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Abstract

3D instance segmentation (3DIS) is a crucial task, but
point-level annotations are tedious in fully supervised set-
tings. Thus, using bounding boxes (bboxes) as annota-
tions has shown great potential. The current mainstream
approach is a two-step process, involving the generation
of pseudo-labels from box annotations and the training of
a 3DIS network with the pseudo-labels. However, due
to the presence of intersections among bboxes, not every
point has a determined instance label, especially in over-
lapping areas. To generate higher quality pseudo-labels
and achieve more precise weakly supervised 3DIS results,
we propose the Box-Supervised Simulation-assisted Mean
Teacher for 3D Instance Segmentation (BSNet), which de-
vises a novel pseudo-labeler called Simulation-assisted
Transformer. The labeler consists of two main components.
The first is Simulation-assisted Mean Teacher, which intro-
duces Mean Teacher for the first time in this task and con-
structs simulated samples to assist the labeler in acquir-
ing prior knowledge about overlapping areas. To better
model local-global structure, we also propose Local-Global
Aware Attention as the decoder for teacher and student la-
belers. Extensive experiments conducted on the ScanNetV2
and S3DIS datasets verify the superiority of our designs.
Code is available at https://github.com/peoplelu/BSNet.

1. Introduction
3D instance segmentation is a fundamental task in 3D scene
understanding, primarily focused on predicting masks and
categories for every foreground object within a scene. Cur-
rent instance segmentation methods are mainly in fully su-
pervised settings [25, 30, 34, 36, 37] and achieve commend-
able results. However, the time-consuming nature of point-
level annotations poses a significant challenge. In contrast,
annotating instances with 3D bboxes (object-level) is no-
tably easier, requiring only the annotations for center points
and dimensions (length, width, height). Nevertheless, a no-
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Figure 1. (a) The visualization of an overlapping sample. (b) The
proposed Simulation-assisted Mean Teacher helps the labeler ac-
quire prior knowledge from simulated samples. (c) Our method
improves local-global structure modeling of overlapping samples
to generate better pseudo-labels (especially in yellow circles).

table limitation stems from the use of bboxes, which cannot
capture the detailed shape or geometry of objects. Conse-
quently, bridging the gap between object-level and point-
level annotations remains a challenge.

To solve the above challenge, existing methods [8, 11,
35] conduct several explorations. Box2Mask [8] parame-
terizes bboxes and utilizes them as labels. However, due to
bbox overlap, some point clouds may exist within multiple
bboxes, introducing ambiguity in point-object assignments.
As illustrated in Figure 1(a), instance labels for point clouds
in non-overlapping areas are determined as they only belong
to one bbox. In contrast, overlapping areas are governed by
two different bboxes, resulting in indeterminate instance la-
bels. Consequently, the point-wise predicted bboxes cannot
be reliably used for clustering. To better address the ambi-
guity in overlapping areas, WISGP [11] employs straight-
forward heuristics based on local structure modeling. Con-
cretely, for each indeterminate point, WISGP selects the
most common label from its neighboring points as its la-
bel. On the other hand, Gapro [29] uses Gaussian Process
(GP) [35] to train individual overlapping samples, model-
ing global structure by fitting the similarity relationships
between all points into a Gaussian distribution. Then Gapro
computes posterior probability to achieve binary classifica-
tion for overlapping areas.
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Based on the preceding discussion, we identify two key
issues in bbox-supervised 3DIS: 1) How to generate labels
for overlapping areas? Using Mean Teacher [3, 10, 20, 48]
to generate and continuously optimize pseudo-labels for
overlapping areas is an effective way. This paradigm al-
lows for the online update of pseudo-labels during the train-
ing process, continuously transferring knowledge from a
teacher network to a student network. Besides, the teacher
network employs Exponential Moving Average (EMA) to
integrate information from historical students, providing
more stable learning targets for the student network. How-
ever, given that non-overlapping areas contain a single ob-
ject with a clear structure, while overlapping areas involve
two intertwined objects, there is a significant disparity in
complexity between them. Hence, it is difficult to infer ac-
curate pseudo-labels for overlapping areas solely according
to non-overlapping area labels. To tackle this issue, given
the abundance of non-overlapping bboxes in the dataset
with definite labels, we can construct simulated overlapping
samples using these bboxes. As illustrated in Figure 1(b),
we can train a base model on these simulated samples, and
transfer this model to real datasets. By this way, the infor-
mation loss resulting from the absence of labels in overlap-
ping areas can be compensated and higher quality pseudo-
labels can be predicted. 2) How to better model structure of
overlapping samples? As illustrated in Figure 1(c), current
methods [11, 29] either tend to focus on local structure mod-
eling, bringing dedicated local structure representations like
WISGP [11], or emphasize global relationship modeling,
results in a more effective connection between overlapping
areas and non-overlapping areas like Gapro [29]. Both types
of modeling are crucial, but there is currently no approach
effectively integrating these two aspects. Consequently, it
is essential to devise a universal network proficient in ex-
tracting local structure features efficiently while fostering
interactions between overlapping and non-overlapping ar-
eas, yielding more precise pseudo-labels.

