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Figure 1. DaReNeRF performance on dynamic 3D scenes. Our proposed direction-aware representation excels by capturing features of
dynamic scenes from six different directions—a capability beyond the reach of traditional discrete-wavelet representations, cf . sub-figure
(a). Built upon this advanced representation, our NeRF method outperforms prior work in challenging dynamic scenarios while being
competitive in terms of training time and model size, offering the best trade-off overall, cf . sub-figure (b).

Abstract

Addressing the intricate challenge of modeling and re-
rendering dynamic scenes, most recent approaches have
sought to simplify these complexities using plane-based ex-
plicit representations, overcoming the slow training time
issues associated with methods like Neural Radiance Fields
(NeRF) and implicit representations. However, the straight-
forward decomposition of 4D dynamic scenes into multi-
ple 2D plane-based representations proves insufficient for
re-rendering high-fidelity scenes with complex motions. In
response, we present a novel direction-aware representa-
tion (DaRe) approach that captures scene dynamics from
six different directions. This learned representation under-
goes an inverse dual-tree complex wavelet transformation
(DTCWT) to recover plane-based information. DaReNeRF
computes features for each space-time point by fusing vec-
tors from these recovered planes. Combining DaReNeRF
with a tiny MLP for color regression and leveraging volume
rendering in training yield state-of-the-art performance in
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Luan, and Hao Ding at United Imaging Intelligence, Burlington, MA.

novel view synthesis for complex dynamic scenes. Notably, to
address redundancy introduced by the six real and six imag-
inary direction-aware wavelet coefficients, we introduce a
trainable masking approach, mitigating storage issues with-
out significant performance decline. Moreover, DaReNeRF
maintains a 2× reduction in training time compared to prior
art while delivering superior performance.

1. Introduction

The reconstruction and re-rendering of 3D scenes from a
set of 2D images pose a fundamental challenge in com-
puter vision, holding substantial implications for a range of
AR/VR applications [36, 55, 59]. Despite recent progress in
reconstructing static scenes, significant challenges remain.
Real-world scenes are inherently dynamic, characterized by
intricate motion, further adding to the task complexity.

Recent dynamic scene reconstruction methods build on
NeRF’s implicit representation. Some utilize a large MLP
to process spatial and temporal point positions, generating
color outputs [22, 23, 54]. Others aim to disentangle scene
motion and appearance [15, 27, 38–40]. However, both ap-
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proaches face computational challenges, requiring extensive
MLP evaluations for novel view rendering. The slow training
process, often spanning days or weeks, and the reliance on
additional supervision like depth maps [23, 24, 27] limit their
widespread adoption for dynamic scene modeling. Several re-
cent studies [7, 14, 46] have proposed decomposition-based
methods to address the training time challenge. However,
relying solely on decomposition limits NeRF’s ability to
capture high-fidelity texture details.

Recent studies [42, 52, 58, 64, 66] have explored the pos-
sibility of incorporating frequency information into NeRF.
These frequency-based representations demonstrate promis-
ing performance in static-scene rendering, particularly in
recovering detailed information. However, there is limited
exploration w.r.t. the ability of these methods to scale from
static to dynamic scenes. Additionally, HexPlane [7] has
noted a significant degradation in reconstruction perfor-
mance when using wavelet coefficients as a basis. This limi-
tation is inherent to wavelets themselves, and we delve into
a detailed discussion in the following paragraph.

Traditional 2D discrete wavelet transform (DWT) em-
ploys low/high-pass real wavelets to decompose a 2D image
or grid into approximation and detail wavelet coefficients
across different scales. These coefficients offer an efficient
representation of both global and local image details. How-
ever, there are two significant drawbacks hindering the suc-
cessful application of 2D DWT-based representations to dy-
namic scenes. The first is the shift variance problem [6],
where even a small shift in the input signal significantly dis-
rupts the wavelets’ oscillation pattern. In dynamic 3D scenes,
shifts are more pronounced than in static scenarios due to
factors such as multi-object motion, camera motion, reflec-
tions, and variations in illumination. Simple DWT wavelet
representations struggle to handle such variability, yielding
poor results in dynamic regions. Another critical issue is the
poor direction selectivity [20] in DWT representations. A
2D DWT produces a checkered pattern that blends represen-
tations from ±45◦, lacking directional selectivity, which is
less effective for capturing lines and edges in images. Conse-
quently, DWT-based representations fail to adequately model
dynamic scenes, leading to results with noticeable ghosting
artifacts around moving objects as shown in Figure 1.

