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Figure 1. DiVa-360 is a real-world 360° multi-view visual dataset of dynamic tabletop scenes captured using a customized low-cost capture
system consisting of 53 cameras. DiVa-360 contains 21 diverse moving object sequences, 25 hand-object interaction sequences, and 8
long-duration sequences (2-3 mins). DiVa-360 provides (1) 360° coverage of dynamic scenes, (2) foreground-background segmentation
masks, and (3) diverse table-scale scenes with intricate motions. DiVa-360 aims to facilitate research in dynamic long-duration neural fields.

Abstract

Advances in neural fields are enabling high-fidelity cap-
ture of the shape and appearance of dynamic 3D scenes.
However; their capabilities lag behind those offered by con-
ventional representations such as 2D videos because of al-
gorithmic challenges and the lack of large-scale multi-view
real-world datasets. We address the dataset limitation with
DiVa-360, a real-world 360° dynamic visual dataset that
contains synchronized high-resolution and long-duration
multi-view video sequences of table-scale scenes captured
using a customized low-cost system with 53 cameras. It con-
tains 21 object-centric sequences categorized by different
motion types, 25 intricate hand-object interaction sequences,
and 8 long-duration sequences for a total of 17.4 M image
frames. In addition, we provide foreground-background seg-
mentation masks, synchronized audio, and text descriptions.
We benchmark the state-of-the-art dynamic neural field meth-
ods on DiVa-360 and provide insights about existing methods
and future challenges on long-duration neural field capture.

*Equal Contribution
"Work was done while at Brown University

1. Introduction

Neural fields [69], or neural implicit representations, have re-
cently emerged as useful representations in computer vision,
graphics, and robotics [60, 69] for capturing properties such
as radiance [4, 5, 27, 43, 44], shape [32, 41, 45, 46, 64, 74],
and dynamic motion [9, 17,31, 36, 38, 48, 63, 65, 67]. Their
high fidelity, continuous representation, and implicit com-
pression [15] properties make them attractive as immersive
digital representations of our dynamic world.

However, despite their popularity, neural fields remain
less capable than conventional representations for repre-
senting dynamic scenes. Consider this: we can easily
watch hours-long 2D videos, a task that cannot yet be
achieved efficiently with 3D neural fields due to long train-
ing times [3, 10, 16, 27, 30, 31, 38, 58, 63, 65]. We
believe that large-scale, real-world datasets of dynamic
scenes with associated benchmarks are essential for con-
tinued progress in this problem. While some real-world
dynamic datasets exist [9, 14, 31, 32, 37, 48, 59, 70, 72, 75],
they are limited to room-scale scenes or specific categories
like humans [20, 21, 23, 35, 49, 76], or are captured with
monocular or forward-facing cameras that do not always
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Figure 2. DiVa-360 provides multi-view dynamic sequences for dynamic neural field methods. The dataset contains a variety of object and
motion types. Here, we showcase reconstruction results across time steps from PF I-NGP [44], MixVoxels [63], and K-Planes [16] trained
on our dataset. Surprisingly, the rendering results of PF I-NGP, a method that does not directly utilize temporal information from adjacent
frames, are better than those of MixVoxels and K-Planes. MixVoxels struggles with complex motion data, such as hands, while K-Planes
suffers from floaters in the background. We demonstrate more visualization results in the supplementary Section 2.

provide sufficient multi-view cues for immersive reconstruc-
tion [18, 32, 37, 48]. Furthermore, most of the sequences
in these datasets [14, 31, 32, 37, 48, 72, 75] are short, often
less than 15 seconds, limiting their use for building methods
that capture long-duration scenes.

