluating sets to validate our adaptation method.
OpenSurfaces (OS) is an image dataset including dense
material annotations. We use 14 overlapping classes with
ACG and use a subset for end-to-end evaluation.
TexSD dataset. We introduce a new dataset used for
adaptation (Sec. 3.3). It is obtained by prompting Stable
Diffusion [46] with PromptsGen and 130 class names and
totals 9,000 1K textures. Details in the supplementary.

4.2. Texture extraction

We showcase our text-to-image texture extraction (Sec. 3.2)
and existing techniques in Fig. 5. We compare qualita-
tively with [28] while also providing GAN-based base-
lines [6], methods inspired by style transfer [17] or image
quilting [14]. For a fair comparison, we show outputs from
our method using the same regions as [28].
Even though [28] outperforms older methods, it presents
artifacts (last two rows) making images unsuitable for ma-
terial extraction. Moreover, the extracted textures are non-
tileable and entangle geometry and lighting. In particular,
in the second row, the texture of [28] replicates the shading
of the input coral image. Our method dramatically differs as
it is able to map input images to plausible material textures,
removing geometry and lighting while remaining devoid of
artifacts. Importantly, we can generate any variations of
tileable samples, at any resolution. Ultimately, this shows
the inadequacy of prior extraction methods for extracting
tileable high-resolution texture patches suitable for decom-
position and rendering purposes.

4.3. SVBRDF decomposition

We now focus on our proposed UDA pipeline for decompo-
sition (Sec. 3.3). Since our TexSD dataset does not come
with associated SVBRDF ground truths, we rather eval-
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MSE (10e1) ↓ SSIM ↑ ∆% ↑
method DA A N R A N R ANR

PH
ID

Deep Materials* [9] 0.264 0.380 0.453 0.379 0.235 0.358
Source-only 0.083 0.300 0.475 0.610 0.304 0.458 ↱

SurfaceNet [55] ✓ 0.071 0.298 0.427 0.626 0.304 0.472 +5.18
ours ✓ 0.069 0.291 0.443 0.630 0.309 0.476 +5.87

C
G

B
ID

Deep Materials* [9] 0.590 0.465 1.940 0.392 0.228 0.346
Source-only 0.098 0.221 0.555 0.662 0.437 0.476 ↱

SurfaceNet [55] ✓ 0.101 0.230 0.615 0.657 0.445 0.471 -3.00
ours ✓ 0.084 0.219 0.588 0.669 0.457 0.482 +2.62

PH
O

O
D

Deep Materials* [9] 0.264 0.380 0.453 0.379 0.235 0.358
Source-only 0.065 0.247 0.439 0.608 0.284 0.518 ↱

SurfaceNet [55] ✓ 0.053 0.250 0.415 0.608 0.283 0.524 +3.94
ours ✓ 0.053 0.246 0.409 0.618 0.288 0.531 +5.24

* Note that Deep Materials [9] is trained on an in-house dataset.

Table 1. DA evaluation. Performances on In-Distribution (ID,
top) and Out-of-Distribution (OOD, bottom). ∆ measures the rel-
ative performance over {A,N,R} w.r.t. the ACG-only model. DA
refers to methods using domain adaptation strategies. Our adapta-
tion succeeds at preserving generalization abilities on OOD sam-
ples, while SurfaceNet [55] has slightly lower gains on OOD.

Source-only (ACG) Ours ACG 7→ SD

PSD A N R 3D A N R 3D

Figure 6. Qualitative results. Comparison between Source-only
training (ACG) and our (ACG 7→ SD) adaptation on unseen SD
samples. We notice that Source-only overestimates N and R and
exhibits color shift in A. This results in a lower-quality 3D render.

uate on two additional S7→T scenarios: ACG 7→PH and
ACG 7→CGB. This allows us to measure the adaptation ef-
fectiveness on the target set T w.r.t. ground truth anno-
tations. We report standard metrics: Mean Squared Error
(MSE ↓) and Structural Similarity Index (SSIM ↑) [58]. For
a refined comparison, we evaluate common classes in S and
T as In-Distribution (ID), resulting in 53 and 58 materials
for PH and CGB, respectively.

We propose three baselines. First, we evaluate Deep Ma-
terials [9] as an off-the-shelf decomposition network. We
also compare with an ACG Source-only model, serving as
lower bound. Then, we implement SurfaceNet [55] with our
architecture and finetune the original ACG model for both
SurfaceNet and ours. Results in Tab. 1 (top) suggest that we
improve consistently the decomposition. Considering the
richer PH material ontology, we also evaluate the 47 classes
of materials Out-Of-Distribution (OOD). In Tab. 1 we ob-
tain only a low-performance OOD drop (bottom) compared
to ID (top), exhibiting better generalization than baselines.