This paper addresses these key limitations of the discrete
wavelet transform (DWT) by introducing an efficient and
robust frequency-based representation designed to overcome
the challenges of shift variance and lack of direction selec-
tivity in modeling dynamic scenes. Inspired by the dual-tree
complex wavelet transform (DTCWT) [45], we propose a
direction-aware representation, aiming to learn features from
six distinct orientations without introducing the checker-
board pattern observed in DWT. Leveraging the properties
of complex wavelet transforms, our approach ensures shift
invariance within the representation. The proposed direction-

aware representation proves successful in modeling complex
dynamic scenes, achieving state-of-the-art performance.

Furthermore, we observe that our proposed direction-
aware representation introduces a 2d redundancy (with d = 2
for plane-based decomposition) compared to the DWT rep-
resentation, resulting in lower storage efficiency. To address
this storage challenge, we leverage a compression pipeline
originally designed for static 3D scenes and adapt it for dy-
namic scenes. This migration of the compression pipeline
proves effective in mitigating the storage constraints inherent
in the direction-aware representation, making it as memory-
efficient as recent state-of-the-art methods.

Additionally, to highlight the generalizability of our pro-
posed method (aimed at 4D scenarios), we extend its appli-
cation to modelling static 3D scenes. In this context, DaReN-
eRF demonstrates high-fidelity reconstruction performance
and efficient storage capabilities. This versatility underscores
the efficacy of our approach not only in dynamic scenes but
also in static environments. This affirms its potential as a
general representation utility across various scenarios.

In summary, our contributions are as follows:
• We are the first to leverage DTCWT in NeRF optimization,

introducing a direction-aware representation to address
the shift-variance and direction-ambiguity shortcomings
in DWT-based representations. DaReNeRF thereby out-
performs prior decomposition-based methods in modeling
complex dynamic scenes.

• We implement a trainable mask method for dynamic scene
reconstruction, effectively resolving the storage limita-
tions associated with the direction-aware representation.
This adaptation ensures that it attains comparable memory
efficiency with the current state-of-the-art methods.

• We extend our direction-aware representation to static
scene reconstruction, and experiments demonstrate that
our proposed method outperforms other state-of-the-art
approaches, achieving a superior trade-off between perfor-
mance and model size.

2. Related Work
Neural Scene Representation. NeRF [33] and its variants
[2–4, 29, 34, 37, 53, 65] show impressive results on novel
view synthesis and many other application including 3D re-
construction [21, 30, 70, 71], semantic segmentation [26, 35],
object detection [17, 61–63], generative model [8, 9, 60], and
3D content creation [11, 31, 56]. Implicit neural represen-
tation exhibit remarkable imaging quality but suffer from
slow rendering due to the numerous costly MLP evaluations
required for each pixel. Numerous spatial decomposition
methods [1, 9, 10, 13] have been proposed to address the
challenge of training speed in static scenes.

Further applying neural radiance fields to dynamic scenes
is a crucial challenge. One straightforward approach in-
volves extending a static NeRF by introducing an addi-
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tional time dimension [40] or latent code [16, 24, 27, 50].
While these methods demonstrate strong capabilities in
modeling complex real-world dynamic scenes, they face
a severely under-constrained problem that necessitates ad-
ditional supervision—e.g., depth, optical flow, and dense
observations—to achieve satisfactory results. The substan-
tial system size and weeks-long training times associated
with these approaches hinder their real-world applicabil-
ity. Another solution involves employing individual MLPs
to represent the deformation field and a canonical field
[19, 40, 47, 65, 68]. The latter field depicts a static scene,
while the former learns coordinate mappings to the canonical
space over time. Although this is an improvement over the
first approach, it still requires considerable training time.
Scene Decomposition. Recently, decomposition-based
methods [7, 14, 46] have emerged for dynamic scenes. These
approaches aim to alleviate the lengthy training times asso-
ciated with dynamic scenes while maintaining the ability to
model their complexity. They decompose a 4D scene into
plane-based representations and employ a compact MLP
to aggregate features for volumetric rendering of resulting
images. While these methods significantly reduce training
time and memory storage, they still encounter challenges in
preserving detailed texture information during rendering.