To address these limitations, we present DiVa-360, a real-
world dynamic visual dataset that contains synchronized
high-resolution long-duration table-scale sequences captured
by a 360° multi-view camera system (see Figure 1). Our
dataset includes high-resolution (1280 x 720), high-framerate
(120 FPS), and up to 3 mins long videos captured simultane-
ously from 53 RGB cameras spanning 360° volume within
the capture space. We provide 46 dynamic sequences, in-
cluding 21 object-centric sequences categorized by different
motion types and 25 hand-object interaction sequences with
human routine activities and 8 long duration dynamic se-
quences. In total, DiVa-360 dynamic dataset contains 17.4 M
image frames of 53 dynamic scenes over 2738 seconds. We
also provide foreground-background segmentation masks,
accompanying audio data from microphones, and detailed
text descriptions of the activity observed.

Capturing such large-scale data requires advances in cap-
ture systems, as well as benchmarking metrics. We have
built a new low-cost capture system called BRICS (Brown
Interaction Capture System) which is designed to cap-
ture synchronized, high-framerate, and high-fidelity data. In
addition, we propose standardized metrics for reconstruc-

tion quality and runtime, and compare baseline methods on
these metrics [16, 44, 63]. We perform a systematic analy-
sis of current methods and characterize their performance
on different sequence durations, image resolutions, motion
types, and viewpoints. Surprisingly, we observe that meth-
ods that model each frame in a dynamic sequence without
directly using temporal information [44] outperform state-of-
the-art dynamic methods [16, 63] in terms of reconstruction
quality and even training speed (see Figure 2). In addi-
tion, existing methods [16, 63] are biased toward moving
objects’ shapes, thereby losing high-frequency information
and fine-grained details. Finally, existing state-of-the-art
methods [16, 63] prefer different amounts of temporal infor-
mation, with one [16] starting to outperform another [63]
after acquiring more temporal information. To summarize,
we make the following contributions:

* BRICS: A low-cost capture system specifically designed
for 360° capture of table-scale dynamic scenes with 53
synchronized RGB cameras.

* DiVa-360 Dataset: The largest dataset (17.4 M frames)
for dynamic neural fields with 21 object-centric sequences
categorized by different motion types, 25 hand-object in-
teraction sequences including routine human activities,
and 8 long-duration dynamic sequences.

* Benchmark & Analysis: We benchmark the dataset with
state-of-the-art methods and enable a better understanding
of the current state of dynamic neural fields.
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Dataset Real Mask 360° view Multiview Object Scene Dataset #Camera FPS #Scenes #Frames Average length (s)
HyperNeRF [48] v X X X X v Objaverse [14] — — 3k — —
OMMO [37] v X X X X v NeRF-DS [72] 2 — 8 10.2k —
Block-NeRF [59] v/ X X v X v Block-NeRF [59] 12 10 1 12k 100"
Eyeful Tower [70] v/ X X v X v HyperNeRF [48] 1 15 17 13.8k 27
DyNeRF [31] v X X v X v OMMO [37] 1 — 33 14.7k —
ILFV [9] v X X v X v Eyeful Tower [70] 2 <4 11 28.6k 2k!
Deep3DMV [34] v X X v X v DyNeRF [31] 18 30 6 37.8k 10
NeRF-DS [72] v v x v x v ILFV [9] 46 30 15 270.4k 13
NDSD [75] v v X v X v Deep3DMV [34] 10 120 96 3.8M 33

- DiVa-360 53 120 54 17.4M 51
D-NeRF [50] X — v X v X
Objaverse [14] X — v v v v Table 2. Specifications of our DiVa-360 dataset and other dynamic
DiVa-360 v v v v v v

Table 1. We compare featured properties of our DiVa-360 with other
object-centric and scene-centric datasets. DiVa-360 is a unique
dataset that contains real-world 360° multiview object-centric and
scene-centric data with foreground-background masks.

We believe our work can help the community take a leap
from the current focus on short dynamic videos toward a
more holistic understanding of longer dynamic scenes.

