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Abstract

Recent advances in generative AI have unveiled signif-
icant potential for the creation of 3D content. However,
current methods either apply a pre-trained 2D diffusion
model with the time-consuming score distillation sampling
(SDS), or a direct 3D diffusion model trained on limited
3D data losing generation diversity. In this work, we ap-
proach the problem by employing a multi-view 2.5D dif-
fusion fine-tuned from a pre-trained 2D diffusion model.
The multi-view 2.5D diffusion directly models the structural
distribution of 3D data, while still maintaining the strong
generalization ability of the original 2D diffusion model,
filling the gap between 2D diffusion-based and direct 3D
diffusion-based methods for 3D content generation. Dur-
ing inference, multi-view normal maps are generated using
the 2.5D diffusion, and a novel differentiable rasterization
scheme is introduced to fuse the almost consistent multi-
view normal maps into a consistent 3D model. We further
design a normal-conditioned multi-view image generation
module for fast appearance generation given the 3D geom-
etry. Our method is a one-pass diffusion process and does
not require any SDS optimization as post-processing. We
demonstrate through extensive experiments that, our direct
2.5D generation with the specially-designed fusion scheme
can achieve diverse, mode-seeking-free, and high-fidelity
3D content generation in only 10 seconds. Project page:
https://nju-3dv.github.io/projects/direct25.

*This project was performed during Yuanxun Lu’s internship at Apple.
†Corresponding Author

1. Introduction

Creating 3D content from generative models has become
a heated research topic in the past year, which is key to
a variety of downstream applications, including game and
film industries, autonomous driving simulation, and virtual
reality. Specifically, DreamFusion [28] was proposed to
optimize a neural radiance field (NeRF) [24] using a pre-
trained 2D text-to-image diffusion model and the score dis-
tillation sampling (SDS) technique, showing promising re-
sults for text-to-3D generation of arbitrary objects without
any 3D data. However, the indirect 3D probability distri-
bution modeling inevitably deteriorates the final generation
quality. For example, it has been reported in DreamFusion
and its follow-ups [6, 15, 39, 42] that the overall generation
success rate is low and the multi-face Janus problem exists.

Another line of work focuses on direct 3D generation
by training on large-scale 3D data. For example, [22, 26]
apply the probabilistic diffusion model for point cloud gen-
eration and [12, 34] model the denoise diffusion process
on signed distance field (SDF). These methods usually ap-
ply a specific 3D representation and train the denoise diffu-
sion on such representation using a specific 3D dataset, e.g.,
ShapeNet [3], and show high-quality generation results on
objects similar to the training set. However, the scale of the
current 3D dataset is still too small when compared with the
text-image data [32]. Even with the largest 3D dataset [7]
available, it is still challenging to train a 3D diffusion model
for diverse text-to-3D generation.

In this work, we instead extend existing text-to-2D mod-
els to a denoising diffusion process on multi-view 2.5D
depth/normal data. Compared with full 3D representations
such as 3D point clouds or meshes, 1) 2.5D information
such as depth or normal are much easier to capture or col-
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lect (e.g., depth provided by active sensors); 2) the depth
and normal maps perfectly align with the image data, mak-
ing it possible to adapt and fine-tune a 2.5D model from a
pre-trained 2D RGB model. In order to construct full 3D
models, 2.5D maps viewed from multiple perspectives are
necessary. Therefore, the target diffusion model should be
capable of generating multi-view images with content con-
sistency. In practice, we fine-tune existing text-to-image
diffusion models on multi-view 2.5D renderings from the
Objaverse dataset [7]. On the one hand, the models are
adapted to 2.5D information. On the other hand, joint
multi-view distribution is captured with the help of struc-
tural modification of injecting multi-view information to
the self-attention layers. During inference, multi-view im-
ages are generated synchronously by common schedulers
like DDIM [35], which are then fused directly into a mesh
by differentiable rasterization. The whole generation pro-
cess completes in seconds, which is significantly faster than
SDS-based methods that typically take 30 minutes. The
system is extensively evaluated with complex text prompts
and compared with both SDS-based and direct 3D gener-
ation methods, demonstrating the capability of generating
3D textured meshes with complex geometry, diversity, and
high fidelity.