Wavelet-based representations [42, 44, 64] have garnered
significant attention for enhancing NeRF’s ability to capture
such fine texture details, owing to their capacity for recov-
ering high-fidelity signals. However, there has been limited
exploration of the potential of wavelet-based representations
for dynamic scene modeling. Applying wavelet-based rep-
resentations directly to plane-based methods can lead to
a significant performance decay, as illustrated in Figure 1.
Similar degradation is also reported by HexPlane [7], high-
lighting the inherent limitations of wavelets, namely, shift
variance and direction ambiguity. To overcome these limita-
tions and build a more effective general dynamic NeRF, we
propose a direction-aware representation, which preserves
the ability to detect detailed textures without requiring addi-
tional supervision, achieving state-of-the-art performance in
real-world dynamic scene reconstruction.

3. Method
We seek to develop a model for a dynamic scene using a
collection of posed images, each timestamped. The objective
is to fit a model capable of rendering new images at varying
poses and time stamps. Similar to D-NeRF [40], this model
assigns color and opacity to points in both space and time.
The rendering process involves differentiable volumetric
rendering along rays. Training the entire model relies on a
photometric loss function, comparing rendered images with
ground-truth images to optimize model parameters.

Our primary innovation lies in introducing a novel
direction-aware representation for dynamic scenes. This dis-

tinctive representation is coupled with the inverse dual-tree
complex wavelet transform (IDTCWT) and a compact im-
plicit multi-layer perceptron (MLP) to enable the generation
of high-fidelity novel views. Figure 2 shows an overview of
the model. Note that for simplicity, we refer to the wavelet
representation as wavelet coefficients in this section.

3.1. Dynamic Scene Decomposition
A natural dynamic scene can be represented as a 4D spatio-
temporal volume denoted as D. This 4D volume comprises
individual static 3D volume for each time step, namely
{V1, V2, ..., VT }. Directly modeling a 4D volume would en-
tail a memory complexity of O(N3TF ), where N , T , F are
spatial resolution, temporal resolution and feature size (with
F = 3 representing RGB colors). To improve the overall
performance, we propose a direction-aware representation
applied to baseline plane-based 4D volume decomposition
[7]. In such baseline, a representation of the 4D volume can
be represented as follows:

D =

R1∑
r=1

MXY
r ◦MZT

r ◦ v1r +

R2∑
r=1

MXZ
r ◦MY T

r ◦ v2r

+

R3∑
r=1

MY Z
r ◦MXT

r ◦ v3r

(1)

where each MAB
r ∈ RAB represents a learned 2D plane-

based representation with
{
(A,B) ∈ {X,Y, Z, T}2 | A ̸=

B
}

”, and vir ∈ RF are learned vectors along F axes. The
parameters R1, R2 and R3 correspond to the number of low
rank components. By defining R = R1 + R2 + R3 ≪ N ,
the model’s memory complexity can be notably reduced
from O(N3TF ) to O(RN2TF ). This reduction in memory
requirements proves advantageous for efficiently modeling
dynamic scenes while preserving computational resources.

To compute the density and appearance features of points
in space-time, the model multiplies the feature vectors ex-
tracted from paired planes (e.g., XY and ZT ), concatenates
the multiplied results into a single vector, and then multiplies
them by V RF , which stacks all vir into a 2D tensor. The point
opacities are directly queried from the density features. The
RGB color values are regressed by a compact MLP, where
the inputs are appearance features and view directions. Fi-
nally, images are synthesized via volumetric rendering. To
improve the overall performance, we apply our proposed
direction-aware representation to this baseline.