2. Related Work

Neural Fields: Neural fields, or coordinate-based implicit
neural networks, have generated considerable interest in
computer vision [69] because of their ability to represent
geometry [12, 40, 46] and appearance [36, 43, 57]. Neural
radiance fields (NeRF) [43] and its variants [4, 33, 45, 63,
74] uses a multilayer perceptron (MLP) to model density
and color, leading to photorealistic novel view synthesis and
3D reconstruction. Since the training cost of NeRFs is high,
several methods have tried to address this limitation [11, 27,
44, 53]. Naturally, some approaches have also turned their
focus towards dynamic neural fields [10, 16, 17, 31, 32, 36,
38, 47, 48, 50, 58, 63, 65, 71]. However, these methods
have thus far been limited to only brief sequences, partly
as a result of the unavailability of long-duration datasets.
Our work enables further research in long-duration dynamic
neural field research with a more comprehensive and richer
dataset with long sequences.

Multi-Camera Capture Systems: Capturing multi-view
data with high resolution and framerate requires specialized
hardware and software systems. The earliest multi-camera
capture systems were extensions of stereo cameras to 5-6
cameras [26], which were later extended to capture a hemi-
spherical volume [25] with up to 50 cameras for 3D and 4D
reconstruction using non-machine learning techniques [61].
The focus of most existing multi-camera capture systems
has been on room-scale scenes for human or environment
capture [24, 77]. While some table-scale datasets exist, no-
tably for hand interaction capture [8, 79], they have only
a limited number of cameras. In contrast, our BRICS sys-
tem is specially designed for dense 53-view visual capture
of table-scale scenes, and our sequences showcase intricate

datasets. * indicates that despite Block-NeRF consisting of a 100s-
long video, it is made up of numerous transient street scenes, each
with restricted view coverage. t indicates that although the average
length of Eyeful Tower is 2000 s, the FPS is less than 4. Our DiVa-
360 dataset is the largest visual dataset for dynamic neural fields
captured at 120 FPS with an average video length of 51 s.

interactions (e.g., small tool use) in high fidelity.
Datasets for Dynamic Neural Fields: While plenty of
datasets exist for NeRF methods [1, 5, 13, 22, 29, 42, 43,
51, 66, 73] their focus has been on static scenes. For dy-
namic scenes, numerous datasets such as DyNeRF [31],
NDSD [75], ILFV [9], NeRE-DS [72], and Deep3DMYV [34]
exist, but they are limited to only a short duration (~15s),
or have only forward-facing cameras preventing them from
enabling 360° capture. BlockNeRF [59] provides street view
videos incorporating dynamic elements but lacks a focus on
objects, and does not provide many views. This creates fleet-
ing scenes that do not encompass full 360° camera coverage.
Eyeful Tower [70] provides dynamic data up to 2000 s
long, but the framerate is less than 4 FPS. Monocular videos
of human faces [47, 48], human activities [32], or outdoor
scene [37] have been used for neural field reconstructions,
but a single camera restricts visibility resulting in low ef-
fective multi-view factors (EMF)[18]. While datasets like
Objaverse [14] and SAPIEN [68] provide articulated objects,
they are not sourced from the real world. Our dataset stands
out by offering a 360° view of real-world (non-synthetic)
long dynamic sequences with objects and hand-object inter-
action captured by 53 synchronized cameras (see Table 1
and Table 2). Furthermore, each sequence is accompanied
by foreground-background segmentation masks. Hence, we
do not need to worry about the domain gap, the influence
from the background, and the insufficient multiview cues.

3. Brown Interaction Capture System (BRICS)

Our goal is to capture long-duration sequences of table-
scale objects and interactions to enable further research in
high-fidelity dynamic neural fields. To achieve this, we
need a hardware and software system that can capture high-
framerate, high-resolution video and have the capability to
synchronize and calibrate these sensor streams. While com-
mercial products exist for this purpose, they are expensive

22468



: Inside <J}.....Translucent Panels - /\
@ 2, - 5 s 4 SBCs |
WS N .4 "Aluminum Frame . \'
Outside e
SO L e I A
B TNG A 5 4 = ' A
L IN|IE e
2 &Y . 9 w .
< dl B H g -
N/f RGB Cameras i o
Microphone /
(a) ﬁ Controllable LED o C)