To achieve the above goals, we introduce a novel
pseudo-labeler called Simulation-assisted Transformer
(SAFormer), which is trained based on an innovative
training strategy called Simulation-assisted Mean Teacher
(SMT) and incorporates a special decoder called Local-
Global Aware Attention (LGA). In order to solve the first
problem in the previous paragraph, we introduce the SMT.
Concretely, student network is directly supervised with def-
inite instance labels for non-overlapping areas, and for
overlapping areas, pseudo-labels generated by teacher net-
work are used as supervision. As to teacher network, we
use EMA to updates its parameters. This approach yields
more accurate predictions for overlapping areas compared
to classical statistical methods like GP [35]. Furthermore,
to address the challenge of suboptimal pseudo-label qual-
ity, we generate simulated overlapping samples using non-

overlapping bboxes. And these simulated samples are used
to train a base model, producing weights that serve as the
initialization for teacher and student networks. This funda-
mentally equips the network with the ability to distinguish
overlapping areas, and the higher quality pseudo-labels gen-
erated by the teacher network aid in the rapid training of
the Mean Teacher. Additionally, when applied to multi-
ple datasets, only a brief finetuning is required instead of
retraining the pre-trained weights. Taking S3DIS [2] as
an example, the model’s training time decreases from 42
hours to just 1.7 hours. As to the second problem, we in-
troduce the LGA. Concretely, we first initialize two learn-
able queries, with each representing one of the two fore-
ground instances. We then employ local-structure atten-
tion to effectively model the local structure of each in-
stance and aggregate structural relationships within each in-
stance into a holistic representation through queries. Sub-
sequently, by employing global-context attention, we facil-
itate the aggregation of global information, especially inter-
actions between the two foreground instances and interac-
tions between overlapping areas and non-overlapping areas.
Through this design, we can effectively model category,
structure, and contextual information adaptively. Addition-
ally, we can leverage the response values of the overlapping
area points to the queries to remove background points from
the overlapping areas.

In summary, the main contributions of this work are as
follows: (i) We propose a weakly supervised 3D instance
segmentation method called BSNet, which uses bboxes as
annotations and devises a novel pseudo-labeler. (ii) We de-
sign a pioneering pseudo-labeler called SAFormer, which
for the first time incorporates the deep neural network and
the Mean Teacher paradigm, and innovatively constructs
simulated samples to facilitate training. Besides, with the
help of LGA, SAFormer can accurately predict pseudo-
labels for overlapping areas, thus achieving precise weakly
supervised 3DIS results. (iii) Extensive experimental re-
sults on two standard benchmarks, ScanNetV2 [9] and
S3DIS [2], verify the superiority of our designs.

2. Related Work
In this section, we briefly overview related works on 3D
instance segmentation, weakly supervised 3D instance seg-
mentation and the Mean Teacher paradigm.
3D Instance Segmentation. 3D instance segmentation
is a fundamental task for 3D scene understanding, which
can be categorized into proposal-based, grouping-based
and transformer-based methods. Proposal-based meth-
ods [12, 23, 45, 46] extract 3D bboxes and utilize a mask
learning branch to predict the object mask inside each box.
Grouping-based methods [5, 19, 21, 30, 37, 42, 50] predict
semantic categories and geometric offsets for each point,
and then employ clustering algorithms to group the points
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Figure 2. (I) The overall framework of our method BSNet. (II) The total process to generate an outstanding pseudo-labeler
SAFormer. BSNet is a novel two-step method consisting of generating pseudo instance labels by SPFormer and using the pseudo instance
labels to train a 3D instance segmentation network.

into instances. Transformer-based methods [25, 34, 36] are
the state-of-the-art paradigm, where queries are used to rep-
resent instances and global information is aggregated into
queries through a transformer decoder [4, 6, 7]. Although
these fully supervised methods have achieved superior per-
formance, they still have significant limitations in practice
due to the time-consuming point-wise instance annotation.
Therefore, some weakly supervised instance segmentation
methods have been proposed to alleviate this problem.