LPIPS ↓
R A N R

upper bound 0.8288 0.5915 0.7255

O
ur

s OS masks [5] 0.7959 0.5730 0.7142
SAM [25] 0.8048 0.5692 0.7096

Materialistic [53] 0.8077 0.5678 0.7169

lower bound 0.6789 0.4629 0.6843

CLIP Classif. ↑
ρ(M) top-1 top-5

ACG 47.78 85.88

O
ur

s OS masks [5] 47.03 85.12
SAM [25] 43.71 80.83

Materialistic [53] 50.89 86.82

Table 2. Resemblance to SVBRDF dataset. We evaluate our ex-
tracted materials with various regions proposals w.r.t. materials
from ACG (left). We also report zero-shot classification on ACG
(right) which measures ability of CLIP to classify the class of the
re-rendered material [42]. Both results demonstrate that our mate-
rials have coherent class-wise characteristics without class anno-
tations, irrespective of the segmenter used.

Furthermore, we show in Fig. 6 a visual comparison of
‘Ours ACG7→SD’ vs ‘source-only (ACG)’, on TexSD un-
seen samples. It shows our adaptation better decomposes
images, ultimately producing more realistic 3D renderings.

4.4. Material extraction

Given the lack of datasets combining real scenes with
region-wise materials annotations, we highlight the com-
plexity of evaluating all components of our method together.
Resemblance to SVBRDF datasets. We design exper-
iments using OpenSurfaces (OS) and ACG, allowing us to
understand if Material Palette preserves the expected char-
acteristics of a material region. Considering that datasets
class ontologies differ, we map OS and ACG classes to a
common set of 14 materials Cm, detailed in the supplemen-
tary, in which OS classes are grouped following [60].

In a first experiment, we use OS ground truth,
i.e. user-annotated material segmentation masks, as R,
and automatically extract the associated materials MSD
with Material Palette. Given that in the OS ground truth
the material class c of R is known (but not the intrinsics),
we compare the extracted MSD with those of materials of
the same class in ACG. We define an upper bound by eval-
uating the same extracted materials but on all other ma-
terials in ACG. Intuitively, if results are better than the
upper bound, we correctly mapped the appearance of a
particular material class to visual features specific to that
class. In other words, a material labeled as ‘brick’ in a
natural image should lead to extracted maps more similar
to ‘brick’ samples in ACG, than to other classes such as
‘wood’. In practice, the evaluation is conducted by sam-
pling 100 {MSD, M̃} pairs and evaluating LPIPS [64] be-
tween them (lower is better), for each of the 14 material
classes. Considering class c ∈ Cm, Ours will evaluate
{M c

SD, M̃
c} pairs ∀c ∈ Cm, while the upper bound will

have {M c
SD, M̃

c̄} where c̄ is a random c̄ ̸= c. The re-
ported LPIPS values are averaged over all classes. From
Tab. 2 (left), ‘Ours-OS Masks’ improves performance over
the upper bound, proving the effectiveness of our method.
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Materialistic SAM User-defined

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (m) (n) (o)

Figure 7. Material palettes. Results on images gathered on the internet with regions extracted using Materialistic, SAM, or user-defined.

Rendering w/ GT GT (top) / Ours (bot.) Rendering w/ Ours

P
LPIPS ↓

A N R
SD random 0.8163 0.6895 0.7441
ours (user) 0.6839 0.6254 0.5951

ACG random 0.6547 0.4508 0.5600

Figure 8. End-to-end evaluation. (top) 3D scenes are edited with
ACG materials that we extract and re-render for direct comparison.
(bottom) We quantify the extraction quality using LPIPS [64].

Additionally, we propose a lower bound, following our
pipeline but using {M c

ACG, M̃
c} where MACG are estimated

ACG maps from single-view samples of class c. We also
evaluate the impact on material extraction of our automated
pipeline using either SAM [25] or Materialistic [53] as re-
gion segmenters (Sec. 3.4). We highlight how in all se-
tups we achieve comparable performance, always improv-
ing over the lower bound.

In a second experiment, we propose an evaluation with
CLIP [42]. For each class c ∈ Cm, we generate textures
using PromptsGen (cf. Sec. 4.5) and evaluate the CLIP
ViT-B/32 zero-shot classification performance of all MSD,
rendered with random illumination. We do the same for all
ground truth M̃ in ACG. In Tab. 2 (right) we report accu-

racies averaged over Cm, comparable performance suggest
we are able to render materials similar to ACG.

Qualitative evaluation. In Fig. 7 we visualize
web-scraped images and the materials extracted by
Material Palette using regions from SAM [25], Material-
istic [53] or a User input. Each material is rendered on a 3D
sphere in Blender with a color below matching its region
color. Given the task complexity, we emphasize the quality
of the extraction for a wide variety of complex materials:
bricks, tiles, skins, fur, etc. In particular, we highlight the
quality of bricks in (a)3 as well as in (j) and (j) with a dif-
ferent segmenter, and more astonishingly in the small roof
region of (o). In natural images, materials also match ap-
pearances such as crocodile skin (i), or fur of jaguar (k),
giraffe (g) and zebra (g). Other noticeable results are the
complex mosaic pattern (c) or damaged wall (d) and (d).