Figure 3. (a) BRICS is a refrigerator-sized aluminum frame that supports a 1 m® capture volume mounted on wheels for mobility. Each side
wall of the capture volume is divided into a 3x3 grid, with each grid square containing sensors, LEDs, single-board computers (SBCs), and
light diffusers. (b) Two walls of the capture volume act as doors for easy access to the capture volume. (c) We can acquire 360° RGB views

of dynamic objects and intricate hand-object interactions in this capture volume (6 views shown).

and do not meet our requirements. We therefore designed
and built our own hardware and software solution which
we call the Brown Interaction Capture System (BRICS).
Figure 3 shows our system for capturing synchronized data.
BRICS Hardware: Our system uses a mobile aluminum
frame, housing a 1 m3 capture volume outfitted with sensor
panels across a 3x3 grid on each of its six sides (Figure 3 (a)).
These panels consist of RGB cameras, microphones, and
LED light strips, which together create a versatile and uni-
formly light environment. All our captures use 8-bit quan-
tized pixels, auto exposure, and auto saturation. For 360°
capture, we installed a transparent shelf on which objects are
placed. The system is designed to handle large data output
through a custom communication setup that compresses and
transmits data to a high-capacity control workstation. This
design, combining portability, comprehensive capture capa-
bilities, and efficient data management, allows for dynamic,
360° view capturing with low latency.

BRICS Software: While our hardware allows the capture
of large-scale rich multi-view data, controlling and calibrat-
ing the cameras, and synchronizing and managing data re-
quires specialized software. For camera and microphone syn-
chronization, we adopt network-based synchronization [2]
with an accuracy of 2-3 ms. For camera calibration, be-
fore each capture session, we affix transparent curtains with
ArUco markers to the wall and capture one calibration frame.
We then remove the markers from the walls when captur-
ing actual scenes. Using COLMAP [54, 55], we gener-
ate camera poses for the 53 cameras. The camera poses
are further refined using I-NGP’s [44] dense photometric
loss for improved reconstruction quality. Finally, we also
built software for efficiently transferring terabytes of data
from the control workstation to cloud storage. The DiVa-
360 dynamic dataset contains synchronized long-duration
videos of both moving objects and intricate hand interac-
tions. Our goal is to make this dataset useful for learning
long-duration dynamic neural fields of appearance - existing
methods [3, 10, 16, 30, 31, 38, 58, 63, 65] have been limited
to only short durations, usually around 10 seconds. Instead

of just using 10 s clips of the sequences, we fully benchmark
all sequences in our dynamic dataset that contains 21 object
sequences categorized by different motion types, 25 hand-
object interaction sequences including human daily activity,
and 8 long-duration sequences with rich information. In total,
DiVa-360 dynamic dataset contains 17.4 M image frames of
53 dynamic scenes over 2738 seconds. In addition, our data
also contains masks for foreground-background segmenta-
tion. Although not the focus of this work, we optionally
provide synchronized audio and text descriptions for all se-
quences. To our knowledge, this is the largest-scale dynamic
dataset with a focus on table-scale interactions.

4. DiVa-360 Dataset

Dynamic Objects: We captured 21 dynamic sequences
with everyday objects and toys that move (see Figure 4). To
be representative of real-world motions, we chose objects
with different types of motion (see supplementary Section
2):(1) Slow motion: objects that perform slow, continuous
motions, e.g., music box and rotating world globe. (2) Fast
motion: objects that move or transform drastically, e.g.,
remote control cars and dancing toys. (3) Detailed motion:
objects that perform precise small motions, e.g., a clock.
(4) Repetitive motion: objects that repeat the same motion
pattern, e.g., Stirling engine and toys that sway left and right.
(5) Random motion: objects that perform indeterministic
motions, e.g., a toy that creates random patterns within a
sphere.

Interactions: In addition to dynamic objects, we also in-
clude 25 hand-object interaction scenes representing intricate
real-world activities (see supplementary Section 2).The in-
teractions included are hand activities commonly observed
in everyday life (see Figure 4), such as flipping a book, re-
placing a toy’s batteries, and opening a lock. The purpose
of these hand-centric interaction data is to check whether
the dynamic neural fields can generalize well to more com-
plicated motion with occlusion from hands. We hope these
hand-centric interactions encourage future modeling of com-
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Figure 4. DiVa-360 covers diverse object and hand-object interaction data. Our object sequences represent a variety of motion types, while

our hand-object interaction data contain intricate and realistic motions.

plex hand dynamics.