Weakly Supervised 3D Instance Segmentation. The cur-
rent weakly supervised 3D instance segmentation meth-
ods [8, 11, 17, 29, 43] can be divided into two categories:
sparse points as annotations and 3D bboxes as annotations.
Sparse-point annotation methods [17, 43] primarily utilize
sparsely labeled point clouds as supervision to train the net-
work. In comparison to methods using sparse points as an-
notations, 3D bboxes provide richer instance information
such as category and shape size, enabling the network to
better handle instance segmentation tasks. Box2mask [8]
uses bboxes as supervision, allowing the network to pre-
dict bbox for each individual point. WISGP [11] leverages
3D local geometric information to generate point-level la-
bels from bbox annotations. Gapro [29] employs GP [35] to
model the global similarity relationships between overlap-
ping and non-overlapping regions. However, these meth-
ods have relatively simple modeling of structure in overlap-
ping samples and do not effectively incorporate category,
structure, and contextual information. In contrast, our pro-
posed Local-Global Aware Attention enhances the capacity
to model both local structures and global relationships.

Mean Teacher Paradigm. The Mean Teacher paradigm

has been widely researched in various tasks, such as UDA
for semantic segmentation [1, 18, 47], semi-supervised ob-
ject detection [26, 40, 44], weakly supervised object de-
tection [39, 41], UDA for object detection [3, 20], and
UDA for person ReID [13, 16, 48]. This paradigm helps
to avoid the interative self-training complicated multi-stage
training process. SoftTeacher [44] introduces the first end-
to-end pseudo labeling framework in semi-supervised ob-
ject detection, gradually improving the quality of pseudo
labels during a curriculum. To mitigate the issue of low-
quality pseudo-labels, CMT [3] identifies the alignment and
synergy between Mean Teacher and contrastive learning.
UNRN [48] proposes the estimation and exploitation of the
credibility of assigned pseudo-labels for each sample, re-
ducing the impact of noisy pseudo-labels generated by the
teacher network. Based on the above research, we intro-
duce a Simulation-assisted Mean Teacher approach, which
employs the Mean Teacher paradigm to generate stable
pseudo-labels in real-time and constructs simulated samples
to assist the network in acquiring prior knowledge about
overlapping areas.

3. Method
3.1. Overview

As illustrated in Figure 2(I), the framework of our method
begins by generating pseudo object masks for instances in
the training set based on bbox annotations. Subsequently,
these pseudo object masks are employed to train a 3DIS
network. Throughout the entire process, the most crit-
ical step is to generate an outstanding pseudo-labeler to
predict pseudo-labels for overlapping areas, as shown in
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Figure 2(II). In the generation process, two distinct de-
signs stand out. The first one is the adoption of a unique
training strategy called Simulation-assisted Mean Teacher
(SMT), which can be divided into two steps: Simulated
Sample Generation in Section 3.2.1 and Mean Teacher Ap-
proach in Section 3.2.3. The second one is a novel de-
coder named Local-Global Aware Attention (LGA) in Sec-
tion 3.2.2. First, we generate simulated samples using non-
overlapping bboxes from real datasets. These simulated
samples are then used to train a labeler ϕ. Subsequently,
we utilize the weights of ϕ to initialize the teacher labeler
ϕt and the student labeler ϕs. Finally, we finetune the la-
belers ϕs, ϕt using the Mean Teacher approach to generate
pseudo-labels in overlapping areas. The resulting labeler ϕt

is denoted as SAFormer. After obtaining the pseudo-labels,
we employ them for soft supervision of the 3DIS network.

3.2. Process to Generate SAFormer

We develop a novel pseudo-labeler called SAFormer, which
accurately predicts labels for overlapping areas, leading to
precise results in bbox-supervised 3DIS. Next, we will se-
quentially introduce the generation process.

3.2.1 Simulated Sample Generation

The abundant non-overlapping bboxes in ScanNetV2 [9]
with definite instance labels allow us to generate simulated
overlapping samples. As illustrated in Figure 3, we begin by
extracting real overlapping samples O and non-overlapping
objects P from real scenes. Subsequently, we conduct an
analysis of the class distribution and spatial distribution
within these real overlapping samples. To be more specific,
we determine which class pairs make up overlapping sam-
ples, counting the number n of samples for each class pair
and calculate the mean µ and variance σ of the distances be-
tween the center points of each class pair. After obtaining
the statistical data, we commence the simulation of the dis-
tribution. Firstly, we perform sampling of class pairs based
on the distribution of n. Assuming the sampled class pair
is denoted as (a, b), we then uniformly sample one object
point cloud for each of the classes a and b from the set P .
After obtaining these two point clouds, we perform gaus-
sian sampling based on the corresponding µ and σ to ob-
tain a distance d, representing the distance between the two
point clouds. Finally, for the sake of simplicity, we directly
translate one of the point clouds along the X or Y-axis by
the distance d. It is worth noting that, before performing
the distance translation, we align the center points of the
point cloud pairs.