3.2. Direction-Aware Representation

Built upon plane-based 4D volume decomposition and draw-
ing inspiration from the dual-tree complex wavelet transform,
we introduce the direction-aware representation. This innova-
tive approach enables the modeling of representations from
six different directions. In contrast to the prevalent use of
2D discrete wavelet transforms (DWT), the dual tree com-
plex wavelet transform (DTCWT) [45] employs two com-
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Figure 2. Method Overview. Top: The regular DaReNeRF architecture comprises an approximation and 12 direction-aware coefficient
maps for both spatial (e.g., XY ) and spatial-temporal (e.g., ZT ) plane-based representations. To compute features of points in space-time, it
multiplies feature vectors extracted from paired planes (e.g., XY and ZT ), concatenates the multiplied results into a single vector, and
then multiplies them by learned tensor V RF for final results. RGB colors are regressed by a compact MLP, and images are synthesized via
volumetric rendering. Bottom: The trainable mask is combined with the top architecture to create a sparse DaReNeRF. Each direction-aware
representation and the approximation representation are assigned their own sparse masks. The sparse representation undergoes an inverse
dual tree complex wavelet transform to obtain plane-based spatial and spatial-temporal representations.
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Figure 3. Analysis Filter Bank, for the dual tree complex wavelet
transform.

plex wavelets as illustrated in Figure 3. Given h = [h0, h1]
and g = [g0, g1] low/high pass filter pairs for upper (real)
and lower (imaginary) filter banks, the low-pass and high-
pass complex wavelet transforms in DTCWT are denoted
as ϕ(x) = ϕh(x) + jϕg(x) and ψ(x) = ψh(x) + jψg(x).

Consequently, applying low- and high-pass complex wavelet
transforms to rows and columns of a 2D grid yields wavelet
coefficients ϕ(x)ψ(y), ψ(x)ϕ(y) and ψ(x)ψ(y). Due to fil-
ter design, the upper (real) filter and lower filter (imaginary)
satisfy the Hilbert transform, denoted as ψg(x) ≈ H(ψh(x)).
Finally, three additional wavelet coefficients, ϕ(x)ψ(y),
ψ(x)ϕ(y) and ψ(x)ψ(y), can be obtained, where ϕ and ψ
represent the complex conjugate of ϕ and ψ. From these
2D wavelet coefficients, we derive six direction-aware real
and imaginary wavelet coefficients, each with the same set
of six directions. Compared to 2D DWT, the six wavelet
coefficients align along specific directions, eliminating the
checkerboard effect, with more results in the supplementary
material.

Exploiting the properties of DTCWT, we aim for the
plane-based representation MAB

r ∈ Rm,n of the 4D vol-
ume to possess direction-aware capabilities. Here, m and
n denote the resolution of the 2D plane-based representa-
tion. To imbue each 2D plane-based representation with
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direction-aware capabilities, we introduce twelve learned
wavelet coefficients—six for the real part and six for the
imaginary part—denoted as R{WAB

i }6i=1 ∈ Rm/2l,n/2l

and I{WAB
i }6i=1 ∈ Rm/2l,n/2l , respectively. Additionally,

a learned approximation coefficient is defined as WAB
a ∈

Rm/2l−1,n/2l−1

, with l the DTCWT transformation level.
Consequently, a specific plane-based representation can be
expressed as:

MAB
r = IDTCWT ([WAB

a,r ,R{WAB
i,r }6i=1, I{WAB

i,r }6i=1])
(2)

Importantly, our representation is not only applicable for
modeling dynamic 3D scenes but is also well-suited for static
3D scenes, following a TensorRF-like [10] decomposition:

D =

R1∑
r=1

MXY
r ◦ vZr ◦ v1r +

R2∑
r=1

MXZ
r ◦ vYr ◦ v2r

+

R3∑
r=1

MY Z
r ◦ vXr ◦ v3r

(3)

In this formulation, a plane-based representation MAB
r ∈

RAB and a vector-based representation vCr ∈ RC are
employed to model a 3D volume. For static scenes, our
direction-aware representations also could be applied to rep-
resent the plane-based representations.