To summarize, major contributions of the paper include:
• We propose to approach the 3D generation task by train-

ing a multi-view 2.5D diffusion model, which explic-
itly models the 3D geometry distribution while inherit-
ing a strong generalization ability of the large-scale pre-
trained 2D image diffusion.

• We introduce an efficient differentiable rasterization
scheme to optimize a textured mesh directly from the
multi-view normal maps and RGB images.

• We carefully design a generation pipeline that achieves
diverse, mode-seeking-free, and high-fidelity 3D con-
tent generation in only 10 seconds.

2. Related Work
2.1. 3D Generation by Score Distillation

Score Distillation [28, 39] is one of the most popular
method recently for 3D Generation by pre-trained 2D diffu-
sion models. It distillates the knowledge of image denoising
to the optimization process of differentiable rendering sys-
tems so that randomly rendered views are gradually refined
to describe the input text prompt. There are fundamental
problems: 1) 2D diffusion models are not 3D-aware, and
the generated samples have multi-face problem as a result;
2) Each optimization step requires single forward of the de-
noising UNet, making the whole process time consuming;
3) High guidance scale of prompts is preferred for better
convergence, which leads to over-saturation of appearance;
4) the optimization is mode-seeking, losing the strong di-

versity of 2D diffusion model. Follow up works are pro-
posed to solve some of them, but not all. Zero-1-to-3 [16]
fine-tunes the 2D diffusion model with multi-view dataset
to grant the ability of perspective control and mitigate the
problem 1 in image-to-3D task. ProlificDreamer [42] mit-
igate problem 3 and 4 by utilizing a KL-divergence loss to
perform sampling instead of mode-seeking, at the cost of
higher time complexity. In this work, we do not apply score
distillation and completely separate diffusion process and
3D model optimization. The diffusion can be scheduled and
conditioned normally, so that the results have diversity and
realistic color. And the 3D model optimization operates on
explicit representation so can be finished quickly.

2.2. Direct 3D Diffusion

Fast 3D generation can be achieved by training a direct
3D diffusion model with 3D dataset. One key problem is
to choose the 3D representation and design a special en-
coder/decoder for it. There are some early attempts to
train direct 3D models for point cloud [22, 26, 45, 48],
mesh [18] and implicit representation like NeRF or SDF
[5, 10, 12, 34]. However, they are trained on the limited
datasets like ShapeNet [3] which have rather small data
size, geometry complexity or category diversity. Recent
3D datasets such as Objaverse [7] dramatically improve the
state-of-the-art of 3D dataset, but is still limited compared
to 2D image-caption datasets for training 2D diffusion mod-
els. In this work, we still use 2D neural network to deal with
2.5D maps, and thus we can perform fine-tuning on existing
2D diffusion models so as to inherit their strong generaliza-
tion.

2.3. Multi-view Diffusion

Generating multi-view images simultaneously is another
strategy to bring 3D-awareness to 2D diffusion models.
Two key modifications are proposed to achieve this: 1)
Information from other views are concatenated with the
current view as keys and queries in the self-attention lay-
ers. The gathered information can be from the single pro-
jection [36], epipolar lines [17, 37] or all the pixels [33];
2) The model is fine-tuned on multi-view renderings from
3D dataset like Objaverse [7]. To construct 3D models,
previous works either use SDS [33], which is still time-
consuming, or image-based reconstruction systems like
NeuS [17, 19, 40], which requires at least 10 views to pro-
duce reasonable reconstructions. Similar to JointNet [47]
which explores the 2.5D domain, we choose to generate
multi-view 2.5D maps like normal, so that we can use SDS-
free reconstruction while still keep small view numbers.