End-to-end re-rendering. We also design a challeng-
ing end-to-end evaluation leveraging realistic 3D scenes.
Through automatic editin we replace some 3D objects ma-
terial with a PBR material of ACG, thus rendering a total of
174 images (2 scenes, 3 views) comprising 10 materials for
each of the 16 dominant classes of ACG. As the latter comes
with SVBRDF ground truths, we compare them with our
Material Palette extractions on the rendered images with
ad-hoc user-input regions. Visuals in Fig. 8 show the scenes
rendered with GT materials, along with our extracted ma-
terials and re-renderings. Our materials capture the main
characteristics though we observe some over/under satura-
tion, highlighting the task complexity. Moreover, we pro-
vide quantification to compare LPIPS(↓) vs ground truth
ACG for a ‘SD random’ generation prompted with the true
class compared to a random ACG material of the true class.
Notably, our materials are much closer to ACG than SD
generation, demonstrating the benefit of our pipeline over
text-to-image generation.

3Here, (a) refers to material of the red region from image (a) of Fig. 7.
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“a photo of S∗ texture” “S∗” “a photo of a S∗” “an object with S∗ texture”

■

■

■

Figure 9. Inversion ablation. We show how crop and up-
sampling sizes affect SD generation results (top). Effects of
PromptTrain for learning S∗ are also given (bottom). For all
four inversions, we provide generations using the templates ■, ■,
and ■ (cf. Fig. 10). We highlight in green the parameters used.

FID ·10−2 ↓ KID ·102 ↓ Qualitative
Prompt templates A N R A N R Paper Pavement

■ “a photo of a Sc” 1.89 1.74 1.83 2.60 6.52 3.75

■ “a Sc material” 1.83 1.60 1.67 2.38 5.42 2.74

■ “a Sc texture” 1.72 1.54 1.63 1.82 5.27 2.86

■ “realistic Sc texture in top view” 1.55 1.27 1.59 1.54 3.34 3.32

■ “high resolution realistic Sc tex-
ture in top view”

1.55 1.30 1.55 1.71 3.48 3.34

Figure 10. Prompt generation. We compare prompt templates
when generating using Sc. With more detailed prompts and the
word “texture”, we can generate images similar to ACG.

“classroom” “flat-front” “flat-back”

Figure 11. Scene editing results. We edit objects (top-left insets)
of 3D scenes using materials extracted from real-world images.

4.5. Ablations

Inversion. Considering we face objects of varying sizes,
we ablate the input size used during inversion. Fig. 9 (top)
shows the crop size cx and training input size cin (i.e., up-
sampling size). Considering that crops have a much lower

resolution than the pre-trained SD v1.5 inputs (512px), we
make two choices: (i) extract crops with largest cx pos-
sible within R, and (ii) finetune SD at a lower resolution
(cin = 256). This minimizes the input distortion while re-
taining good generation at 512px and beyond.

Additionally, we evaluate Fig. 9 (bottom) the choice
of PromptTrain when learning S∗ by showing genera-
tions using three prompts from Fig. 10. We use “an object
with S∗ texture” as PromptTrain when learning the con-
cept. This motivates our choices for learning S∗ (Sec. 3.2).
Prompt engineering. We find that choosing the correct
PromptsGen allows generating material images with the
correct appearance. We ablate in Fig. 10 (left) different
prompts by sampling 10 images per ACG class and process-
ing them with our decomposition (Sec. 3.3). We then eval-
uate FID and KID against ACG annotations and rendered
images. We find that the word “texture” improves synthe-
sis over generic templates and removes additional context
favoring top-view appearance. Furthermore, the text-to-
image generation benefits from additional adjectives. Vi-
sual comparison of generated samples is in Fig. 10 (right).

4.6. 3D Scene editing.

We consider the extracted materials for scene editing ap-
plications. In Fig. 11, we present renderings of 3D scenes,
replacing materials of objects (highlighted in insets) with
ones extracted in real-world images with Material Palette.
Note the realism of our jaguar (middle) and giraffe (right)
sofas, or the bamboo wall (left).

5. Discussion
We introduced Material Palette, a comprehensive ap-
proach designed to extract tileable, high-resolution PBR
materials from single real-world images. Although capa-
ble of extracting accurate materials, our method faces some
unexpected limitations. For example, while prior methods
may struggle to regress complex patterns we found it more
challenging to capture simple uniform materials. In such
cases, the concept collapses, leading to color artifacts, com-
mon in diffusion models. Another more predictable issue
involves illumination ambiguities – particularly noticeable
in shaded surfaces – causing inconsistent colors. Lastly,
Material Palette is capable of making some geometric cor-
rections, but cannot rectify slanted surfaces or account for
strong distortion (perspective, lenses, depth of field). Ad-
dressing these shortcomings calls for further refinements.
Material Palette shows very promising results on a newly
introduced challenging task. We hope our work sparks in-
teresting research in the same direction.
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