To better maintain physical plausibility, we make scene
adjustments based on the following two principles [32]: 1)
gravity: objects should not float in the air; 2) collision: these
two objects should not exhibit any collision. Specific de-

Category 
distribution

Calculate 
distribution 

Spatial 
distribution 

Split

Split

No-overlapping objects P

Real overlapping samples O Simulate distribution 

Gravity, collision constrain

Real scenes

Add background noise points

Simulated samples S

Figure 3. The process of generating simulated samples. There
are numerous non-overlapping objects (P ) with definite instance
labels in real scenes. We can generate simulated samples (S) based
on the distribution of real overlapping samples (O) and the physi-
cal plausibility.

tails are covered in the supplementary materials. Another
purpose of designing the collision constraint is to verify
whether two objects can be matched when constructing sim-
ulated samples. Concretely, after multiple (with an upper
limit of M) distance samplings and collision constraint cor-
rections, some object pairs may still fail to generate over-
lapping regions. Such pairs are subsequently excluded from
use. Finally, considering that real overlapping samples con-
tain background noise points, we add an appropriate num-
ber of floor points to represent the presence of background
noise points.

During the aforementioned process, we have obtained
simulated overlapping samples S. Currently, we utilize
these samples to train a labeler ϕ. The labeler ϕ primarily
consists of two components: a lightweight 3D-UNet based
on sparse convolution [14, 15, 22] and LGA. In next section,
we provide a detailed introduction of LGA.

3.2.2 Local-Global Aware Attention

As shown in Figure 4, LGA mainly contains local-structure
attention and global-context attention. Assuming that the
input point cloud consists of N points, with each point con-
taining position coordinates (x, y, z) and color information
(r, g, b). First, we input the point cloud into a lightweight
3D-UNet to obtain point-level features F . Subsequently,
following SPFormer [36], we aggregate the point-level fea-
tures F into superpoint-level features Fsup using average
pooling. Next, we initialize two learnable queries Q1, Q2,
representing two foreground instances respectively. To bet-
ter model local structure, we separately employ the self-
attention layer and the feed-forward layer within the non-
overlapping areas of different instances. This approach en-
sures that each local region interacts with similar regions
belonging to the same instance, significantly enhancing
the discriminative and representational capabilities of local
structures. Specifically, we concatenate Fsup,1 with Q1 and
Fsup,2 with Q2 to form Fv,1, Fv,2, and then input them sep-
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Figure 4. The Local-Global Aware Attention. Two foreground
queries are input into local-structure attention and global-context
attention to generate corresponding masks. S1, S2 represent non-
overlapping areas. S3 represents overlapping areas.

arately into the self-attention layer, just as follows:

F ′
v,i = Softmax(

QKT

√
C

)V, i = 1, 2, (1)

where Q = Fv,iWq , K = Fv,iWk, V = Fv,iWv ,
and Wq,Wk,Wv denote the linear transform matrices for
queries, keys, and values, respectively. Finally we input F ′

v

into the feed-forward layer to obtain F ′′
v .

After modeling the local structures within each non-
overlapping area S1, S2, and aggregating these structures
into a holistic representation through foreground queries,
we need to incorporate global information. The specific ap-
proach involves concatenating the features F ′′

v,1, F
′′
v,2, and

Fsup,3. Then, we input this concatenated features into the
self-attention layer and the feed-forward layer. Through
this method, we can model relationships between non-
overlapping and overlapping areas, between the two fore-
ground instances, and aggregate these global relationships
into Q1 and Q2, respectively. Finally, to classify the over-
lapping areas, we obtain the masks Mins,1,Mins,2 for the
two objects by calculating the dot product between Fsup,3

and Q1, Q2. The final mask is obtained through the Sig-
moid function followed by a threshold of 0.5:

Mi = Sigmoid(Mins,i) > 0.5, i = 1, 2. (2)

Since M1 and M2 represent two different foreground object
masks, for areas where both M1 and M2 are not activated,
we classify them as background areas. This approach nat-
urally helps the labeler filter out background points, which
is an improvement over Gapro [29], as Gapro overlooks the
presence of background points. Furthermore, to better as-
sist the labeler in learning unified knowledge for the same
class, we add a class prediction head.