3. Method
In this section, we introduce our multi-view 2.5D diffusion
system, which synchronously generates multi-view 2.5D
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Figure 1. Overview of our text-to-3D content generation system. The generation is a two-stage process, first generating geoemtry and then
appearance. Specifically, the system is composed of the following steps: 1) a single denoising process to simultaneously generate 4 normal
maps; 2) fast mesh optimization by differentiable rasterization; 3) a single denoising process to generate 4 images conditioned on rendered
normal maps; 4) texture construction from multi-view images. The whole generation process only takes 10 seconds.

geometry images, i.e., normal maps, and corresponding tex-
ture maps given a text prompt as input for 3D content gen-
eration (Fig. 1). Our method is efficient enough to generate
various results in only 10 seconds. In Sec. 3.1, we first
briefly review the 2D diffusion model and formulate the
multi-view 2.5D adaptation. We then illustrate the cross-
view attention which enhances the multi-view consistency
in Sec. 3.2. In Sec. 3.3, we describe how to produce the
final 3D model from generated 2.5D geometry images, and
finally in Sec. 3.4, we demonstrate how to synthesize the
texture maps given the generated normal maps, and con-
struct the high-quality final textured triangle mesh.

3.1. Diffusion Models and 2.5D Adaptation

Diffusion models learn a conversion from an isotropic
Gaussian distribution to the target distribution (e.g. image
spaces) via iterative denoising operations. We build our
system on latent diffusion models (LDM), which contains
a variational autoencoder (VAE) including an encoder and
a decoder, a denoising network, and a condition input en-
coder. Compared to original diffusion models, LDM con-
ducts the whole diffusion process in the latent image space
and greatly improves efficiency and quality. Specifically,
during the forward process, a noisy latent at time t is sam-
pled in the latent space and is gradually degraded by noise
which makes it indistinguishable from the Gaussian noise,
while the denoising process reverses the process, which iter-

atively predicts and remove the noise to get the real images.
In this work, we extend 2D text-to-image diffusion mod-

els to generate multi-view geometry images. By fine-tuning
a pre-trained 2D diffusion model using our 2.5D image
dataset, we are able to inherit the generalization and also
obtain the expressive generation ability for multi-view 2.5D
geometry images. Let (X , c) be 3D data with caption from
training dataset, xi ∈ X be multi-view renderings, xi,t be
views corrupted by independent noise ϵi ∈ E at time t. The
denoising neural network ϵθ is trained by

L = E(X ,c);E∼N(0,1);t

∑
xi∈X ;ϵi∈E

∥ϵi − ϵθ(xi,t, c, t)∥22.

(1)

3.2. Cross-view Attention

Before fine-tuning, the multiple images generated from the
base model for the same text prompt are not guaranteed to
describe the same object because they are initiated from
different noise maps and are denoised independently. We
use a solution similar to [33]: we add data communication
among the diffusion processes and fine-tune the model on
multi-view image dataset to learn multi-view conditioning.
Implementation-wise, we synchronize all the diffusion pro-
cesses. When the calculation reaches a self-attention layer,
we gather all the intermediate results as queries and values
instead of just using the results from the current branch. Be-
cause images are treated as sequential inputs, the additional
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Algorithm 1: Multi-view Geometry Optimization
Input: Multi-view normal maps Ii and camera

parameters πi, where i ∈ {0, 1, 2, 3}
Output: M = (V, F ) output triangle mesh
Parameters:

T : max number of optimization iterations
λα, λnc: weights for alpha and normal consistency loss

Vocc ← InitOccupancyVolume
for i ∈ {0, 1, 2, 3} do

Compute alpha mask αi← thresholding(Ii)
Update Vocc← SpaceCarving(αi, πi)

end

M ←MarchingCubes(Vocc)
M ←MeshSimplification(M )

for iter← T do
Î , α̂← DifferentiableRender(M,π)
loss← Ln(I, Î) + λαLα(α, α̂) + λncLnc(M)
Optimize(loss)
M ← Remesh(M )

end

information can be simply concatenated together without
introducing more trainable parameters. This architecture
ensures that the diffusion processes are mutually condi-
tioned, which serves as a structural prerequisite for multi-
view consistent generation.

