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Abstract

Federated Learning (FL) enables joint training across
distributed clients using their local data privately. Fed-
erated Multi-Task Learning (FMTL) builds on FL to han-
dle multiple tasks, assuming model congruity that identi-
cal model architecture is deployed in each client. To relax
this assumption and thus extend real-world applicability,
we introduce a novel problem setting, Hetero-Client Fed-
erated Multi-Task Learning (HC-FMTL), to accommodate
diverse task setups. The main challenge of HC-FMTL is
the model incongruity issue that invalidates conventional
aggregation methods. It also escalates the difficulties in
model aggregation to deal with data and task heterogene-
ity inherent in FMTL. To address these challenges, we pro-
pose the FedHCA2 framework, which allows for federated
training of personalized models by modeling relationships
among heterogeneous clients. Drawing on our theoretical
insights into the difference between multi-task and federated
optimization, we propose the Hyper Conflict-Averse Aggre-
gation scheme to mitigate conflicts during encoder updates.
Additionally, inspired by task interaction in MTL, the Hyper
Cross Attention Aggregation scheme uses layer-wise cross
attention to enhance decoder interactions while alleviating
model incongruity. Moreover, we employ learnable Hyper
Aggregation Weights for each client to customize person-
alized parameter updates. Extensive experiments demon-
strate the superior performance of FedHCA2 in various HC-
FMTL scenarios compared to representative methods. Code
is available at https://github.com/innovator-zero/FedHCA2.

1. Introduction

Federated Learning (FL) [32] has emerged as a prominent
paradigm in distributed training, gaining attention in both
academic and industrial fields [4, 5, 17, 28, 83]. The FL
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Figure 1. Comparison of different settings in FMTL. (a) Each
client is dedicated to a single task. (b) Clients are grouped with
peers, and peers in the same group share identical task setting. (c)
Our proposed HC-FMTL setting that enables flexible collabora-
tion among clients with different task setups.

framework empowers to collaboratively train models across
multiple clients, like mobile devices or distributed data cen-
ters, while preserving data privacy and reducing communi-
cation costs. The impetus behind FL lies in the recogni-
tion that harnessing a broader dataset can improve model
performance, but it also introduces the data heterogeneity
issue, as clients often collect samples from non-i.i.d. data
distributions. Nevertheless, most FL research is centered on
single-task scenarios, overlooking applications that demand
simultaneous multi-task processing, e.g., autonomous driv-
ing [23]. This gap has led to the integration of Multi-Task
Learning (MTL) with FL, giving rise to Federated Multi-
Task Learning (FMTL) [22, 56]. While existing FMTL ap-
proaches primarily address statistical challenges [53, 70],
recent studies [8, 12, 60, 96] have highlighted the impor-
tance of task heterogeneity, particularly for dense predic-
tions such as semantic segmentation and depth estimation
[11, 62, 79].

However, these FMTL methods often assume model
congruity among clients, i.e., all participants either engage
in a single task or aggregate with peers handling identical
task sets, as shown in Fig. 1(a) and (b). Considering the
discrepancy of heterogeneous tasks in practical applications
as well as the expensive labor of annotating task-specific la-
bels, clients often have different task setups in different en-
vironments. Here task setup describes a set of tasks that
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can vary in both number and type. We define this as a
new problem setting: Hetero-Client Federated Multi-Task
Learning (HC-FMTL), as depicted in Fig. 1(c). HC-FMTL
relaxes these constraints, facilitating more flexible collabo-
rative learning of various tasks across diverse private data
domains and making scenarios more universally applicable.

As a more pervasive setting relaxed from FMTL, HC-
FMTL introduces an additional challenge of model incon-
gruity, which exacerbates client heterogeneity. This issue
arises from clients having different task setups, coupled
with the prevalent use of encoder-decoder architectures in
vision tasks, leading to a disparity in multi-task model struc-
tures. Model incongruity not only increases the complexity
of model aggregation but also coexists with the data and
task heterogeneity inherent in FMTL. Data heterogeneity
is a consequence of clients encountering distinct data do-
mains, as clients tend to use data from different domains
to handle different target tasks without any overlap, which
can result in performance degradation of collective learning.
Meanwhile, task heterogeneity, which assigns different ob-
jectives for each task, could impede joint optimization and
magnify the influence of data heterogeneity.