Long-Duration Sequences: Although dynamic objects
and interaction datasets have covered several long-duration
videos, we further provide a long-duration dynamic dataset
with 8 sequences of at least 120 seconds (see supplementary
Section 2).The existing methods have shown fast training
speeds for 10s long sequences, but more efficient methods
that can operate on longer sequences are needed. Hence, this
dataset is aimed at enabling future research in long-duration
dynamic neural fields.

Foreground-Background Segmentation: A major chal-
lenge with neural radiance fields is the segmentation of
foreground objects from background clutter. Manually seg-
menting every frame is infeasible due to the quantity and
view inconsistency. Therefore, we developed a segmentation
method using I-NGP [44]. As preparation, we manually
segment the foreground object in the first frame of one scene
and train an [-NGP model on segmented images to refine
coarse camera poses extracted from COLMAP [54, 55]. The
manually segmented first frame is only used to refine camera
calibration, and the refined pose is used for all downstream
tasks. For each of the remaining frames, we fit a separate
I-NGP model and progressively reduce the bounding box so
that the model only renders the objects inside the bounding
box but not the walls of BRICS. These renderings are then
used as segmentation masks and applied to the raw data. To
further refine the masks, we removed connected components
smaller than a threshold. Segmenting with this method is
possible because all objects are placed around the center of
BRICS. Since the segmentation is generated from [-NGP,
the masks are multi-view consistent.

5. Benchmarks & Experiments

In this section, we show how DiVa-360 can be used to bench-
mark dynamic neural field methods using standardized met-

rics, we analyze the effect of critical parameters on these
methods, and justify the need for our dataset. These experi-
ments were performed on Nvidia GPUs (RTX 3090, A5000)
and involved over 500 GPU-days of training and inference.

5.1. Benchmark Comparisons

Our goal is to compare and contrast state-of-the-art meth-
ods for dynamic neural field reconstruction on our dataset.
Specifically, we choose to compare three methods: (1) Per-
Frame I-NGP (PF I-NGP) [44], a NeRF model which we
train on individual frames in all 54 sequences, (2) MixVox-
els [63], a state-of-the-art dynamic neural radiance field
which uses variation fields to decompose scenes into static
and dynamic voxels, and (3) K-Planes [16] which encour-
ages natural decomposition through planar factorization with
L1 regularization for space-time decomposition. We plan to
include very recent work such as [38, 65] in the future.
Pre-processing: We downsample all our sequences to
30 FPS and then segment all frames following Section 4.
We split all of our sequences into 5-second chunks (150
frames with 30 FPS, except for PF I-NGP, which has chunk
size 1) and then train the above methods per chunk. We
select 35 out of 53 best cameras for training and hold out 6
cameras for testing. Specifically, we eliminate the cameras
from the bottom row of the side panels due to reflection
caused by the glass panel in BRICS and randomly select
one camera from each panel as test views. We note that
current neural radiance fields cannot handle reflections from
the glass panel on which we place the objects for 12 views
in our data. Considering that not every NeRF model sup-
ports camera distortion parameters, we undistort the images
with OpenCV [7] and crop the images to the same size
(1160 x 550) after undistortion.

Metrics: We use (a) Peak Signal-to-Noise Ratio (PSNR),
(b) Structural Similarity Index Measure (SSIM) [52, 62], and
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Baseline PSNRT SSIM?