3.3. Explicit Multi-view 2.5D Fusion

There are various approaches available for constructing a
3D model from multi-view observations. Among them,
image-based 3D reconstruction methods such as multi-view
stereo [9, 43, 44, 46] or NeRF [1, 8, 24, 25] requires at least
10 images for high-fidelity reconstruction, which pose sig-
nificant computational challenges in multi-view diffusion
scenarios. However, by taking benefits from 2.5D infor-
mation, one could effectively reduce this requirement. In
practice, we generate 4 normal maps aligned with world co-
ordinates from different viewpoints (front, left, right, and
back). To fuse these observations into a triangle mesh,
we explore the insight of geometry optimization from an
initialized mesh via differentiable rasterization. This opti-
mization, which is independent of neural network inference,
achieves convergence rapidly within seconds (see Alg. 1).
Space Carving Initialization. A simplistic and straightfor-
ward approach would be to initialize the shape using basic
geometric primitives like spheres and cubes and optimize.
However, this often introduces significant challenges dur-
ing the latter geometry optimization, particularly when the
target shape’s topology diverges significantly from these el-
ementary forms. To tackle this challenge, we employ the
space carving algorithm [13] for shape topology initializa-
tion. Besides, it also provides a good initialization for latter

(b) Space Carving Initialization

(a) Generated Multi-view Normal Images

(c) Optimization (50th step)

(e) Optimization (200th step)(d) Optimization (100th step)

Figure 2. Illustration of explicit geometry optimization. (a) is
the generated normal images given a prompt ”a DSLR photo of
a pirate collie dog, high resolution”. (b) shows the space carving
initialization results mesh in the front and side views. (c), (d), (e)
present the intermediate optimization states at 50, 100, 200 steps,
separately. As shown, 200 steps are enough to reconstruct the fine
details like the skin folds of the dog’s face and the thin dog tail.

geometry optimization. Fig. 2 (a) shows the space carving
results. Specifically, this process begins by segregating the
background normal maps through a simple value threshold-
ing. Subsequently, a volume in the interested space is cre-
ated, and each voxel is projected onto the images using the
camera parameters, determining whether the corresponding
pixel is part of the object or the background. By gathering
all projections under different views, we construct an oc-
cupancy volume, in which a voxel’s occupancy is set to 0
(indicating emptiness) if all of its projections belong to the
background, and 1 (indicating occupancy) otherwise. Fi-
nally, we apply the marching cubes [20] on the occupancy
volume to extract the zero level-set surface to form the ini-
tialized shape. This technique not only effectively preserves
the topology, but also provides a rough shape estimation
generated from the multi-view normal images.
Optimization via Differentiable Rasterization. Once we
have obtained the initialized geometry, we further refine the
mesh details based on observational data. This refinement
is mathematically formulated as an optimization problem,
targeting the triangle triangle vertices V and faces F . As
illustrated in Alg. 1 and Fig. 2, we first simply the march-
ing cube-generated mesh to a lower face number, which is
found to help accelerate and improve the optimization. In
each optimization step, we optimize the model by minimiz-
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Figure 3. A gallery of our text-to-3d generation results. Given text prompts as description input, our method outputs high-quality textured
triangle mesh in only 10 seconds. Note that the prompts are not from the training set. Best viewed zoomed in.

ing the L1 loss between the rendered results and observa-
tions, as well as a normal consistency regularization. The
loss function could be written as follows:

LV = Ln + λαLα + λncLnc, (2)

where Ln = 1
4

∑4
i ||ni − n̂i||1 is the normal render-

ing loss. It measures the mean L1 distance between ren-
dered normal maps n and the observations n̂ under differ-
ent camera viewpoints i ∈ {0, 1, 2, 3}. Similarly, Lα =
1
4

∑4
i ||αi − α̂i||1 is the alpha mask loss, which computes

the difference between rasterized object mask α and the ob-
served α̂, and the latter could be obtained by a simple value
thresholding δ = 0.05 in the generated normal maps.

We additionally integrate a normal consistency term, de-
noted as Lnc to regularize the mesh. Specifically, this regu-
larization is designed to smooth the mesh on a global scale
by minimizing the negative cosine similarity between con-
nected face normals. The hyperparameters λα, λnc which

control the different weights for alpha mask loss and nor-
mal consistency regularization are set to 1 and 0.1 respec-
tively. We adopt the nvdiffrast library [14] for differentiable
rasterization.