In this paper, we propose a novel framework named
FEDHCA2, designed for HC-FMTL. Our goal is to adap-
tively discern the relationships among heterogeneous clients
and learn personalized yet globally collaborative models
that benefit from both synergies and distinctions among
clients and tasks. Since model incongruity precludes
the straightforward application of conventional aggregation
methods in FL, our approach involves the server disassem-
bling client models into encoders and decoders for decou-
pled aggregation. For the encoders, we design the Hy-
per Conflict-Averse Aggregation scheme to alleviate up-
date conflicts among clients. The motivation behind this
is grounded in our theoretical analysis (see Theorem 1) that
the optimization processes of MTL and FL are closely con-
nected and share similarities. By incorporating an approxi-
mated gradient smoothing technique, we can find an appro-
priate update direction for all clients that mitigates the nega-
tive effects of conflicting parameter updates caused by data
and task heterogeneity. When aggregating the decoders, we
devise the Hyper Cross Attention Aggregation scheme by
drawing inspiration from the modeling of task interaction in
MTL [57, 81] and applying it to FL. Specifically, we imple-
ment a layer-wise cross attention mechanism to model the
interplay between client decoders, enabling the capture of
both the commonalities and discrepancies among different
tasks in a fine-grained manner and thereby alleviating the
incongruity at the model level. In addition, the personalized
parameter updates for each client are tailored by learnable
Hyper Aggregation Weights, which encourage encoders and
decoders to adaptively assimilate knowledge from peers that
offer helpful complementary information.

Our contributions are summarized as follows:
• We introduce a novel setting of Hetero-Client Fed-

erated Multi-Task Learning (HC-FMTL) alongside the
FEDHCA2 framework. It supports collaborative training
across clients, each with its unique task setups, address-
ing the complexities of data and task heterogeneity, and
the newly identified challenge of model incongruity. The
relaxed setting broadens the FMTL’s applicability to in-
clude a wider variety of clients, tasks, and data situations.

• We reveal the connection between the optimization of
MTL and FL in Theorem 1 and underscore the impor-
tance of circumventing update conflicts among clients,
which are exacerbated by data and task heterogeneity in
HC-FMTL. We propose a Hyper Conflict-Averse Aggre-
gation scheme, designed to alleviate the adverse effects
on encoders when absorbing shared knowledge.

• We develop a Hyper Cross Attention Aggregation scheme
to facilitate task interaction in decoders by modeling the
fine-grained cross-task relationships among each decoder
layer, tackling both intra- and inter-client heterogeneity.

• We evaluate FEDHCA2 using a composite of two bench-
mark datasets, PASCAL-Context and NYUD-v2, for vari-
ous HC-FMTL scenarios. Extensive experiments demon-
strate that our approach outperforms existing methods.

2. Related Work
2.1. Personalized Federated Learning

Federated Learning (FL) can be broadly classified into tra-
ditional and personalized types, depending on the charac-
teristics of data distribution [43, 73]. Traditional Feder-
ated Learning, exemplified by the widely used FedAvg [55],
has undergone refinements to tackle challenges such as data
heterogeneity [1, 34, 35, 77, 78, 87, 89, 95], communi-
cation efficiency [18, 30, 33, 54, 94], and privacy con-
cerns [3, 26]. In contrast, personalized Federated Learn-
ing (pFL) emerges as a specialized variant designed to
cater to individual client needs and address data hetero-
geneity more effectively [70, 73]. Techniques like meta-
learning [19], regularization [25, 36, 72], personalized-head
methods [2, 10, 15, 59, 63, 67], and other innovative ap-
proaches [37, 38, 84] are widely employed in pFL. In
essence, both traditional FL and pFL aim to grapple with
the inherent challenge of data heterogeneity.

2.2. Multi-Task Learning

Multi-Task Learning (MTL) aims to improve overall per-
formance while reducing parameters and speeding up train-
ing or inference compared to training individual models
for each task in isolation [9, 16, 64, 75]. The main direc-
tions of MTL research can be roughly categorized into net-
work architecture design and multi-task optimization strat-
egy [16]. Network structure design employs methods such
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Figure 2. Illustration of the HC-FMTL setting and our proposed FEDHCA2 framework. HC-FMTL enables clients to have different
task setups, from single-task (e.g. client C1, C2, C3) to multi-task (e.g. client Ci, CN ). HC-FMTL faces three main challenges: model
incongruity due to different client model structures, data heterogeneity from different local data domains, and task heterogeneity from
varied target tasks. The FL system includes a server and several clients. Our framework decomposes model aggregation into two parts:
Hyper Conflict-Averse Aggregation for encoders and Hyper Cross Attention Aggregation for decoders. Learnable Hyper Aggregation
Weights are employed to customize personalized parameter updates and are iteratively updated by local model updates from clients.

as parameter sharing [29, 48, 49, 52, 65, 71], task inter-
action [24, 45, 69, 82, 90, 91, 93], and prediction distilla-
tion [74, 86, 92]. Regarding multi-task optimization, strate-
gies are differentiated into loss balancing and gradient bal-
ancing. Loss balancing techniques are designed to produce
suitable loss weights to reduce conflicts among multiple
tasks [31, 41, 42, 85]. Gradient balancing, on the other
hand, addresses task interference by directly adjusting gra-
dients, with recent methods concentrating on the formu-
lation of a unified gradient vector subject to diverse con-
straints [13, 14, 27, 39, 66, 80, 88]. In essence, MTL is
dedicated to addressing the intrinsic challenges associated
with the heterogeneity of tasks.