For training on the simulated overlapping samples S,
since the instance labels are complete, we directly use the
shared losses from SPFormer [36] and Mask3D [34]:

Ltotal_sim = λ1Lcls + λ2Lbce + λ3Ldice, (3)

where λ1, λ2, λ3 are hyperparameters, Lcls is the cross-
entropy loss, Lbce is the binary cross-entropy loss, Ldice

is the dice loss [27].

3.2.3 Mean Teacher Approach

During the above process, the labeler ϕ has learned prior
knowledge about overlapping scenes through training on
the simulated samples. Subsequently, we used the pre-
trained weights as the initial weights for both the teacher
labeler ϕt and the student labeler ϕs. Then, we apply data
augmentation to the real overlapping samples, including
flipping, jittering, elastic distortion, and so on. The origi-
nal samples are fed into the teacher labeler, while the aug-
mented samples are input into the student labeler. Since the
labels for non-overlapping areas in real samples are known,
we can directly supervise these areas. As for the overlap-
ping areas, to better leverage the predictions of the teacher
labeler, we select high-confidence pseudo-labels for the
overlapping areas based on a fixed threshold τ . The teacher
labeler updates its parameters using the EMA technique.
With this design, the teacher labeler can continuously up-
date pseudo-labels online and transfer knowledge to the stu-
dent. Simultaneously, the student labeler can employ EMA
to transmit the acquired knowledge back to the teacher. Go-
ing a step further, with the initialization weights obtained
through simulation, the teacher labeler gains the ability to
distinguish overlapping areas. It can generate higher qual-
ity pseudo-labels, accelerating the Mean Teacher’s training
speed. Finally, the well-trained teacher labeler ϕt is referred
to as SAFormer, which is used to generate final pseudo-
labels for overlapping regions.

For finetuning on the real samples, we adopt a weakly
supervised approach. The specific approach can be divided
into two parts. First, for non-overlapping areas, where the
labels are known but only partial labels of the complete ob-
jects, we only supervise the non-overlapping areas.:

M ′ = QsF
T
s,sup,1∪2, (4)

where Qs represents the instance queries of the student la-
beler, 1 ∪ 2 represents the union of S1 and S2,

Lsup = λ2Lbce(M
′,M ′

gt) + λ3Ldice(M
′,M ′

gt). (5)

Next, for overlapping areas, we obtain high-confidence
pseudo-labels based on a threshold τ from the teacher la-
beler and solely supervise the overlapping areas that have
corresponding pseudo-labels:

M ′′
ps = QtF

T
t,sup,3 ⊙ (QtF

T
t,sup,3 > τ), (6)

M ′′ = QsF
T
s,sup,3 ⊙ (QtF

T
t,sup,3 > τ), (7)

where ⊙ represents hadamard product, Qt represents the
instance queries of the teacher labeler, M ′′

ps represents the
pseudo-labels of overlapping areas,

Lunsup = λ2Lbce(M
′′,M ′′

ps) + λ3Ldice(M
′′,M ′′

ps). (8)
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The total loss for real samples is:

Ltotal_real = λ1Lcls + Lsup + Lunsup. (9)

3.3. Training a 3DIS Network
Due to the fact that the instance labels for points within non-
overlapping bboxes and non-overlapping areas of overlap-
ping bboxes are definite, we can combine these determined
instance labels with the pseudo-labels obtained through
SAFormer. Then the combined labels are used to train a
3DIS network. It’s worth noting that since the predicted
pseudo-label values ∈ [0, 1], which reflect confidence, em-
ploying a soft supervision is a better choice. Assuming
there are K instances, the pseudo masks M ∈ [0, 1]K×N ,

L′
bce =

∑K
i=1

∑N
j=1 Lbce(Mpred,i,j ,Mi,j) ∗Mi,j∑K

i=1

∑N
j=1 Mi,j

, (10)

where Mpred represents the results predicted by the 3DIS
network. The total soft loss is:

Ltotal_soft = λ̂1Lcls + λ̂2L
′
bce + λ̂3Ldice + Lnet, (11)

where λ̂1, λ̂2, λ̂3 are hyperparameters specific to different
3DIS networks, and Lnet are loss functions unique to dif-
ferent 3DIS networks.