After each optimization step, we further perform
remeshing by merging or splitting triangle faces using the
strategy from [27]. During experiments, we empirically
found that only about 200 optimization steps are enough
to generate a high-quality geometry mesh, which takes only
around 2 to 3 seconds. As shown in the fig. 2 (c-e), the dog
shape has been well optimized at around 200 steps.

3.4. Texture Synthesis

Texturing the mesh is another crucial step in achieving a
high-quality result. Similar to the geometry generation, we
initially synthesized multi-view texture maps, which were
then applied to the generated geometry. In practice, an-
other multi-view diffusion model generates the correspond-
ing multi-view texture maps, conditioned on text prompts
and the multi-view normal images.
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Figure 4. Qualitative comparisons. Direct 3D diffusion systems are not well generalized to the complex prompts. SDS-based methods
except MVDream are slow and suffered from multi-face and over-saturation problems. MVDream can generate realistic geometry and
appearance with fine details but has limited diversity (Fig. 5). In contrast, our system can generate realistic 3D models efficiently. Input
prompts: 1) a zoomed out DSLR photo of a wizard raccoon casting a spell, 2) a DSLR photo of a turtle standing on its hind legs, wearing
a top hat and holding a cane, 3) a DSLR photo of a pirate collie dog, high resolution, and 4) a DSLR photo of a robot tiger.

As shown in figure 1, the architecture of the multi-view
normal-conditioned diffusion model is similar to the text-
to-normal model, except that we extend the first convolu-
tion layer by increasing the number of channels to satisfy
the normal latent condition input. Specifically, we initial-
ize the extra trainable parameters in the first layer to zero
before training. The normal condition plays a pivotal role
in shape information and guides the model to generate both
text- and shape-aligned texture images. We further apply
super-resolution, i.e., Real-ESRGAN [41] on the generated
texture maps to increase more appearance details, resulting
in a 4 × resolution upscale from 256× 256 to 1024× 1024.

After obtaining the high-resolution RGB images, the fi-
nal stage is to project these images to the shape geometry
and generate a global texture. We perform UV parameteri-
zation and the Poisson blending algorithm [38] to alleviate
multi-view inconsistency.

Iterative updating. In most cases, a single run of the
pipeline is enough to generate high-quality results. How-
ever, since we generate 4-view information at once, there
may be some areas unobserved in the generated RGB im-

ages (such as the top area of the object), and a texture refine-
ment is required. To address this issue, we could iteratively
update the generated images by using popular inpainting
[21] pipelines in diffusion models to refine the generated
textures. By computing a visibility mask at a new camera
viewpoint, the invisible areas could be generated given a
certain noise strength. During experiments, we found that
only 1 or 2 iterations are enough to inpaint the unseen areas.

4. Implementation Details
In the following, we describe the aspects relevant to our sys-
tem implementation details: dataset preparation in Sec. 4.1
and training setups in Sec. 4.2.

4.1. Dataset Preparation

We use the Objaverse [7] dataset for 2.5D training data gen-
eration, which is a large-scale 3D object dataset containing
800K high-quality models. We use the captions provided
by cap3d [23] as text prompts. We filter the dataset by sort-
ing the CLIP scores and selecting the top 500K objects with
high text-image consistency. Each object is firstly normal-
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ized at the center, and we render the scene from 32 view-
points uniformly distributed in azimuth angles.

Besides, we also adopt a large-scale 2D image-text
dataset to improve the generation diversity. Specifically,
we use the COYO-700M dataset [2], which also contains
metadata like resolution and CLIP scores [29]. We filter
the dataset with both width and height greater than 512,
aesthetic scores [31] greater than 5, and watermark scores
lower than 0.5, which results in a 65M-size subset. Though
the filtered dataset is reduced to 1/10 of the original size, it
is still larger than the 3D dataset. Actually, we do not use
the whole filtered dataset during training.

Please check the supplementary for more details.