2.3. Federated Multi-Task Learning

It is essential to note that conventional Federated Multi-
Task Learning (FMTL) is a branch of personalized Fed-
erated Learning that primarily deals with data heterogene-
ity across clients [22, 40, 56]. Representative works like
MOCHA [70], FedSTA [60], and FedEM [53] attempt to
train models across clients with diverse data distributions
within an MTL setting. Recent advancements, including
FedBone [12], MAS [96], and MaT-FL [8], have aimed to
address both task and data heterogeneity in FMTL. Fed-
Bone aggregates the encoders by gradients uploaded from
each client, enhancing feature extraction capability. MaT-
FL uses dynamic grouping to combine different clients.
MAS distributes varied multi-task models to clients and ag-
gregates models among those with the same task sets. Nev-

ertheless, FedBone and MaT-FL are limited to each client
managing a single task (Fig. 1a). MAS supports multi-task
clients but is still limited to identical task sets for aggrega-
tion (Fig. 1b). In contrast, our proposed framework enables
aggregation across clients with varying numbers and types
of tasks, offering a more flexible collaboration.

3. Methodology

3.1. Preliminary

Within Hetero-Client Federated Multi-Task Learning (HC-
FMTL), clients are assigned flexible task setups, spanning
from single-task to multi-task configurations, with an arbi-
trary number of tasks per client. Formally, given a pool of
N clients, with client Ci addressing task sets Ti on a cor-
responding local dataset Di = {(xn,yn)}|Di|

n=1, where xn is
the input sample and yn =

⋃
t∈Ti

yn,t contains the ground-
truth labels for all tasks in Ti.

In line with FMTL, the objective of HC-FMTL is to train
client-specific models θ = {θ1, . . . , θN} that benefit from
collaborative optimization with other clients, thus improv-
ing performance on their local tasks. The learning objective
is to optimize personalized client models with Multi-Task
Learning, formulated as follows:

min
θi

∑
t∈Ti

Li,t(θi), ∀i ∈ {1, . . . , N}, (1)

where Li,t is the loss function computed over client Ci’s
local dataset Di for task t.
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3.2. Architecture Overview

The overall architecture of our proposed FEDHCA2 is de-
picted in Fig. 2. It contains a pool of clients that perform
local training on their private datasets and a server that coor-
dinates the aggregation of models from these clients. Con-
cerning dense prediction tasks, each client Ci utilizes an
encoder-decoder structure consisting of a shared encoder
θEi , task-specific decoders {θD,1i , . . . , θ

D,|Ti|
i } and predic-

tion heads for each task type they handle. In each commu-
nication round r, after all clients finish their local training,
they send the model parameters of previous round θ(r−1)

and the updates in current round ∆θ(r) to the server. The
server first disassembles these models into encoders and
decoders and then performs independent aggregation pro-
cesses. The prediction heads, due to their varying parame-
ter dimensions tailored to specific task outputs, are excluded
from the aggregation process and remain localized to indi-
vidual clients. The encoder parameters from all N clients
undergo Hyper Conflict-Averse Aggregation. Meanwhile,
the server aggregates the parameters of all K =

∑N
i=1 |Ti|

decoders through Hyper Cross Attention Aggregation. The
entire pipeline of our framework is outlined in Algorithm 1.

Algorithm 1 Pseudo-codes for FEDHCA2

Input: N clients {C1, . . . , CN} with private local datasets
{D1, . . . ,DN}, client Ci addresses tasks Ti, total communi-
cation rounds R, local epoch E, learning rate η

Output: Trained models θ(R) = {θ(R)
1 , . . . , θ

(R)
N }

1: Clients initialize models θ(0) = {θ(0)1 , . . . , θ
(0)
N }, each model

θi consists of a shared encoder θEi and |Ti| task-specific de-
coders

⋃|Ti|
j=1 θ

D,j
i and heads

2: Server initializes Hyper Aggregation Weights α and β

3: procedure SERVER UPDATE

4: for each communication round r ∈ {1, . . . , R} do
5: for each client Ci in parallel do
6: ∆θ

(r)
i ← CLIENT UPDATE(θ

(r−1)
i )

7: end for
8: Server gathers updates of client models ∆θ(r)

9: Update α,β using ∆θ(r) with Eq. (17)
10: θ(r) ← AGGREGATION(θ(r−1),∆θ(r),α,β)
11: end for
12: end procedure
13: procedure CLIENT UPDATE(θ(r−1)

i )
14: θi ← θ

(r−1)
i

15: for each local epoch e ∈ {1, . . . , E} do
16: for mini-batch Bi ⊂ Di do
17: Compute losses Li =

∑|Ti|
j=1 L

j
i (θi;Bi)

18: Update model θi ← θi − η∇θiLi

19: end for
20: end for
21: return ∆θ

(r)
i = θi − θ

(r−1)
i

22: end procedure

Shared
Encoder

Decoder1

Head1

Decoder2

Head2

Encoder1

Decoder1

Head1

Decoder2

Head2

Encoder2

Client 1 Client 2

Aggregation
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Figure 3. Comparison of optimization in MTL and FL. (a) The
shared encoder in MTL is updated by gradient accumulation from
all tasks. (b) The clients’ encoders are updated independently and
then aggregated with each other in FL.