4. Experiments
4.1. Experimental Setup

Datasets and metrics. We conduct our experiments on
ScanNetV2 [9] and S3DIS [2] datasets. ScanNetV2 in-
cludes 1,613 scenes with 18 instance categories. Among
them, 1,201 scenes are used for training, 312 scenes are
used for validation, and 100 scenes are used for test. S3DIS
is a large-scale indoor dataset collected from six different
areas, which contains 272 scenes with 13 instance cate-
gories. Following previous works [29, 37], we train on Area
1, 2, 3, 4, 6 and evaluate on Area 5. AP@25 and AP@50
represent the average precision scores with IoU thresholds
25% and 50%, and mAP represents the average of all the
APs with IoU thresholds ranging from 50% to 95% with a
step size of 5%. On ScanNetV2, we report mAP, AP@50
and AP@25. Moreover, we also report the Box AP@50 and
AP@25 results following Gapro [29]. On S3DIS, we report
mAP and AP@50.

Implementation details. The whole method BSNet
is trained on a single RTX3090. As to the training setting
of the pseudo-labeler SAFormer, first we train 100 epochs
on simulated samples with a batch size of 64, which takes
about 6 hours. Next, we fintune 5 epochs on real samples of
ScannetV2 training set with a batch size of 64, which takes
about 90 minutes. During inference, it takes approximately
10 minutes to generate pseudo-labels for the entire training
set. As to S3DIS, it takes about 100 minutes for fintuning

Table 1. Comparison on ScanNetV2 validation set. %full indi-
cates the percentage of the current method’s performance com-
pared to its corresponding fully supervised method. ISBNet†
refers that we use the pseudo-labels generated by "Box2Mask [8]:
assign points to smaller box" to supervise ISBNet [30].

Method Sup. mAP %full AP@50 %full AP@25

Mask3D [34]

Mask

55.2 - 73.7 - 83.5
PointGroup [19] 34.8 - 51.7 - 71.3

SSTNet [21] 49.4 - 64.3 - 74.0
ISBNet [30] 54.5 - 73.1 - 82.5

SPFormer [36] 56.3 - 73.9 - 82.9

CSC [17] Point 15.9 28.8% 28.9 39.2% 49.6
PointContrast [43] 27.8 50.4% 47.1 63.9% 64.5

Box2Mask(stand-alone) [8]

Box

39.1 - 59.7 - 71.8
ISBNet† 41.8 76.7% 64.8 88.6% -

WISGP [11] + PointGroup 31.3 89.9% 50.2 97.1% 64.9
WISGP + SSTNet 35.2 71.3% 56.9 88.5% 70.2

GaPro [29] + ISBNet 50.6 92.8% 69.1 94.5% 79.3
GaPro + SPFormer 51.1 90.8% 70.4 95.3% 79.9

Ours + ISBNet 52.8 96.9% 71.6 97.9% 82.6
Ours + SPFormer 53.3 94.7% 72.7 98.4% 83.4

with 5 epochs and 10 minutes to generate pseudo-labels.
Given that our pseudo-labeler only needs to be trained once
on the simulated samples when applied to multiple datasets,
so the more datasets we apply, the more efficient the method
is. As to the backbone of SAFormer, we use a lightweight
3D-UNet based on sparse convolution [14, 15, 22] with 3
blocks and 32 media channels. At last, we tune the hyper-
parameters M, τ, λ1, λ2, λ3 as 8, 0.9, 2, 5, 2.

4.2. Comparison with state-of-the-art methods

ScanNetV2. As shown in Table 1, we compare our ap-
proach with existing state-of-the-art methods on the Scan-
NetV2 validation set. Attributed to the innovative con-
struction of simulated samples by SMT and the capability
of LGA to model local and global information, our pro-
posed SAFormer can generate higher-quality pseudo-labels
to supervise the 3DIS network. Consequently, our box-
supervised 3DIS method outperforms other methods by a
significant margin in terms of mAP, AP@50 and AP@25.
It is worth emphasizing that our results can achieve 95% in
terms of mAP when compared to the corresponding fully
supervised methods. This signifies a substantial improve-
ment over previous approaches, which typically achieves
only about 90% performance. To vividly illustrate the dif-
ferences between our method and others, we visualize the
qualitative results of pseudo-labels in Figure 5. From the
regions highlighted in yellow circles, it is evident that our
method can generate more accurate pseudo-labels for over-
lapping areas.

S3DIS. We evaluate our method on S3DIS using Area 5
in Table 2. Our proposed method achieves superior perfor-
mance compared to previous methods, with large margins
in both mAP and AP@50, demonstrating the effectiveness
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Input Box2Mask’s OursGapro’s GT labels

Figure 5. Qualitative results on ScanNetV2 training set. Our
approach produces highly accurate pseudo instance masks, partic-
ularly in overlapping areas (yellow circles).
Table 2. Comparison on S3DIS on Area 5. Box2Mask* repre-
sents the results of Box2Mask [8] reproduced by Gapro [29] on
the S3DIS dataset based on their public code.