LPIPS,

PF I-NGP [44]
Mix Voxels [63]
K-Planes [16]

27.68 £2.51

2831 £3.27 094 +0.03 0.08-+0.04 7.61+0.88 48.70+4.40

2639 +£3.13 092+0.03 0.19+0.07 7.18+1.08 47.59+5.13

JOD?1 Train (s/f)| Render (s/f)]
0.94 + 0.25
0.94 +0.03 0.09+004 756+094 57.55+696 1.48+0.49
3.03 £0.20

Table 3. We compare the rendering quality and train/render time of PF I-NGP, MixVoxels, and K-Planes for dynamic scenes. Surprisingly,
PF I-NGP achieves higher rendering quality and equal or even faster training speed than Mix Voxels and K-Planes without directly using

temporal information from the adjacent frames.

(c) Learned Perceptual Image Patch Similarity (LPIPS) [78]
to measure the rendering quality, and Just Objectionable
Difference (JOD) [39] to measure the visual difference be-
tween rendered video and ground truth, along with per-frame
training/rendering time (in seconds) for 6 testing views.

Results: We quantitatively compare the three methods in
Table 3. Surprisingly, although PF I-NGP is trained on each
frame individually without directly utilizing temporal infor-
mation, its reconstruction quality is better than both Mix Vox-
els and K-Planes in terms of PSNR, SSIM, and LPIPS. How-
ever, PF I-NGP suffers from temporal inconsistency, which
is especially obvious for static parts (see Figure 7 and supple-
mentary Figure 21). Furthermore, Mix Voxels only requires
2.7-4.7 MB storage space per time step, and K-Planes re-
quires 2 MB, both of which are over six times smaller than
PF I-NGP’s 29 MB. Although MixVoxels is designed for
dynamic scenes, its training and inference times are higher
than PF I-NGP (with a higher variance). K-Planes has train-
ing times similar to PF I-NGP but has significantly longer
inference times. Besides, we also notice that MixVoxels
struggles to capture the dynamic components of the scenes,
leading to blurry and noisy reconstruction (see Figures 2
and 7). We hypothesize that this is caused by insufficient
capacities of the dynamic voxels when there are a lot of
dynamic samples. In contrast, K-Planes struggles to capture
the static components, such as the background of the scenes,
especially in the parts where there is little or no motion. This
could be the result of overfitting and contamination from the
dynamic planes due to incorrect space-time decomposition.

5.2. Experimental Analysis

The goal of this section is to identify whether the dynamic
neural fields are sensitive to temporal information and spatial
information. For the experiment, we select sequences longer
than 30 seconds from the object and interaction dataset. We
then use the first 30 seconds (900 frames) of these sequences
for the following experiments.

Temporal Information: In theory, temporal informa-
tion can improve the performance of learning-based meth-
ods [19, 56]. However, benchmark results in Section 5.1
demonstrate that PF I-NGP outperforms MixVoxels and K-
Planes. To further investigate how sensitive these methods
are to the temporal information, we split the 30-second long
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Figure 5. The rendering quality across different numbers of chunks
with object and interaction data. The circle dot presents the storage
space of the models in GB. MixVoxels prefers less temporal infor-
mation, while K-Planes prefers more temporal information.
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Figure 6. The rendering quality across different numbers of chunks
with interaction data only. The circle dot presents the storage space
of the models in GB. K-Planes outperforms Mix Voxels with more
temporal information on complex motion data.

sequences into 2, 3, 6, and 12 chunks and train one dynamic
NeRF model per chunk. Figure 5 shows that Mixvoxels
performs slightly better when trained with less temporal
information (more chunks), but its performance remains
roughly the same across different numbers of chunks. The
dynamic branch of MixVoxels may not have sufficient ca-
pacity to handle more dynamic samples. Unlike Mix Voxels,
K-Planes is more sensitive to sequence lengths and performs
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Figure 7. Visualization of temporal consistency in the same views by concatenating pixels from the same line across time steps. If a method
is temporally consistent, its figure should be smooth horizontally and similar to the ground truth. PF I-NGP is less consistent across time,
especially for static parts (e.g., drum), while MixVoxels is noisier on the dynamic parts (e.g., wolf’s body).

better with more temporal information. Through the render-
ing results, we found that fewer chunks also mitigate the
overfitting problem of K-Planes on DiVa-360 (see supple-
mentary Figure 12). One interesting finding is that although
Mix Voxels outperforms K-Planes with object and interaction
data, K-Planes outperforms Mix Voxels with 2 and 3 chunks
setting on interaction data (see Figure 6). This indicates
that K-Planes can better handle the more complex motions
in the interaction data when provided with more temporal
information.