3.3. Sparse Representation and Model Compression

In contrast to the classical 2D discrete wavelet transform
(DWT), our direction-aware representation excels in model-
ing dynamic 3D scenes. However, it is worth noting that a
single-level dual tree complex wavelet transform (DTCWT)
necessitates six real direction-aware wavelet coefficients and
six imaginary direction-aware wavelet coefficients to impart
directional information to the plane-based representation. In
contrast, a single-level 2D DWT only has three real wavelet
coefficients, albeit with inherent direction ambiguity. To
enhance the storage efficiency of our solution, we employ
learned masks [42] for each directional wavelet coefficient,
selectively masking out less important features.

To address the 2d redundancies, where d = 2 for
the 2D DTCWT transform, we employ learned masks
R{MAB

i }6i=1 ∈ Rm/2l,n/2l , I{MAB
i }6i=1 ∈ Rm/2l,n/2l

and MAB
a ∈ Rm/2l−1,n/2l−1

for the six real wavelet co-
efficients, six imaginary wavelet coefficients and the ap-
proximation coefficients, respectively. The masked wavelet
coefficients can be denoted as:

ŴAB = sg
((

H(MAB)−sigmoid(MAB)
)
⊙WAB

)
(4)

here
{
R{MAB

i }6i=1, I{MAB
i }6i=1,MAB

a

}
∈ MAB and{

R{WAB
i }6i=1, I{WAB

i }6i=1,WAB
a

}
∈ WAB . The func-

tions sg, H and sigmoid represent the stop-gradient operator,
Heaviside step and element-wise sigmoid function, respec-
tively. The masked plane-based representation is obtained

from the masked wavelet coefficients through the equation:

M̂AB
r = IDTCWT ([ŴAB

a,r ,R{ŴAB
i,r }6i=1, I{ŴAB

i,r }6i=1])
(5)

To encourage sparsity in the generated masks, we introduce
an additional loss term Lm, defined as the sum of all masks.
We employ λm as the weight of Lm to control the sparsity
of the representation.

Following the removal of unnecessary representations
through masking, we adopt a compression strategy akin to
the one employed in masked wavelet NeRF [42], originally
designed for static scenes, to compress the sparse repre-
sentation and masks that identify non-zero elements. The
process involves converting the binary mask values to 8-bit
unsigned integers and subsequently applying run-length en-
coding (RLE). Finally, the Huffman encoding algorithm is
employed on the RLE-encoded streams to efficiently map
values with a high probability to shorter bits.

3.4. Optimization

We leverage our proposed direction-aware representation
to effectively represent 3D dynamic scenes. The model is
then optimized through a photometric loss function, which
measures the difference between rendered images and target
images. For a given point (x, y, z, t), its opacity and appear-
ance features are represented by six real and six imaginary
direction-aware representation. The final color is regressed
through a small multi-layer perceptron (MLP), taking the
appearance feature and view direction as inputs. Utilizing
the point’s opacities and colors, images are obtained through
volumetric rendering. The overall loss is expressed as:

L =
1

|R|
∑
r∈R

||C(r)− Ĉ|(r)||22+λregLreg+λmLm, (6)

with Lreg, λreg and Lm, λm the regularization loss and
mask loss with respective weights, R the set of rays, and
C(r), Ĉ(r) the rendered and ground-truth ray colors.
Regularization. For the regularization term, we employ the
total variational (TV) loss on the direction-aware representa-
tion to enforce spatio-temporal continuity.
Training Strategy. We employ the same coarse-to-fine train-
ing strategy as in [7, 10, 67], where the resolution of grids
progressively increases during training. This strategy not
only accelerates the training process but also imparts an
implicit regularization on nearby grids.
Emptiness Voxel. We maintain a small 3D voxel represen-
tation that indicates the emptiness of specific regions in the
scene, allowing us to skip points located in empty regions.
Given the typically large number of empty regions, this strat-
egy significantly aids in acceleration. To generate this voxel,
we evaluate the opacities of points across different time steps
and aggregate them into a single voxel by retaining the maxi-
mum opacities. While preserving multiple voxels for distinct
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Model Steps PSNR↑ D-SSIM↓ LPIPS↓ Training Time↓ Model Size (MB) ↓

f
l
a
m
e
-
s
a
l
m
o
n

sc
en

e Neural Volumes [28] - 22.800 0.062 0.295 -
LLFF [32] - 23.239 0.076 0.235 - -

NeRF-T [22] - 28.449 0.023 0.100 - -
DyNeRF [22] 650k 29.581 0.020 0.099 1,344h 28
HexPlane [7] 650k 29.470 0.018 0.078 12h 252
HexPlane [7] 100k 29.263 0.020 0.097 2h 252
DaReNeRF-S 100k 30.224 0.015 0.089 5h 244
DaReNeRF 100k 30.441 0.012 0.084 4.5h 1,210

al
ls

ce
ne

s
(a

ve
ra

ge
)