3.3. Hyper Conflict-Averse Aggregation

In MTL, the encoder typically employs a parameter-sharing
mechanism to capture common task-agnostic information,
thereby serving as a general feature extractor for all tasks
and enhancing their generalization capabilities [16, 64].
Within our encoder aggregation process, we anticipate that
encoders from various clients, each addressing distinct tasks
on different data domains, are able to acquire general
knowledge from other client encoders akin to MTL. To elu-
cidate this, we begin with a theoretical analysis of the corre-
lation between the optimization processes of MTL and FL.

As depicted in Fig. 3(a), consider an MTL scenario
where N tasks are learned simultaneously using a standard
multi-decoder architecture. In each mini-batch, the net-
work backpropagates the loss functions L1, . . . ,LN onto
the shared encoder parameters θE to calculate its gradient
and update:

g =

N∑
i=1

gi =

N∑
i=1

∇θELi, (2)

∆θE = −ηg = −η
N∑
i=1

gi, (3)

where g represents the cumulative gradient on the encoder
and η signifies the learning rate. By updating through the
summation of gradients from diverse tasks, the encoder as-
similates knowledge from various task domains, aligning
with the objective of MTL. Meanwhile, in an FL setting
shown in Fig. 3(b), suppose there are N clients, each using
separate networks with the same architectures as the multi-
task model but with independent encoders θE1 , . . . , θ

E
N to

learn the same N tasks. Assuming identical initial weights
θE with MTL, and they are trained for only one mini-batch
to obtain gradients gi = ∇θELi. FL typically aggregates
these encoders by averaging the parameters of all clients:

θ̃Ei =
1

N

N∑
i=1

θEi , (4)

where θ̃Ei is the aggregated encoder parameters. Consider-
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ing its change from the initial weight:

∆θ̃Ei =
1

N

N∑
i=1

∆θEi =
1

N
(−η)

N∑
i=1

gi, (5)

it means the update for the aggregated encoder mirrors the
update of the shared encoder in MTL, if we regard the opti-
mizer as capable of automatically scaling the learning rate η
in Eq. (3). While FL typically aggregates client models af-
ter several local training epochs in a single communication
round, this implies that there can be differences between the
learning processes of MTL and FL:
Theorem 1 (Difference in optimizing MTL and FL)
Given clients with a shared encoder and multiple task-
specific decoders structure, the gradient descent in the
shared encoder of Multi-Task Learning is equivalent to
averaging parameter aggregation in Federated Learning,
adding an extra term ∇θ(0)⟨ĝ

(p)
i , ĝ

(q)
j ⟩ that maximizes the

inner product of gradients ĝ(p)i and ĝ(q)j between all pairs
of tasks i and j in each iteration p and q.

We provide definitions, proofs, and in-depth analysis in
Appendix A. As the inner product of gradients is a measure-
ment of accordance, maximizing the inner product is equal
to reducing the conflict of gradients [50]. Hence, Theorem 1
states the necessity of integrating optimization techniques
to mitigate gradient conflicts during encoder aggregation in
HC-FMTL. Inspired by CAGrad [39], for each communica-
tion round, we aim to find an optimal aggregated update Ũ
for the encoders that minimizes conflicts while optimizing
the main objective with optimization problem:

max
Ũ

min
i
⟨∆θEi , Ũ⟩ s.t.∥Ũ −∆θ̄E∥ ≤ c∥∆θ̄E∥, (6)

where ∆θ̄E = 1
N

∑N
i=1 ∆θ

E
i is the average parameter up-

date and c ∈ [0, 1) is a hyper-parameter controlling the
convergence rate. Here mini⟨∆θEi , Ũ⟩ measures the maxi-
mum conflict between client updates and the target update,
which is an approximation to the conflict between gradi-
ents, as the server only receives parameter updates after
several local training epochs rather than the gradients in
each iteration. Therefore, maximizing this term can min-
imize the conflict in parameter optimization, which is con-
sistent with our findings in Theorem 1. With constraint∑N
i=1 wi = 1, wi ≥ 0, solving this problem using La-

grangian simplifies to:

min
w
F (w) = U⊤

w∆θ̄E +
√
ϕ∥Uw∥, (7)

where Uw =
1

N

N∑
i=1

wi∆θ
E
i , ϕ = c2∥∆θ̄E∥2. (8)

Upon finding the optimum w∗ and the optimal λ∗ =
||Uw∗ || /ϕ1/2, we have the unified aggregated update for en-
coder parameters:

Ũ = ∆θ̄E + Uw∗/λ∗ = ∆θ̄E +

√
ϕ

∥Uw∥
Uw. (9)