Spatial Information: Intuitively, neural fields trained with
higher-resolution images should result in better reconstruc-
tion quality. To test this hypothesis, we conduct comparisons
of model performances across different resolutions. In this
experiment, we train the three methods on lower resolutions
by downscaling the training set from 1160 x 550 (undis-
torted images) to 674 x 320 and 464 x 220. After training,
we evaluate the trained models by rendering test views at the
original resolution (see Table 4 and supplementary Figure
13). To our surprise, we found that the performance of PF
I-NGP remains almost the same, and rendering results have
apparent fine-grained details. Furthermore, MixVoxels and
K-Planes perform better at lower resolution, with MixVoxels
performing the best at 674 x 320 and K-Planes performing
the best at 464 x 220. Both methods suffer from similarly
blurry details across all resolutions. This interesting result
contradicts our hypothesis, and there could be several rea-
sons for it. First, NeRFs have shown impressive spatial
interpolation ability leading to only a minimal drop in per-
formance with reducing resolution. Second, under the same
training setting, NeRFs will revisit the training samples more
frequently when trained on lower-resolution images and thus
reconstruct these samples better. Finally, dynamic NeRFs
need to spend much more of their capacities to capture mov-
ing objects which could result in insufficient capacity to
capture fine-grained details. In conclusion, we suspect that
current dynamic methods cannot efficiently utilize spatial
information in high-resolution images as they are biased to-
ward motion and misses the high-frequency details presented
in the images. In addition, we note that human perception
of these images may not match the observed quantitative
results [6].

Baseline 1160 x 550 674 x 320 464 x 220
PF I-NGP [44] 28.16 28.19 28.15
Mix Voxels [63] 27.63 27.75 26.91
K-Planes [16] 25.38 25.57 26.03

Table 4. The PSNR of each baseline across different resolutions.
During testing, we interpolate the images to 1160 x 550 resolution.
The performance of PF I-NGP remains similar. MixVoxels and
K-Planes get slightly better performance with the low-resolution
training set.

Spatial and Temporal Information: In the previous exper-
iment, we only have one control variable, spatial resolution
or temporal length. It is unclear whether the same conclu-
sion will hold if we change spatial resolution and temporal
length simultaneously. Hence, in this experiment, we change
spatial resolution and temporal length simultaneously while
maintaining a similar size of the 3D volume (width x height x
temporal length). Table 5 shows MixVoxels performs worst,
and K-Planes performs best with the lowest spatial resolution
and longer temporal length setting (464 x 220, 900 frames).
This matches our findings in the previous experiments. If
we check Table 4 and Table 5 together, the phenomenon is
more obvious. The PSNR of MixVoxels drops from 27.75
to 27.2 and 26.91 to 26.1 for spatial resolution 674 x 320
and 464 x 220, respectively, after including more temporal
information. The PSNR of K-Planes increases from 25.57
to0 26.04 and 26.03 to 26.19 for spatial resolution 674 x 320
and 464 x 220, respectively, after including more temporal
information.

Baseline 1160 x 550,6 ch. 674 x 320,2ch. 464 x 220, 1 ch.

MixVoxels [63] 27.63 27.20 26.10
K-Planes [16] 25.38 26.04 26.19

Table 5. The PSNR of each baseline across different spatial reso-
lutions and temporal lengths. MixVoxels reaches the worst perfor-
mance, and K-Planes reaches the best performance with the lowest
spatial resolution and fewest chunks setting (464 x 220, 1 chunk).
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5.3. Dataset Justification

In this section, we justify the need for our 360° views with
53 cameras, and other design choices.