NeRFPlayer [48] - 30.690 0.034 0.111 6h -
HyperReel [1] - 31.100 0.036 0.096 9h -
HexPlane [7] 650k 31.705 0.014 0.075 12h 252
HexPlane [7] 100k 31.569 0.016 0.089 2h 252

K-Planes-explicit [14] 120k 30.880 - - 3.7h 580
K-Planes-hybrid 90k 31.630 - - 1.8h 310

Mix Voxels-L [51] 25k 31.340 0.019 0.096 1.3h 500
Mix Voxels-X [51] 50k 31.730 0.015 0.064 5h 500

4D-GS [57] - 31.020 - 0.150 2h 145
DaReNeRF-S 100k 32.102 0.014 0.087 5h 244
DaReNeRF 100k 32.258 0.012 0.084 4.5h 1,210

Table 1. Quantitative Comparison on Plenoptic Video Data. We present results on synthesis quality and training time (measured in GPU
hours). Following prior art, we provide both scene-specific performance (flame-salmon scene) and mean performance across all cases
from their original papers.

time intervals could potentially enhance efficiency, for the
sake of simplicity, we opt to keep only one voxel [7].

4. Experiments
We evaluate the performance of our proposed direction-
aware representation on both dynamic and static scenes,
conducting a thorough comparison with prior art. Addition-
ally, we delve into the advantages of our direction-aware
representation through ablation studies, showcasing its ro-
bustness in handling both dynamic and static scenes.

4.1. Novel View Synthesis of Dynamic Scenes

For dynamic scenes, we employ two distinct datasets with
varying settings. Each dataset presents its own challenges,
effectively addressed by our direction-aware representation.
Plenoptic Video Dataset [22] is a real-world dataset cap-
tured by a multi-view camera system using 21 GoPro cam-
eras at a resolution of 2028 × 2704 and a frame rate of
30 frames per second. Each scene consists of 19 synchro-
nized, 10-second videos, with 18 videos designated for train-
ing and one for evaluation. This dataset serves as an ideal
testbed to assess the representation ability, featuring complex
and challenging dynamic content, including highly specular,
translucent, and transparent objects, topology changes, mov-
ing self-casting shadows, fire flames, strong view-dependent
effects for moving objects, and more.

For a fair and direct comparison, we adhere to the same
training and evaluation protocols as DyNeRF [22]. Our

model is trained on a single A100 GPU, utilizing a batch size
of 4,096. We adopt identical importance sampling strategies
and hierarchical training techniques as DyNeRF, employing
a spatial grid size of 512 and a temporal grid size of 300.
The scene is placed under the normalized device coordinates
(NDC) setting, consistent with the approach outlined in [33].

Quantitative compression results with state-of-the-art
methods are presented in Table 1. We utilize measure-
ment metrics PSNR, structure dissimilarity index measure
(DSSIM) [43], and perception quality measure LPIPS [69]
to conduct a comprehensive evaluation. As demonstrated in
Table 1, leveraging the proposed direction-aware representa-
tion, both regular and sparse DaReNeRF achieve promising
results compared to the most recent state-of-the-art , with
analogous training time. This more ideal trade-off between
performance and computational requirements, compared to
prior art, is also illustrated in Figure 1.b, computed over
Plenoptic data. Figure 4 presents some novel-view results on
the Plenoptic dataset. Four small patches, each containing
detailed texture information, are selected for comparison.
DaReNeRF, equipped with the proposed direction-aware
representation, excels in reconstructing moving objects (e.g.,
dog and firing gun) and capturing better texture details (e.g.,
hair and metal rings on the apron).