3.4. Hyper Cross Attention Aggregation

The significance of task interaction in MTL is well-
established [7, 20, 57, 74, 81], as it allows for exchanging
knowledge among tasks and benefiting from complemen-
tary information. In representative methods [57, 81], task
interaction is facilitated by adding the target task’s feature
with those from source tasks in decoders, formulated as:

zDi =

N∑
j=1

γi,j(θ
D
j )

⊤zE , ∀i ∈ {1, . . . , N}, (10)

where zE denotes the output feature of the shared encoder,
θDj represents the decoder of task j, and (θDj )

⊤zE yields
task-specific feature from the decoder. The coefficient γi,j
manages the flow of feature from source task j to target task
i within the interaction and is usually a learnable parameter
representing the inter-task correlation. To emulate this task
interaction within the FL context, we intuitively aggregate
the decoder parameters as follows:

θ̃Di =

N∑
j=1

γi,j θ
D
j . (11)

Due to model incongruity in the HC-FMTL environ-
ment, the decoder parameters sent to the server originate
from diverse clients with heterogeneous tasks. This intri-
cacy leads to a complex landscape where decoders may
align or diverge in both data domain and task type, requiring
the aggregation process to discern the nuanced relationships
among them. Our approach improves the naive decoder ag-
gregation by adopting a cross attention mechanism to fur-
ther promote the exchange of inter-task knowledge among
clients with model incongruity. It calculates dependencies
among the local updates of K decoders, thereby modeling
the interplay among tasks.

Recognizing that decoders often exhibit varied utilities
across different network layers [6, 21, 47, 76], we further
apply a layer-wise strategy [51] to precisely capture the
cross-task attention at each decoder layer, allowing for a
more fine-grained personalized aggregation that can benefit
the transfer of task-specific knowledge. The computation of
aggregation based on cross attention is defined as:

Vl = [∆θD1,l, . . . ,∆θ
D
K,l]

⊤, (12)

Ãi,l = Softmax(∆θDi,l V
⊤
l /

√
d)Vl, (13)

where [·, ·] indicates concatenation, ∆θi,l and Ãi,l are the
original update and aggregated update for the l-th layer of
the i-th decoder, with a dimension of d.

3.5. Hyper Aggregation Weights

As pointed out by pFL, a unified update for all clients is re-
stricted in addressing client heterogeneity. Hence, we pro-
pose Hyper Aggregation Weights, which adaptively assess
the importance of the aggregated parameters from peers and
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Table 1. Comparison to representative methods using PASCAL-Context for five Single-Task clients and NYUD-v2 for one Multi-Task
client. ‘↑’ means higher is better and ‘↓’ means lower is better. ‘∆m%’ denotes the average performance drop w.r.t. local baseline.

Method
PASCAL-Context (ST) NYUD-v2 (MT)

∆m% ↑SemSeg Parts Sal Normals Edge SemSeg Depth Normals Edge
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑ mIoU↑ RMSE↓ mErr↓ odsF↑

Local 51.69 49.94 80.91 15.76 71.95 41.86 0.6487 20.59 76.46 0.00
FedAvg [55] 39.98 37.33 77.56 18.27 69.17 38.94 0.7858 21.62 75.77 -11.76
FedProx [35] 44.42 38.10 77.26 18.03 69.39 39.19 0.8068 21.52 76.03 -10.68

FedPer [2] 54.51 46.56 78.85 16.95 71.00 44.02 0.6467 21.19 76.61 -1.11
Ditto [36] 46.23 39.69 77.99 17.52 69.77 41.49 0.6508 20.60 76.45 -5.57

FedBABU [59] 52.60 46.41 79.47 16.88 71.13 43.98 0.6361 21.14 76.70 -1.19
FedAMP [25] 55.98 52.05 80.79 15.74 72.02 41.67 0.6428 20.54 76.40 1.47
FedSTA [60] 52.24 50.68 77.97 16.90 70.07 35.62 0.7384 22.87 75.35 -5.80
MaT-FL [8] 57.45 48.63 79.26 17.26 71.23 40.99 0.6352 20.65 76.59 -0.46
FEDHCA2 57.55 52.30 80.71 15.60 72.08 41.47 0.6281 20.53 76.50 2.18

empower clients with analogous data domains and task ob-
jectives to have higher aggregation weights. This enhance-
ment reinforces the mutual contribution from complemen-
tary information, thus serving as high-level guidance in har-
monizing the local updates with the collaborative updates.
Specifically, the server maintains a dedicated set of weights
for each client, which are applied as follows in the person-
alized aggregation:

θ
(r)
i = θ

(r−1)
i +∆θ

(r)
i + ψiθ̃i, (14)

where ψi denotes the hyper weights for client Ci, i.e. αi for
encoder or βi for decoder, and θ̃i is the aggregated update
Ũ from Eq. (9) or Ãi,l from Eq. (13). It is worth noting
that we implement distinct weights for each decoder layer
rather than a single weight value to be consistent with the
layer-wise computation of cross attention.