Method Sup. mAP %full AP@50 %full

Mask3D [34]

Mask

56.6 - 68.4 -
PointGroup [19] - - 57.8 -

SSTNet [21] 42.7 - 59.3 -
SoftGroup [21] 51.6 - 66.1 -

ISBNet [30] 54.0 - 65.8 -

Box2Mask* [8]

Box

43.6 - 54.6 -
WISGP [11] + PointGroup 33.5 - 46.8 81.0%

WISGP + SSTNet 37.2 87.1% 51.0 86.0%
GaPro [29] + SoftGroup 47.0 91.1% 62.1 93.9%

GaPro + ISBNet 50.5 93.5% 61.2 93.0%
Ours + SoftGroup 51.4 99.6% 62.8 95.0%

Ours + ISBNet 53.0 98.1% 64.3 97.7%

and generalization of our method.

4.3. Ablation Study

The following experiments in Table 4 are conducted on IS-
BNet on the validation set of ScanNetV2, while the others
are performed on the training set of ScanNetV2.

Comparison on pseudo-labels. Firstly, we use the met-
ric mAcc to evaluate the quality of pseudo-labels in over-
lapping areas. Assuming that the predicted pseudo-labels
of overlapping areas are P , the GT of overlapping areas are
P gt, there are N overlapping areas, there are Mi points in
overlapping area i, and I is the indicator function,

mAcc =
1

N

N∑
i=1

∑Mi
j=1 I(Pi,j == P gt

i,j)

Mi
. (12)

The higher mAcc represents the better quality of pseudo-
labels. With the help of mAcc, we can explore the impact
of different techniques for handling overlapping areas.

As depicted in Table 3, setting B represents the current
state-of-the-art technique for handling overlapping areas,
and its performance is significantly higher than setting A.
We compare our method SAFormer with these methods and
conduct an ablation study of each component in setting C.
In setting C0, attributed to the neural network’s strong fit-
ting capability, even without utilizing our proposed SMT
and LGA, our base performance still surpasses the current

Table 3. Quality of pseudo-labels in overlapping areas. Base
refers to utilizing a 3D-UNet and a mask and classification head.
LA, GA, MT, SSG represent Local-structure Attention, Global-
context Attention, Mean Teacher, Simulated Sample Generation.

Handling of overlapping areas mAcc

A: Box2Mask: assign points to smaller box 24.1
B: Gapro: GP classification with superpoints 38.1

C0: Base 41.5
C1: Ours (LA) 48.1
C2: Ours (GA) 43.5
C3: Ours (LA + GA) 52.5
C4: Ours (LA + GA + MT) 55.3
C5: Ours (LA + GA + MT + SSG) 59.6

Table 4. Effect of our method’s components. Our pseudo-
labels: the pseudo-labels generated by our proposed pseudo-
labeler SAFormer. Soft loss: the soft loss proposed in Section 3.3.

Our pseudo-labels Soft loss mAP AP@50 AP@25

7 7 38.1 59.1 72.7
3 7 52.3 71.2 82.1
3 3 52.8 71.6 82.6

state-of-the-art method Gapro. In setting C1, we directly
train the labeler with a backbone and LA on the real scenes.
The results show an improvement of 10.0 in mAcc com-
pared to Gapro, indicating that deep neural networks can ac-
curately predict overlapping area labels through dedicated
local structure modeling and the accumulation of multiple
samples. In setting C2, we replace LA with GA, resulting
in a 5.4 increase in mAcc compared to Gapro. The results
suggest the importance of global information, particularly
the interaction between the two foreground instances and
between overlapping areas and non-overlapping areas. In
setting C3, we add the design of GA based on C1, resulting
in a 4.4 improvement in mAcc. From the results of C1, C2,
and C3, we can conclude that local structure modeling and
global relationship modeling complement each other. Good
local structures form the basis for modeling global relation-
ships, and modeling global relationships can better unleash
the potential of good local structures. In setting C4, to pro-
vide stable pseudo-labels for overlapping areas and facili-
tate information transfer between teacher and student label-
ers, we add MT. The improved performance in mAcc proves
its effectiveness. Finally, to help the labeler gain the ability
to distinguish overlapping areas, we add SSG in C5. This
enables the labeler to predict higher quality pseudo-labels
and achieve faster training speed, as shown in Table 7.