D-NeRF Dataset [40] is a monocular video dataset with
360◦ observations of synthetic objects. Dynamic 3D recon-
struction from monocular video poses challenges as only one
observation is available for each timestamp. State-of-the-art
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Figure 4. Visual Comparison on Dynamic Scenes (Plenoptic Data). K-Planes and HexPlane are concurrent decomposition-based methods.
As shown in the four zoomed-in patches, our method better reconstruct fine details and captures motion. Please refer to the supplementary
material to see the figure animated.

Table 2. Quantitative Study on D-NeRF Data. Without the topo-
logical constraints of using deformation fields, DaReNeRF outper-
forms even some deformation-based methods.

Model Deform. PSNR↑ SSIM↑ LPIPS↓
D-NeRF [40] ✓ 30.50 0.95 0.07

TiNeuVox-S [12] ✓ 30.75 0.96 0.07
TiNeuVox-B [12] ✓ 32.67 0.97 0.04

4D-GS [57] ✓ 33.30 0.98 0.03

T-NeRF [40] - 29.51 0.95 0.08
HexPlane [7] - 31.04 0.97 0.04
K-Planes [14] - 31.05 0.97 -
DaReNeRF-S - 31.82 0.97 0.03
DaReNeRF - 31.95 0.97 0.03

methods for monocular video typically incorporate a defor-
mation field. However, the underlying assumption is that the
scenes undergo no topological changes, making them less
effective for real-world cases (e.g., Plenoptic dataset). Table
2 reports the rendering quality of different methods with and
without deformation fields on the D-NeRF data, DaReNeRF
outperforms all non-deformation methods, as well as some
deformation methods, e.g. D-NeRF and TiNeuVox-S [12].
The superiority of our solution on topologically-changing
scenes is further highlighted in annex.

4.2. Novel View Synthesis of Static Scenes

For static scenes, we test our proposed direction-aware
representation on NeRF synthetic [33], Neural Sparse
Voxel Fields (NSVF) [25] and LLFF [32] datasets. We use
TensoRF-192 as baseline and apply our proposed represen-
tation. We report the performance on these three datasets in
Tables 3, 4, and 5 respectively.

Across these three static datasets, our direction-aware
representation outperforms most compression-based NeRF
models with model sizes ranging from 8 to 14MB. While
our method’s model size is larger than DWT-based solutions,
it achieves comparable sparsity. For instance, with λm =
2.5× 10−11, its sparsity reaches 94%, closely aligned with

Table 3. Quantitative Comparison on NeRF Synth., with models
designed for different bit-precisions (∗ denotes a model quantized
post-training; numbers in brackets denote grid resolutions).

Precision Method Size (MB) PSNR ↑
32-bit KiloNeRF [41] ≤ 100 31.00
32-bit CCNeRF (CP) [49] 4.4 30.55
8-bit∗ NeRF [33] 1.25 31.52
8-bit cNeRF [5] 0.70 30.49
8-bit PREF [18] 9.88 31.56
8-bit∗ VM-192 [10] 17.93 32.91
8-bit∗ VM-192 (300) + DWT [42] 0.83 31.95

8-bit∗ VM-192 (300) + Ours 8.91 32.42

Table 4. Quantitative Comparison on NSVF (static scenes).

Bit Precision Model Size (MB) PSNR ↑
32-bit KiloNeRF [41] ≤ 100 33.37
8-bit∗ VM-192 [47] 17.77 36.11
8-bit∗ VM-48 [10] 4.53 34.95
8-bit∗ CP-384 [10] 0.72 33.92
8-bit∗ VM-192 (300) + DWT [42] 0.87 34.67

8-bit∗ VM-192 (300) + Ours 8.98 36.24

Table 5. Quantitative Comparison on LLFF (static scenes).

Bit Precision Model Size(MB) PSNR ↑
8-bit cNeRF [5] 0.96 26.15
8-bit∗ PREF [47] 9.34 24.50
8-bit∗ VM-96 [10] 44.72 26.66
8-bit∗ VM-48 [10] 22.40 26.46
8-bit∗ CP-384 [10] 0.64 25.51
8-bit∗ VM-96 (640) + DWT [42] 1.34 25.88

8-bit∗ VM-96 (640) + Ours 13.67 26.48

the 97% reported in the masked wavelet NeRF [42] paper.
Notably, with similar sparsity, our direction-aware method
exhibits PSNR improvements of 0.47, 1.57, and 0.60 over
DWT-based methods on the three static datasets.