Furthermore, we design Hyper Aggregation Weights
to be learnable parameters that are dynamically updated
throughout the training phase. This adaptability ensures that
the weights are optimized in conjunction with the system’s
overall objective. By employing the chain rule, we can de-
rive the gradient of ψi as follows:

∇ψi
Li = (∇ψi

θ
(r)
i )⊤∇

θ
(r)
i

Li = (θ̃i)
⊤∇

θ
(r)
i

Li. (15)

To better align this update rule with the FL paradigm, we
can reformulate Eq. (15) by substituting gradients with pa-
rameter updates, which is the negative accumulation of gra-
dients over batches, resulting in the updating process:

α
(r)
i = α

(r−1)
i +∆αi, ∆αi = (Ũ (r))⊤∆θ

E,(r)
i , (16)

β
(r)
i,l = β

(r−1)
i,l +∆βi,l, ∆βi,l = (Ã

(r)
i,l )

⊤∆θ
D,(r)
i,l . (17)

It indicates that the update of Hyper Aggregation Weights
can be attained by the alteration in model parameters fol-
lowing local training in subsequent communication rounds.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments with two estab-
lished benchmark datasets for multi-task dense predictions:
PASCAL-Context [58] and NYUD-v2 [68]. The PASCAL-

�a� �b�
Figure 4. Evaluation results during training using two tasks as
examples. (a) Parts from PASCAL-Context on single-task client.
(b) Normals from NYUD-v2 on multi-task client.

Context dataset contains 4,998 images for training and
5,105 for testing, annotated for five tasks: semantic seg-
mentation (‘SemSeg’), human parts segmentation (‘Parts’),
saliency detection (‘Sal’), surface normal estimation (‘Nor-
mals’), and edge detection (‘Edge’). The NYUD-v2 dataset
consists of 795 training images and 654 testing images, all
depicting indoor scenes, and provides annotations for four
tasks: semantic segmentation, depth estimation (‘Depth’),
surface normal estimation, and edge detection.

To evaluate our algorithm, we configure two HC-FMTL
benchmark scenarios: 1) Five single-task clients address
five tasks in PASCAL-Context, and one multi-task client ad-
dresses four tasks in NYUD-v2; 2) Conversely, four single-
task clients address four tasks in NYUD-v2, and one multi-
task client addresses five tasks in PASCAL-Context. Fol-
lowing MaT-FL [8], we set an equal number of data samples
among the respective clients through random partitioning.
Implementation. Our client architecture employs a pre-
trained Swin-T [44] backbone coupled with simple FCN
decoders and heads. Considering the varying capacities of
datasets, we use one local epoch for PASCAL-Context and
four for NYUD-v2, setting the total number of communi-
cation rounds to 100 and the batch size to 8. We train all
models using AdamW optimizer [46] with an initial learn-
ing rate and weight decay rate set at 1e-4. We implement
all methods with PyTorch [61] and run experiments on two
NVIDIA RTX4090 GPUs. To adapt existing methods to the
HC-FMTL setting, we decouple the models into encoders
and decoders for separate aggregation across all methods.
Metrics. We adhere to established evaluation metrics.
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Table 2. Comparison to representative methods using NYUD-v2 for four single-task clients and PASCAL-Context for one multi-task client.

Method
NYUD-v2 (ST) PASCAL-Context (MT)

∆m% ↑SemSeg Depth Normals Edge SemSeg Parts Sal Normals Edge
mIoU↑ RMSE↓ mErr↓ odsF↑ mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

Local 33.59 0.7129 23.22 75.02 65.80 55.01 83.23 14.21 71.89 0.00
FedAvg [55] 25.80 0.8295 24.85 75.31 64.63 52.88 81.08 15.56 68.95 -7.56
FedProx [35] 25.96 0.8316 25.20 75.34 64.97 50.78 81.29 15.83 69.81 -8.12

FedPer [2] 35.93 0.7460 23.75 75.53 67.78 54.75 82.50 14.75 71.90 -0.16
Ditto [36] 28.15 0.7482 23.96 75.42 65.99 51.45 81.74 15.29 69.96 -4.67

FedAMP [25] 34.75 0.7103 23.31 75.03 66.08 54.10 83.35 14.20 71.88 0.27
MaT-FL [8] 35.05 0.7504 23.39 75.33 67.90 54.78 82.84 14.58 71.94 -0.16
FEDHCA2 34.95 0.7018 23.19 75.03 65.81 55.01 83.18 14.08 71.97 0.75

Table 3. Ablation study on our proposed aggregation schemes. ‘+Enc’ and ‘+Dec’ denote the integration of Hyper Conflict-Averse
Aggregation for the encoders and Hyper Cross Attention Aggregation for the decoders, respectively.