Number of Cameras: For evaluating the number of cam-
eras, we compare three settings: (1) All-view, which follows
the original setting with all cameras, (2) Forward, which
only uses the cameras from two adjacent side panels, result-
ing in 10 cameras, (3) Multi-view, which uses two cameras
per side panel and one camera from top and bottom panel,
resulting in 10 cameras.

Both quantitative and qualitative results (see Table 6 and
supplementary Figure 15-16) demonstrate that All-view out-
performs Multi-view, indicating that more cameras improve
the rendering quality of NeRFs. In addition, All-view and
Multi-view outperform Forward when tested on an occluded
view, suggesting that multi-view 360° is better than forward-
facing settings for benchmarking.

All-view Forward Multi-view

28.16/27.24 24.77/23.99 24.07/25.37
27.63/27.43 20.51/15.80 23.65/24.02
25.38/24.55 23.23/22.40 22.64/22.89

Baseline

PF I-NGP [44]
MixVoxels [63]
K-Planes [16]

Table 6. The PSNR of testing views / occluded views across dif-
ferent settings of the capture system. The PSNR of All-view is
higher than Multi-view. Hence, more cameras can help NeRFs.
The PSNRs of All-view and Multi-view are higher than Forward on
occluded view, indicating that multi-view 360° settings are better
than forward-facing settings.

Foreground-Background Segmentation Method: In Sec-
tion 4, we mention that we use I-NGP to segment each
frame. Although the segmentation model can be replaced
with improved models in the future, we believe that our
current method is suitable for DiVa-360, especially due to
its multiview consistency. To validate the performance of I-
NGP segmentation, we compare it against Segment Anything
(SAM) [28] in terms of segmentation quality and multiview
consistency. For this benchmark, we manually segment one
frame of 6 random views from all scenes as ground truth and
compute mean intersection over union (mloU) for images
segmented by SAM and our method.

According to Table 7, I-NGP segmentation reaches better
mloU and lower average standard deviation over six views
on DiVa-360. In addition, the visualization results (see sup-
plementary Figure 18 and 19) also support the statement that
the performance of I-NGP segmentation is more multiview
consistent.

6. Conclusion

We have introduced DiVa-360, a real-world 360° dynamic
visual dataset that contains synchronized long-duration se-
quences of table-scale moving objects and interactive scenes.

Baseline Obj. and Int. Obj. Int.
I-NGP Seg. [44] 0.926/0.048 0.962/0.016 0.901/0.071
SAM [28] 0.919/0.086 0.955/0.042 0.885/0.118

Table 7. The mean intersection over union (mloU) / average stan-
dard deviation of mloU over six views. [-NGP segmentations
outperform SAM on DiVa-360. In addition, a lower standard devia-
tion indicates more equal quality across views.

We propose a new BRICS capture system for synchronized
long-duration data capture, which also acts as a rich mul-
timodal data capturing system (see supplementary Section
1).Di1Va-360 consists of a dynamic dataset of high-resolution,
high-framerate, long (5s to 3 mins), and synchronized videos
captured simultaneously from 53 RGB cameras within the
capture space. In total, DiVa-360 contains 17.4 M images.

We benchmark the existing state-of-the-art dynamic neu-
ral fields with DiVa-360 dynamic dataset and demonstrate
that there is still room for improvement in terms of train-
ing and rendering speed, hardware requirement, imbalance
capacity, temporal information, and spatial information.
Limitations and Future Work: Although BRICS can also
act as a multimodal capturing system, our current metrics
and evaluation are limited to images — in future work, we will
consider metrics for audio and text (see supplementary Sec-
tion 7).BRICS cannot capture scenes larger than table-scale
— we plan to expand the capture system to larger volumes in
the future. Due to the training speed of the existing state-
of-the-art methods, we cannot include more baselines or
metrics for longer videos. Hence, we hope to include more
long sequences and baselines in the future [65, 71].
Societal/Ethical Impact: Our dataset does not reveal any
private information and presents limited means for misuse.
However, future extensions of our work could contain private
information that can be misused. Another possible impact
is the environmental cost since the total GPU running days
of training, rendering, and experiments are at least 500 days.
Thus, we will release pretrained weights.
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