Figure 5 highlights the qualitative differences between
DWT-based solutions and our proposed direction-aware
method. In static scenes, our solution excels in reconstructing
texture details compared to DWT representation, which is
less sensitive to lines and edges patterns due to shift variance
and direction ambiguity.
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Figure 5. Visual Comparison of Static Scenes on NSVF Data.
Two representative patches are selected for closer inspection. Our
method, free from the DWT limitations of shift variance and di-
rection ambiguity, achieves superior texture reconstruction perfor-
mance.

4.3. Ablations

Wavelet Function. We analyze the impact of different
wavelet functions on reconstruction quality, aiming to fa-
cilitate a comparison between our direction-aware represen-
tation and DWT wavelet. The evaluation is conducted on
NSVF data [25], where several complex wavelet functions
with the approximate half-sample delay property—Antonini,
LeGall, and two Near Symmetric filter banks (Near Sym-
metric A and Near Symmetric B)—are selected for compari-
son. Table 6 reveals that the choice of different wavelets
has minimal effect on reconstruction quality. Even the
worst-performing wavelet function outperforms the dis-
crete wavelet transform, underscoring the advantages of our
direction-aware representation.
Sparsity Analysis. We evaluate the sparsity of our direction-
aware representation by varying the sparsity level using dif-
ferent λm values on the NSVF dataset. As depicted in Table
7, our direction-aware representation consistently achieves
over 99% sparsity. This remarkable sparsity, coupled with
a model size of approximately 1MB, demonstrates the effi-
ciency of our method in modeling static scenes while outper-
forming state-of-the-art sparse representation methods.
Wavelet Levels. We investigated the impact of scene re-
construction performance across different wavelet levels,
and the results are presented in supplementary material. We
observed that increasing the wavelet level did not lead to sig-
nificant performance improvements. Conversely, we noted

Table 6. Impact of Wavelet Transform Type/Function, on recon-
struction performance, evaluated on NSVF data..

Wavelet Type Wavelet Function PSNR ↑

DWT

Haar 34.61
Coiflets 1 34.56

biorthogonal 4.4 34.67
Daubechies 4 34.44

DTCWT

Antonini 36.10
LeGall 36.14

Near Symmetric A 36.24
Near Symmetric B 36.17

Table 7. Sparsity Analysis of Direction-Aware Representation,
evaluated on NVSF data.

λm Sparsity ↑ Model Size (MB) ↓ PSNR ↑
1.0× 10−10 99.2% 1.16 MB 35.36
5.0× 10−11 97.3% 3.18 MB 35.81
2.5× 10−11 94.2% 8.98 MB 36.24

0 - 135 MB 36.34

a substantial increase in both training time and model size
with the increment of wavelet level. As a result, throughout
all experiments, we consistently set the wavelet level to 1.

5. Discussion

Limitations. Our method is limited for scenarios with ex-
tremely sparse observations, as seen in D-NeRF-like datasets.
DaReNeRF does not incorporate a deformation field into the
model, lacking a robust information-sharing mechanism to
learn 3D structures from very sparse views. Another limi-
tation of our proposed direction-aware representation is its
lower compactness compared to DWT representation, pre-
venting DaReNeRF from achieving extremely small model
sizes, such as less than 1MB on static scene. Exploring more
compact methods to construct direction-aware representa-
tions would be an interesting direction for future research.
Conclusion. We introduced a novel direction-aware repre-
sentation capable of effectively capturing information from
six different directions. The shift-invariant and direction-
selective nature of our proposed representation enables the
high-fidelity reconstruction of challenging dynamic scenes
without the need for prior knowledge about the scene dy-
namics. Despite introducing some storage redundancy, we
mitigate this by incorporating trainable masks for both static
and dynamic scenes, resulting in a model size comparable
to recent methods. We believe that this simple yet effective
representation has the potential to simplify and streamline
dynamic NeRFs, providing a more accessible and efficient
solution for complex scene modeling.
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