Method PASCAL-Context (ST) NYUD-v2 (MT)
∆m% ↑SemSeg↑ Parts↑ Sal↑ Normals↓ Edge↑ SemSeg↑ Depth↓ Normals↓ Edge↑

Local 51.69 49.94 80.91 15.76 71.95 41.86 0.6487 20.59 76.46 0.00
+Enc 58.38 51.64 80.44 15.65 72.09 41.21 0.6377 20.55 76.50 1.89
+Dec 57.39 51.65 80.75 15.69 72.06 41.48 0.6344 20.56 76.41 1.80

+Enc+Dec 57.55 52.30 80.71 15.60 72.08 41.47 0.6281 20.53 76.50 2.18

Specifically, we measure semantic segmentation and hu-
man parts segmentation using the mean Intersection over
Union (mIoU). Saliency detection is evaluated with the
maximum F-measure (maxF), while surface normal esti-
mation is assessed by the mean error (mErr). Edge de-
tection utilizes the optimal-dataset-scale F-measure (odsF),
and depth estimation uses the Root Mean Square Error
(RMSE). To provide an overall evaluation of different al-
gorithms, we calculate the average per-task performance
drop [52] relative to the local training baseline, which is
trained without aggregation. The formula is as follows:
∆m = 1

N

∑N
i=1(−1)li

MFed,i−MLocal,i

MLocal,i
,whereN is the count

of tasks, MFed,i and MLocal,i correspond to the perfor-
mance of task i for federated methods and the local base-
line, respectively. li = 1 if a lower metric value is better for
task i, and li = 0 otherwise.

4.2. Main Results

To evaluate the performance of our method, we compare
with representative works including two traditional FL ap-
proaches FedAvg [55] and FedProx [35], four pFL meth-
ods FedPer [2], Ditto [36], FedBABU [59], FedAMP [25],
and two FMTL methods FedSTA [60] and MaT-FL [8].
The results presented in Tab. 1 and Tab. 2 demonstrate
that FEDHCA2 consistently delivers the best performance
across most metrics. More importantly, it outperforms all
representative methods when considering the average per-
task performance drop, which is a widely acknowledged
indicator for assessing the overall performance of multiple
tasks. In addition, Fig. 4 shows that FEDHCA2 converges
faster to a better result on different tasks.

4.3. In-depth Analysis

Ablation Study. An ablation study is conducted to dis-
cern the individual contributions of each component within

Table 4. Comparison between different settings. ‘ST+Local’
and ‘ST+Ours’ denote the setting with four single-task clients on
NYUD-v2, trained with local baseline and FEDHCA2, respec-
tively. ‘ST+MT+Ours’ denotes the setting in Tab. 2 trained with
our framework. ‘∆m’ is calculated w.r.t. ‘ST+Local’ baseline.

Setting SemSeg ↑ Depth ↓ Normals ↓ Edge ↑ ∆m% ↑
ST+Local 33.59 0.7129 23.22 75.02 0.00
ST+Ours 34.71 0.7170 23.25 74.98 0.64

ST+MT+Ours 34.95 0.7018 23.19 75.03 1.44
Table 5. Comparison to local baseline on the setting with only
multi-task clients on two datasets.

Method PASCAL-Context (MT) NYUD-v2 (MT)
∆m% ↑SemSeg↑ Parts↑ Normals↓ SemSeg↑ Normals↓

Local 64.87 53.34 14.07 39.81 20.65 0.00
Ours 64.17 54.25 14.01 40.26 20.55 0.53

FEDHCA2, as shown in Tab. 3. The results indicate that in-
corporating either encoder or decoder aggregation enhances
performance relative to the baseline. The simultaneous em-
ployment of both Hyper Conflict-Averse and Hyper Cross
Attention Aggregations enables FEDHCA2 to achieve opti-
mal performance across the evaluated configurations. This
result supports the idea that using these two aggregation
schemes together enhances cooperation among different
clients while simultaneously reducing negative conflicts be-
tween various tasks.
Impact of different FMTL scenarios. To further verify
the necessity of introducing our new setting, we conduct ex-
periments comparing two scenarios: 1) each client handles
a single task, and 2) HC-FMTL encompasses both single-
task and multi-task clients. As Tab. 4 illustrates, while
FEDHCA2 improves upon the local baseline in the single-
task client scenario, integrating the multi-task client results
in a greater enhancement. This improvement is attributed
to the expanded pool of data and the knowledge jointly
learned from additional tasks. Further experiments are car-
ried out on another scenario of HC-FMTL setting which
exclusively involves multi-task clients. Specifically, we se-
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Clients Scale

Figure 5. The performance changes of different methods with the
number of clients scaling to 2 and 4 times. ‘∆m’ is calculated w.r.t.
corresponding local baseline of 1C, 2C, or 4C. When the number
of clients increases, our method can consistently provide superior
performance, and an overall growth trend could be observed.