Effect of our method’s components. Table 4 shows
3DIS results with different components. In the first row, we
evaluate the approach of ignoring overlapping areas during
training and only using the determined regions as pseudo-
labels. The second row showcases the efficacy of the
pseudo-labels produced by our proposed labeler SAFormer,
resulting in a 14.2 improvement in mAP. In the last row,
to validate the impact of the soft loss, we conduct a cor-
responding ablation experiment and achieve a performance
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Table 5. Effect of different pseudo-label utilization meth-
ods. Base refers that pseudo-labels are directly used to train the
3DIS network. Iterative self-training refers that updating pseudo-
labels offline after each training round and then using the updated
pseudo-labels to further optimize the labeler. After multiple itera-
tions, the latest pseudo-labels are used to train the 3DIS network.

Method mAcc

Base 52.5
Iterative self-training 52.6

Mean Teacher 55.3

Table 6. Effect of different steps in SSG. SD, GCC, ABP rep-
resent simulating distribution, gravity-collision constrain, adding
background points respectively.

SD GCC ABP mAcc

3 7 7 58.5
3 3 7 59.3
3 3 3 59.6

Figure 6. Qualitative visualization results of our SSG.

boost of 0.5 in mAP.
Effect of different pseudo-label utilization methods.

As shown in Table 5, we observe that iterative self-
training contributes minimally to performance improve-
ment, whereas Mean Teacher results in a 2.8 increase in
mAcc. The findings highlight that Mean Teacher can gener-
ate higher quality pseudo-labels by facilitating information
transfer between the student and teacher labeler.

Effect of different steps in SSG. Table 6 illustrates that
as the simulated overlapping samples become more realis-
tic, the quality of pseudo-labels is getting better. It’s worth
noting that adding background points results in a 0.3 in-
crease in mAcc. This is partly because it makes the samples
more realistic. On the other hand, it is because our designed
mask activation using sigmoid function can naturally filter
out background points. In order to illustrate the generation
process more vividly, we visualize the qualitative results in
Figure 6. It is shown that the generated simulated samples
successfully combine the individual 3D shapes in a mean-
ingful way.

Effect of SSG. As shown in Table 7, with the assistance
of SSG, the labeler can predict higher quality pseudo-labels.
Moreover, owing to the labeler’s initialization with simu-
lated samples, the teacher labeler can furnish more stable
and accurate pseudo-labels in the early stages of training,
thereby expediting the overall training process.

Effect of a class head. Based on Table 8, it can be de-
duced that the incorporation of a class head helps the labeler
acquire unified representations for the same class, resulting

Table 7. Effect of SSG to MT.
Setting Training time(h) mAcc

w/o SSG 40 55.3
w SSG 1.5 59.6

Table 8. Effect of a class head.
Setting mAcc

w/o class head 59.2
w class head 59.6

Table 9. Comparison of parameters and training time. T rep-
resents the total training time, which includes the time to generate
pseudo-labels and the time to train 3DIS network with the pseudo-
labels. P̂ represents the pseudo-labeler parameters, P represents
the corresponding 3DIS network parameters, and %full denotes
the proportion of P̂ to P.

Method T(h) P̂(M) P(M) %full

Gapro + ISBNet 150 - 30.7 -
Gapro + SPFormer 80 - 17.6 -

Ours + ISBNet 72 2.4 30.7 7.8%
Ours + SPFormer 37 2.4 17.6 13.6%

in more precise pseudo-labels.

4.4. Parameters and Training Time Analysis

Table 9 reports the parameters and the training time on
ScanNetV2 training set. For a fair comparison, the reported
training time is measured on the same device. Our pseudo-
labeler utilizes only about 10% of the corresponding 3DIS
network parameters, making it very lightweight. And in
terms of time, it is less than half of Gapro’s. This can be
attributed to different self-training ways and different ob-
jects to which self-training is applied. Gapro performs it-
erative self-training on pseudo-labeler and 3DIS network,
while our method performs Mean Teacher self-training only
on pseudo-labeler. Therefore, our method not only elimi-
nates the high time cost caused by repeated training of the
3DIS network, but also greatly alleviates the training time
of Mean Teacher through the design of SMT.

5. Conclusion
In this paper, we propose the Box-Supervised Simulation-
assisted Mean Teacher for 3D Instance Segmentation,
which devises a novel pseudo-labeler called SAFormer. To
the best of our knowledge, SAFormer is the first labeler
incorporating the deep neural network and Mean Teacher
in this task, and innovatively constructs simulated samples
to facilitate training. Furthermore, the well-designed trans-
former decoder LGA effectively models local structures and
global relationships of point clouds. Extensive experiments
conducted on two widely used box-supervised 3D instance
segmentation benchmarks demonstrate the superior perfor-
mance of our method.
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