4.2. Training Setup

As introduced above, we train the model with both 2.5D
rendered images and natural images, with a probability of
80% to select the former. This makes the instances seen in
each batch nearly equal for two kinds of data. We use the
Stable Diffusion v2.1 base model as our backbone model
and fine-tune the latent UNet only for another 50K steps
with 1000 warmup steps. Similar to Zero123 [16], we use
an image sample size of 256 × 256 for better and faster
training convergence. The learning rate is set to 1e − 5.
We drop the text prompt conditioning with a probability of
15% and apply a noise offset of 0.05. The full training
procedure is conducted on 32 NVIDIA A100 80G GPUs
(800K steps for the text-to-normal model and 18K steps for
the normal-conditioned RGB model, which takes around 80
and 20 hours separately). The batch size is set to 45 on each
GPU which leads to a total batch size of 1440.

5. Experiments

In the following, we represent the experiment results of our
approach and evaluate the design of our system, including
qualitative comparisons against state-of-the-art techniques
and quantitative evaluations of model performances.

5.1. Text-to-3D contents generation

Given a random input text prompt, the proposed system is
able to generate a high-fidelity 3D triangle mesh. Fig. 3
shows a gallery of our generation results. Generated multi-
view normal and RGB images are also presented beside the
3D mesh. Our multi-view normal diffusion model is able
to generate high-quality normal maps with expressive ge-
ometry details, and the normal-conditioned RGB diffusion
model also generates detailed textures aligned with input
normal maps, which validates the effectiveness of our cross-
view attention design. All prompts used are unseen during
training, which proves the generalization ability.

�����������	�
������	�������������������������	�����������
��
������	�����������	�������������������������	���

������ !"�#
������ !"�#

Figure 5. Comparison of sample diversity. Multiple samples are
generated from the same prompt with different seeds. Our method
is able to generate various samples while MVDream generates ex-
tremely similar results due to the SDS’s mode-seeking nature.

5.2. Qualitative and Quantitative Evaluation

Qualitative evaluation. In this section we compare our
method with SDS-based methods including DreamFusion
[28], Fantasia3D [6], and MVDream [33]. We also com-
pare with the direct 3D generation methods including Point-
E [26] and Shap-E [12]. The text prompts are provided
from DreamFusion, which were unseen during the fine-
tuning for MVDream and ours. Fig. 4 illustrates quali-
tative comparisons of the renderings. It is clearly found
that Point-E and Shap-E fail to generate reasonable text-
aligned results. These direct 3D-based generation methods
were trained on the relatively small 3D dataset compared
to large-scale 2D text-image datasets, leading to poor gen-
eralization ability. Besides, DreamFusion and Fantasia3D
suffer from the multi-face problem, while the results from
the latter contain more details because of the supervision on
geometry only. The rest two methods are 3D-aware so are
able to produce reasonable 3D topology. MVDream gen-
erally achieves better visual quality, while our results are
more consistent with the text prompts and take much less
time to generate (35 mins v.s. 10s).
Sample diversity. Here, we compare the diversity of gen-
erated samples with MVDream. In this experiment, We
generate 10 samples with the same prompt but different
seeds. Fig. 5 presents the experiment results. Although
both multi-view diffusion models are regularized by large-
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Settings \ Metrics FID(↓) IS (↑) CLIP (↑)

Groundtruth normal renderings − 9.17 0.279
(T2N) w/o 2D joint training 43.61 8.94 0.270
(T2N) fewer 3D training data 37.29 9.44 0.294
(T2N) proposed 36.08 9.39 0.289

Groundtruth RGB renderings − 11.31 0.261
(N2I) proposed 35.40 11.25 0.257

Table 1. We evaluate the proposed two multi-view diffusion mod-
els by computing. FID [11] (lower is better), IS [30] (higher is
better), and CLIP scores [29] (higher is better) are used to mea-
sure the performance of different model variants.

scale image-caption datasets to prevent overfitting on the
3D dataset, the results from MVDream still collapse to a
single type because of the mode-seeking nature of SDS. On
the contrary, our method can still keep the content diversity
of the pre-trained diffusion model because the construction
of 3D models is independent of the diffusion process, which
would faithfully follow the random denoising process.
Quantitative evaluation. In the following, we quantita-
tively evaluate image generation quality and the text-image
consistency of the proposed two novel multi-view diffu-
sion models. Table 2 demonstrates the evaluation results.
Specifically, Frechet Inception Distance (FID) [11] and In-
ception Score (IS) [30] are adopted to measure the genera-
tion image quality and CLIP score cosine similarity [29] is
calculated to measure the text-image consistency. We ran-
domly select 2000 subjects as well as their multi-view RGB
and normal renderings in the Objaverse [7] dataset as our
evaluation database. FID and IS are calculated indepen-
dently of viewpoints while the CLIP similarity is selected
as the max value across all 4-view scores.