�a�

mutual

specific

�b�
Figure 6. Hyper Aggregation Weights α for encoders of the client
models during training. (a) Weights of five single-task clients. (b)
Weight of the multi-task client which differs in two stages.

lect three tasks from PASCAL-Context and two tasks from
NYUD-v2 to create two multi-task client setups. The out-
comes presented in Tab. 5 align with our primary findings
in Sec. 4.2 that nearly all metrics surpass the local baseline,
further confirming the efficacy of our approach in this spe-
cialized setting.
Impact of the number of clients. To assess the effective-
ness of FEDHCA2 across varying client counts, we conduct
tests by scaling the number of clients per task by factors of
2 and 4, with the datasets evenly split. As depicted in Fig. 5,
FEDHCA2 consistently outperforms all comparative meth-
ods, exhibiting a positive correlation between the number of
clients and performance improvement. This trend contrasts
with the performance decline seen with other methods as the
client count increases—a result typically attributed to the
diminished dataset available to each client and the increased
decentralization within the federated learning system. The
success of FEDHCA2 substantiates the efficacy of the Hy-
per Conflict-Averse Aggregation and Hyper Cross Attention
Aggregation schemes, especially in scenarios characterized
by pronounced data and task heterogeneity.
Interaction between tasks. We investigate the dynamic
learning process of Hyper Aggregation Weights for both
encoders and decoders, aiming to understand their role in
facilitating personalized aggregation for different clients.
Fig. 6(a) reveals that the evolution of weights for encoders
in single-task clients shows a rising trend, suggesting a
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Figure 7. Learned Hyper Aggregation Weights β across decoders
for different tasks, spanning layers from L1 to L6.

consistent uptake of knowledge from peers throughout the
training period. In contrast, the encoder weight of the multi-
task client, as depicted in Fig. 6(b), exhibits two stages. Ini-
tially, the multi-task client mutually assimilates knowledge
from single-task clients, a process that is crucial for rapid
model convergence. The mutual learning for the multi-task
client reaches its peak at about 20 rounds when the encoder
weights are comparable. Subsequently, in the second phase,
due to the heterogeneity in data and tasks, the multi-task
client tends to enhance its feature extraction capabilities
specific to its own data domain.

Weights for decoders, as shown in Fig. 7, vary signif-
icantly across different tasks and decoder layers. From
a layer-oriented perspective, the layer closest to the out-
put head, i.e., L6, depends least on cross-task information,
which ensures that the final output is finely tuned to the
specific task. In terms of task-related differences, a phe-
nomenon markedly distinct from encoders is observed. For
decoders of multi-task client, there is a persistent informa-
tion integration from other tasks until the end of training.
This empirical evidence substantiates the significance of
employing task interaction in decoder aggregation.

5. Conclusion
In conclusion, this paper addresses the challenges of het-
erogeneity in the novel Hetero-Client Federated Multi-
Task Learning (HC-FMTL) setting through the innovative
FEDHCA2 framework. By recognizing and tackling the
issues of model incongruity, data heterogeneity, and task
heterogeneity, FEDHCA2 learns personalized models with
synergies of the proposed Hyper Conflict-Averse Aggrega-
tion, Hyper Cross Attention Aggregation, and Hyper Ag-
gregation Weights. Theoretical insights and extensive ex-
periments confirm the effectiveness of our methodology.
Our work opens possibilities for more flexible FL systems
in diverse and realistic settings. For future work, we aim
to delve into greater model heterogeneity that accommo-
dates varied network structures across clients, and to inte-
grate specific modules into clients to further enhance task
interaction, drawing on advancements in MTL.
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Kameni, and Richard Vidal. Federated multi-task learning
under a mixture of distributions. In NeurIPS, pages 15434–
15447, 2021. 1, 3

[54] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In AISTATS, pages 1273–1282, 2017. 2

[55] Brendan McMahan, Eider Moore, Daniel Ramage, et al.
Communication-efficient learning of deep networks from de-
centralized data. In AISTATS, pages 1273–1282, 2017. 2, 6,
7

[56] Jed Mills, Jia Hu, and Geyong Min. Multi-task federated
learning for personalised deep neural networks in edge com-
puting. TPDS, 33(3):630–641, 2021. 1, 3

[57] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-
tial Hebert. Cross-stitch networks for multi-task learning. In
CVPR, pages 3994–4003, 2016. 2, 5

[58] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan Yuille. The role of context for object detection and se-
mantic segmentation in the wild. In CVPR, pages 891–898,
2014. 6

[59] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu:
Toward enhanced representation for federated image classi-
fication. In ECCV, 2022. 2, 6, 7

[60] Sangjoon Park, Gwanghyun Kim, Jeongsol Kim, Boah Kim,
and Jong Chul Ye. Federated split task-agnostic vision trans-
former for covid-19 cxr diagnosis. NeurIPS, 34:24617–
24630, 2021. 1, 3, 6, 7

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, and Luca Antiga. Pytorch:
An imperative style, high-performance deep learning library.
NeurIPS, 32, 2019. 6
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