In general, we find that the proposed model achieves
similar or even better results compared to the groundtruth
renderings, which proves the high image quality and image-
text consistency. We also evaluate the training strategies
used in multi-view normal diffusion training, including us-
ing 2D large-scale dataset joint training, using higher con-
sistency but fewer 3D subjects for training. It is clearly
shown that the performance drastically drops when training
without a 2D wild dataset injection. We believe that this is
because fine-tuning purely multi-view normal data, would
lead to a catastrophic forgetting of the original learned dis-
tribution and leads to poor learning ability. Training using
fewer but higher text-consistent data leads to better IS and
CLIP similarities, but worse FID. In practice, we found this
model has lower generalization ability and diversity com-
pared to the model that used more 3D data.

We also compare to previous SOTA methods quantita-
tively in Table 2. We randomly selected 50 prompts from
Dreamfusion, not seen during our method and MVDream’s
fine-tuning, as the evaluation set. We adopt IS, CLIP scores
and FID (Objaverse rendering and COCO validation set) to

Methods \ Metrics IS (↑) CLIP (↑) FID (↓ objv.) FID (↓ COCO) Run Time

Point-E 7.265 0.220 104.105 164.765 ∼ 20 s
Shap-E 7.412 0.236 103.557 163.105 ∼ 4 s

Dreamfusion 7.724 0.245 125.873 150.285 ∼ 50 m
Fantasia3d 8.311 0.207 132.941 150.255 ∼ 115 m
ProlificDreamer 9.457 0.269 121.577 124.185 ∼ 5 h
MVDream 8.180 0.262 117.715 133.089 ∼ 35 m

Ours 8.111 0.267 82.324 126.014 ∼ 10 s

Table 2. Quantitative comparisons with previous methods.

evaluate rendering results. Running time is also preseneted.
Our method outperforms direct 3D diffusion methods sig-
nificantly across all metrics and is on par with state-of-the-
art SDS-based methods. Our method achieves slightly bet-
ter CLIP scores and FID but worse IS compared to MV-
Dream, and consumes significantly less time for generation.

Please check the supplementary for more evaluations.

6. Limitations and Future Work

Limited view numbers. Due to the small view number,
areas such as top, bottom and concavity cannot be fully ob-
served, and thus their geometry or appearance cannot be
well reconstructed. Apart from the iterative update scheme,
the multi-view diffusion can be extended to more views.
Texture quality. For the appearance, we finetune a multi-
view normal-conditioned diffusion model for efficiency.
However, the ability of generating realistic images is de-
graded due to the texture quality of the 3D training samples
and their rendering quality. Apart from further enhancing
the training samples, we can also apply the state-of-the-art
texture generation systems [4] for non-time-sensitive tasks.

Please check the supplementary for more discussions.

7. Conclusion

We propose to perform fast text-to-3D generation by fine-
tuning a multi-view 2.5D diffusion from pre-trained RGB
diffusion models. To learn multi-view consistency, the
model is fine-tuned on multi-view normal map renderings,
with cross-view attention as the structural guarantee. Af-
ter the simultaneous generation of multi-view normal maps,
3D models are obtained by deforming meshes by differ-
entiable rasterization. Finally, appearance is generated by
multi-view normal-conditioned RGB diffusion. Our gener-
ation pipeline produces diverse and high-quality 3D mod-
els in 10 seconds, and demonstrates strong generalization
to complex content and generates fine details. Extensive
experiments are conducted to show that our method enables
fast generation of realistic, complex, and diverse models.
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